Patching and multiplicities of p-adic eigenforms
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Abstract

We prove the existence of non-classical p-adic automorphic eigenforms associ-
ated to a classical system of eigenvalues on definite unitary groups in 3 variables.
These eigenforms are associated to Galois representations which are crystalline but
very critical at p. We use patching techniques related to the trianguline variety of
local Galois representations and its local model. The new input is a comparison
of the coherent sheaves appearing in the patching process with coherent sheaves
on the Grothendieck—Springer version of the Steinberg variety given by a functor
constructed by Bezrukavnikov.
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1 Introduction

The aim of this paper is to unravel (and explain) a new phenomenon in the theory of p-
adic automorphic forms. Given a reductive group G over a number field (overconvergent)
p-adic automorphic forms are p-adic avatars of automorphic forms on G. We usually
refer to the latter as classical automorphic forms in order to distinguish them from their
p-adic limits. Additional structures on spaces of automorphic forms, such as the Hecke-
action, naturally extend to the L-vector spaces of overconvergent p-adic automorphic
forms ST(KP), ST (KP), where the field of coefficients L is a finite extension of Q, and
KP C G(AP) is a compact open subgroup (referred to as the tame level) and k is a
weight. A central question about p-adic automorphic forms is to clarify whether a given
overconvergent p-adic automorphic form (of algebraic weight) that is an eigenform for
the Hecke action is a classical automorphic form. Often this question can be answered
in terms of the Hecke eigenvalues. Coleman’s small slope implies classical result [Col97]
and generalizations thereof (see e.g. [Kas06], [Chell], [BPS16]) asserts that this question
can be purely decided using the Hecke action at p if the p-adic valuation of the Hecke
eigenvalues at p is small compared to the weight. Beyond the numerically non critical
slope it is known that this fails. However, one can ask the same question taking into
account the full Hecke action (as opposed to the Hecke action at p).

Assume that we are in a situation where we can construct the Galois representation
pf = py attached to a p-adic eigenform f, respectively to the Hecke character x giving
the system of Hecke eigenvalues of f. Then the Hecke action away from p encodes all
the information about the p-adic Galois representation py, including the p-adic Hodge
theoretic information at places dividing p (though this is encoded in a rather indirect
and mysterious way). The naive generalization of the classicality question about over-
convergent p-adic automorphic forms can hence be phrased as follows (though we phrase
the question in a rather informal way):

Question A: Let f be an overconvergent p-adic eigenform of dominant algebraic weight
such that the corresponding Galois representation py is de Rham at places dividing p.
Is it true that f is a classical automorphic form?

We note that a softer version of this question is the following expectation that is
implied by the Fontaine-Mazur conjecture. Again we state the expectation in a rather
informal way — it might fail without more precise assumptions on the group the level,
etc. (see e.g. [BHS19, Conj. 5.1.1] for a precise formulation).

Rough Expectation B: Let S| (KP?)[x] C SL(KP) be an eigensystem (for the action
of the full Hecke algebra T generated by Hecke operators at p and away from p) in the
space SI(KP) of overconvergent p-adic automorphic forms of weight x on G. Assume
that ~ is dominant algebraic and that the Galois representation p, associated to the
Hecke character x : T — L is de Rham at places dividing p. Then Sf(KP)[x] contains a
classical automorphic form, i.e. its subspace S<(KP)[x] of classical forms is non-zero.

Question A then can be rephrased as the question whether S9[x](K?) = ST (KP)[x]



in Expectation B. It is known that Question A does not have an affirmative answer
in general. Ludwig [Ludl8] and Johansson-Ludwig [JL23] have shown that there are
counterexamples for SLs. The reason for these counterexamples however, is of global
(endoscopic) nature and it remains a reasonable question to ask Question A for groups
where these phenomena do not apply, e.g. for definite unitary groups.

Expectation B has been verified for GLg (this is basically [Kis03]), and generalizations
of Kisins’ result were proven by Bellaiche and his coauthors ([BC06],[Bell2] and [BD16]).
For definite unitary groups, and under Taylor—Wiles assumptions, these results were
vastly generalized in [BHS17a], [BHS19]. We point out that in the cases treated in
[BHS17a] the results imply that S<(KP)[x] = SI(KP)[x], while the more general case
in [BHS19] only allows to construct some classical form in the eigensystem (though no
counterexample to Question A is constructed in loc. cit.). The reason for this difference
is due to a phenomenon in the geometry of eigenvarieties (i.e. rigid analytic spaces
parametrizing the systems of Hecke eigenvalues in the space of overconvergent p-adic
automorphic forms of finite slope), respectively in the geometry of their local Galois-
theoretic counterparts (the so-called trianguline variety of [BHS17b]). In the case treated
in [BHS17a] the trianguline variety is smooth at the Galois representations in question
(and hence the eigenvariety is local complete intersection). In general the trianguline
variety is not smooth, and as a consequence one can construct non-smooth points on the
corresponding eigenvarieties, see [BHS19, Thm. 5.4.2]. It is this failure of smoothness
that prevents [BHSI19] from identifying S'(KP)[x] and SI(KP)[x].

In this paper we prove that the answer to Question A is no for definite unitary groups
in three variables (see Theorem below for a more precise formulation).

Theorem 1.1. There exists a unitary group in three variables U, a tame level KP, a
dominant algebraic weight k and o Hecke character x : T — L that occurs in the space
SI(KP)gs of overconvergent automorphic forms of finite slope and weight k such that the
eigenspace S§(KP)[x] contains classical as well as non-classical eigenforms.

The construction of this example also clarifies the role of the singularities of the
trianguline variety Xi;;. The precise results we prove suggest that the answer to Question
A is no, whenever the dualizing sheaf wx, , is not locally free at the point defined by
p (and the refinement associated to x), i.e. whenever Xy, is non-Gorenstein at this
point (we refer to Theorem below for the precise link with wx,,). In the three
dimensional case, this results in a precise comparison of the dimensions of the eigenspaces
S € SLEP) .

We point out that, in contrast to [Ludl8] and [JL23|] this is a purely local p-adic
phenomenon. Moreover, the theorem implies that the usual invariants (i.e. the Hecke
action, respectively the p-adic Hodge theoretic information of the associated Galois rep-
resentation) can not distinguished between classical and non-classical forms. We like to
refer to the non-classical forms in such eigensystems as undercover automorphic forms.

The main result, and in particular the occurrence of the dualizing sheaf wx, ; therein,
is inspired by the categorical point of view in the p-adic Langlands program, see [EGH23].



The space of overconvergent p-adic automorphic forms of finite slope ST(K’) )fs can be
viewed as the topological dual of the global sections of a coherent sheaf (that we simply
refer to as the sheaf of p-adic automorphic forms) on the rigid analytic generic fiber of
the universal deformation space of Galois representations (more precisely, on the product
of this space with the space of continuous characters of a maximal torus 7'(Q,) C G(Q,)
at p). The support of this sheaf is, by definition, the corresponding eigenvariety. The
local-global-compatibility conjectures [EGH23|, Conj. 9.6.8 and Conj. 9.6.16] give a pre-
cise description of this sheaf in terms of the geometry of moduli stacks of (¢, I')-modules
(that are closely related to the trianguline variety). More precisely, the categorical ap-
proach to the p-adic Langlands program asks for a functor from certain (locally analytic)
representations of G(Q,) to sheaves on stacks of (¢, I')-modules, and the sheaf of p-adic
automorphic forms is the globalization of the evaluation of this functor on a specific
representation. One of the punchlines of [EGH23| (see section 1.6 therein for a more
detailed discussion) is that avatars of the envisioned functor have been around in number
theory during the past decades in the context of the Taylor-Wiles patching method, in
particular patching functors as used for example in [EGS15] (or also in [BHS19, 5.]) A
crucial point in the proof of the main theorem is the identification of such a patching
functor with an explicit local functor, see Theorem below. This partially confirms
expectations in the categorical picture, see [EGH23, Expectation 6.2.27].

Note that the multiplicity result in Theorem has some striking consequence for
the p-adic Langlands Program for GL3(Q,). It implies that the locally analytic repre-
sentation of GL3(Q),) on the Hecke eigenspace of overconvergent p-adic modular forms
over G corresponding to a Galois representation p as in Theorem contains locally
analytic vectors which are mot in the socle of the representation (see Remark .
After finishing this works, the authors learned that Ding also proved examples of this
penomena for generic Galois representations (see [Din]).

We now describe our results in more detail. Let F' be a totally real number field
and let E/F be a CM (imaginary) quadratic extension in which every place v|p in F'
splits in E. Let U be a unitary group (over Q) in n variables for the quadratic extension
E/F which is compact at infinity. By the hypothesis on p the group Ug, is a product
of general linear groups over finite extensions of Q, and we denote 1" a maximal torus
of Ug,. We also fix a finite extension L/Q, which is big enough to split £. Let Op C L
be its ring of integers, 7wy, a uniformizer and kj, its residue field.

For any continuous character ¢ : T'(Q,) — L™, we can define a weight s (which is
given by the derivative of ¢ at 1) and a character of the Atkin—Lehner ring A(p) (the ring
of Hecke-operators at p, see Deﬁnition that we still denote by 6. We will assume that
djo is algebraic where T° C T(Q,) is the maximal compact subgroup. Let K? C U(AP)
be a tame level and let S be a finite set, containing places above p, away from which K?
is hyperspecial. We write T® for the unramified Hecke algebra at places not in S and
T =T ®z A(p). Associated to these data we consider the spaces SI(KP?) and SS(KP),
see Definition for the precise definition, which come equipped with an action of T
and A(p).



Given a character x° : T¥ — L let x = x°®4 and consider the eigenspaces S} (K?)[x]
and SY(KP)[x]. We note that the classical subspace S<(KP)[x] is zero unless x is domi-
nant algebraic. To an eigenvector f € SI(KP)[x] we can associate a Galois representation
p = ps = py: Galp = Gal(E/E) — GL,(Q,). For the precise form of the main result
we introduce the following (strong) Taylor—-Wiles hypothesis. Let p: Galp — GLy,(kr)
be the semisimplification of the reduction modulo the maximal ideal of O of p. We

assume that (see Hypothesis in the text)

p>2,

E/F is unramified and ¢, ¢ E,

U is quasi-split at all finite places of F, (1)
if a place v of F' is inert in F, then K, is hyperspecial,

p is absolutely irreducible and p(Galgc,)) is adequate.

For simplicity of the exposition we assume now that that p is totally split in F' (in the
core of the paper we work in the general case). If the representation p is crystalline at
v|p, it can be described by its associated filtered isocrystal which is a finite dimensional
L-vector space Deis(py) endowed with a linear automorphism ¢ € GL(Deis(py)) and a
complete flag D®, called the Hodge-Tate filtration (in our case, this is a complete flag
as p, has necessarily regular Hodge-Tate weights). We say that p, is p-generic if the
ratio of two of its eigenvalues is not in {1, p}. In this case the character ¢ determines an
order of the eigenvalues of ¢ (that is called a refinement of p,) which in turn (using the
fact that the p-eigenvalues are pairwise distinct) defines another complete flag Fo on
Deris(pv) which is ¢-stable. We denote w, 5, € &, the relative position of the flags F,
and D* in the flag variety of Deyis(py). When w), 5, = wo is the longest element of &,
i.e. when the two flags D® and F, are in generic position, we say that f is non-critical at
v. The “most critical case” is the case where w, s, = 1, i.e. when the two flags coincides.
In this case we say that f is very critical at v.

Theorem 1.2. Assume n = 3. Let § : T(Qp) — L* be a continuous character of
weight k dominant algebraic. Let x° : T — L be a character and let x = x° @ 5. We
assume that the eigenspace SI(KP)[x] is non-zero and that for any v|p the local Galois
representation py, = py|caly, @ Galg, — GL3(Qp) is crystalline with distinct Hodge-
Tate weights and is p-generic. Assume moreover that the Taylor—Wiles hypothesis
is satisfied. Let r be the number of places v|p in F' such that wy, 5, = 1. Then

dim S (K?)[x] = 2" dim S (K7) ]

We refer to Corollary [7.25] for a more general statement where p is not necessarily
totally split in F'.

Theorem would be vacuous without proving the existence of characters x and ¢
(and a group U and a tame level KP) such that the corresponding eigenspace SS(KP)[x]
is non-zero and consists of very critical forms. As there exist only countably many
classical automorphic forms, but uncountably many flags it doesn’t seem very easy to



construct an f with w, s = 1. This is Corollary the main result of section , which
uses global automorphic methods that are rather disjoint from the methods of the other
parts of the paper. The Galois representation corresponding to the constructed Hecke
character is induced from a degree 3 extension of FE.

We finally discuss the relation of these results with patching functors and the cate-
gorical approach to a p-adic Langlands correspondence. Assume that 6 = 0,6%" is the
product of a dominant algebraic character d) and a smooth unramified character 03"
(which is in fact implied by the assumption that p, is crystalline). As the notation
suggests, the character §%" corresponds to the choice of a refinement R of p, == (py)y|p-
Let &, = Spec(R),) be the scheme associated to the universal deformation ring of p,.
Using results of [BHS19], we can construct a subscheme

Xg;;lz = Spec(REZ;z) C X,
of “quasi-trianguline” deformations of p, associated to the refinement R. By loc. cit. this
scheme has a local model modeled on the Steinberg variety (or rather its “Grothendieck—
Springer” variant) and its irreducible components X;{%’w are labeled by the Weyl group
W of [[,, GL3. It is known that these irreducible components are normal and Cohen—
Macaulay.

Let’s denote A = 6|po(= 670), this is a dominant algebraic character. Using hypoth-
esis the Taylor—-Wiles method, as extended to the setting of completed cohomology
in [CEG™16], can be used ([BHSI19, 5.]) to construct coherent sheaves Moo (L(A)) and
Moo (M(w - X)) for w € W over ngﬁ = Spec(R;}:;z[[xl,...,xg]]) for some g > 0,
that “patch” the duals of the spaces of classical, respectively p-adic, automorphic forms.
More precisely

Meo(L(N)) @ k(py) = Homp, (SS(KP)[x], L),
Moo(M(w - \)) ® k(pp) = Homp(S] ,(KP)[], L).

These coherent sheaves are in a certain precise sense associated to the U(g)-modules
L(X) (the algebraic representation of highest weight \) respectively the Verma modules
M(w - A), where g is the Lie algebra of U, = [[,, GLs. The results of [BHS19] show
that the coherent sheaves Moo (M (w - A)) have generic rank (when nonzero) equal to
dimy, S{(KP)[x]. Denote qucfr;;‘é = quot’r;’n X X;"%’w. The key to the proof of
Theorem [I.2]is the following result: 7

Theorem 1.3. Under the assumptions of Theorem let m = dimp, Sil [x]. For any
w € W, there is an isomorphism

Moo(M (- X)) 2 w0

c0,p, R

qtri,wwo thri,wwo

Here Wepatriwwg 1S the dualizing sheaf of a complete intersection X s~ C o p R

00, pR



In order to prove Theorem [I.3] we extend My to a functor on the whole category
O,, the block of the BGG category O containing L(A). This is the patching functor
alluded to above. More precisely, assuming that p, is crystalline with regular Hodge-
Tate weights, and ¢ is (p-generic, we construct an exact functor

Mg : Oy — Coh(XE" 1),

such that, for every M € O, the sheaf My (M) is Cohen-Macaulay of the expected
dimension.

In spirit of the categorical approach to the p-adic Langlands correspondence the
functor My, should be a “local” functor, that is (up to multiplicities coming from con-
tributions at the places away from p) the functor My, should be the pullback, denoted

B, of a functor .
B,: O\ — Coh(X/?;f;z).

This functor B, can be written down explicitly using the local model for X;‘;f;z and a
functor constructed by Bezrukavnikov [Bezl16], see for details. Our main local result
compares My, and B, (see Corollary for the general version):

Theorem 1.4. Under the assumptions of Theorem let m = dimp, S§![x]. Then there
is an isomorphism of functors Mu, ~ BZ™. As a consequence, we have

1) forallw € W, Moo(M(w - \)¥) >~ O%eri,wwo ;

00,p, R

2) for allw € W, Moo(M(w - X)) ~ OJ@Z&,MUO ;

Xoo,ﬁﬂi

3) for all M € O, we have Moo(M") ~ Moo (M)Y where (-)V denote both the dual

in Oy and the Serre dual in the category of coherent sheaves.

Remark 1.5. We can only prove Theorem [I.4] in the three dimensional case. However,
we expect an isomorphism M, = BL™ for higher dimensional definite unitary groups
as well.

In fact B, should factor through the category of locally analytic representations, and
is expected to extend to a functor with values in coherent sheaves on the stack of all
(¢, I')-modules (compare [EGH23|, Conjecture 6.2.4 and Expectation 6.2.27]). Theorem
should be viewed as some partial evidence for these expectations.

The key to proving Theorem is to extend the functor M, to a larger category

alz and to a deformation @alg as introduced in [Soe92], which we think of as a deformed
version of Oy. We would like to emphasize that we first prove |1)l and we deduce the
isomorphism My, ~ BZ™ from this in a second time . The proof of [1)| is based on a
dévissage whose has its origin in the paper [EGSI5]. We first prove the result in the
case where Xé‘cf?z’w is smooth and then proceed inductively. Note that the existence of
Bezrukavnikov’s functor By plays a key role in this induction. The second main input



into this induction is the computation of Moo (My(w-\)) where My(w-\) is a generalized
Verma module (corresponding to some parabolic Pr). These sheaves, that are related
to sheaves of p-adic automorphic forms on the partial eigenvarieties constructed by Wu
[Wul, are supported on “partially de Rham quasi-trianguline” deformation spaces X;pj%m
which have been studied by Breuil and Ding in [BD].

We finally note that the component X Sotr;%o is not Gorenstein and its dualizing sheaf

has a 2"-dimensional fiber at p,, which is the reason for the factor 2" in Theorem @

We now describe the content of the article. In section [2] we introduce the cate-
gory Oyl and its deformed versions. Section [3| studies Emerton’s Jacquet functor and
gives the abstract framework to construct patching functors. In section [d] we recall the
quasi-trianguline deformation spaces of [BHS19], their local models, and their parabolic
version ([BD) [Wul). Section [5| recalls the definitions of the global objects like completed
cohomology, overconvergent automorphic forms and their patched versions. Section |§| is
devoted to the further study of the functor My, and its factorization through nggﬁ,
the (global) quasi-trianguline deformation space. In section |7}, we study the supports of
the sheaves Moo (M) for specific objects of Qa1 (and their deformed version), and we
recall results on Bezrukavnikov’s functor before deducing Theorem (in the three di-
mensional case). Finally, in section |8 we explain how to explicitly construct very critical
forms satisfying the assumptions in Theorem [I.2] for n = 3.
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Notations

Let p be a prime number. When K is a field, we write Galg = Gal(K*P/K) for its
absolute Galois group. We fix L a finite extension of Q, which will be chosen sufficiently
large in the text.



2 Variants of the BGG-category O

In this section, we fix L to be a field of characteristic 0. Let G be a split reductive group
over L. Let B be a Borel subgroup, 7' a maximal split torus of G contained in B and N
the radical of B. We use the notation g, b, t, n... for the Lie algebras of G, B, T, N...
We denote by X*(T') the finite free abelian group Hom(T', G, 1,) of characters of T'. This
abelian group can be identified with a Z-lattice in t* := Homp (t, L). For A € X*(T), we
also write A\ for the character of t induced by A. Let ® be the set of roots of the pair
(G,T) and let @+ C @ be the subset of positive roots with respect to B and A C ®* the
subset of simple roots. As usual we write 0g € X*(T) ®z Q for the half sum of positive
roots. Let W be the Weyl group of (G,T). For w € W, we write A — w - A for the dot
action of W on X*(T') (with respect to B, that is w - A := w(A + dg) — dg). We equip
W with the Bruhat order corresponding to the choice of B and we denote wg € W the
longest element for this order.

If I C A is a subset of simple roots, we denote by ®; C ® the subset of roots which
are sums of elements of I and P; O B be the standard parabolic subgroup of G such that
pr="b+>,co, 8o Let L; be the standard Levi subgroup of P; and Z; be the center of
L;. We say that a character A € X*(T') is dominant with respect to Py if (A, a") > 0 for
« € I and we denote X* (Z)}r the set of such characters. When I = A, we have P = G
and we write X*(T)* = X*(T)£. We use the following order relation on X*(T), we say
that A > pif and only if A — € 3 co+ Now

We write W for the Weyl group of the Levi L; of Py; it is the subgroup of W gener-
ated by the simple reflexions s, for a € I. Given w € W, we denote w™" (resp. w™a¥)
the unique minimal (resp. maximal) element for the Bruhat order having the same class
as w in Wy\W. This definition depends on I (and on the fact that the quotient is on the
left) but we hope our notation will cause no confusion. As usual, we write wy € W for
the longest element in W. Then we have (wwg)™" = w™®wy and (wwp)™* = w™Mwq
for any w € W . Finally, we write /W for the set of minimal length representatives of
WA\W in W.

If b is a Lie algebra we note h* its derived Lie algebra.

2.1 Recollections

For I C A, we consider the full subcategory O1> of the category U(g)-mod of U(g)-
modules that consists of all finitely generated U(g)-modules M such that

o for any m € M, the L-vector space U(pr)m is finite dimensional;

o for any h € t and any h-stable finite dimensional L-vector subspace V' C M, the
characteristic polynomial of ki, is split in L[X].

This is the category OP1*° in [AS22] §3.1].

10



For u € Homp (t, L), we write M* C M for the L-subspace of those v € M such that,
for any h € t, (h — u(h))" - v =0 for some n > 1. We have

M= & M-
pweHomyp, (t,L)

We write Oiigo for the full subcategory of O1*° whose objects M satisfy M* = 0 for
0 X*(D).
Moreover, we write Oilg C (’)il’go for the full subcategory whose objects are direct

sums of finitely generated semisimple U (I7)-modules (when seen as U (I7)-modules). This

coincides with the usual parabolic (algebraic) category O, which is denoted ngg in

[OS15]). When I = () we simply use the notations Ogf, and Oa for Ogl’go and Oglg.

Note that (’)il’go C Ol for any I C A. As these categories depend on the choices of
g and b we write O%° (with additional decorations) instead of O, when the context is

unclear.

These categories are stable by subobject and quotients in the category of U(g)-

Ioco . .
modules. Moreover the category (’)al’go is stable under extensions.

For any character A € X*(T)7, we write L;()) for the simple U(I)-module of highest
weight A. This is a finite dimensional L-vector space and we define the generalized Verma
module of highest weight A\ as

Mi(A) = U(9) Qup,) Lr(A)-

The generalized Verma module is an object of Oélg and has a unique simple quotient
L(\). When I = ), we simply write M(\) = My()\) and say that M()) is a Verma
module. We also denote by P()) the projective cover of the simple module L()). If A is
dominant with respect to B, we call P(wp - A) the antidominant projective (with respect

to A).

2.2 Nilpotent action of U(t)
Given I C A we denote by m; the augmentation ideal of U(3;) and set

A= U(Zﬁl)ml
A=Ay =U(t)n.

The canonical Lie algebra decomposition [; = 37 @ [}° defines a canonical morphism of
Lie algebras py : [ — 37 which extends to a morphism U (l;) — U(3;) of L-algebras also
denoted by py. This morphism induces a surjective morphism A — Ay of Aj-algebras.

We show that the category O7>° naturally embeds into the category U(g)4,-mod,
where U(g)a, =U(g) @ Ar.
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Let M be an object of the category O1>®°. Let h € t. For v € M the element h
defines an L-linear endomorphism of the finite dimensional L-vector space U(t)v and
we write h = Dp, , + N}, ,, for its Jordan decomposition with semisimple part Dy, , and
nilpotent part Np,. As M is locally U(t)-finite, uniqueness of the Jordan decomposi-
tion implies that these endomorphisms “glue” into an endomorphism Dy, and a locally
nilpotent endomorphism N}, of M such that Dy, , respectively Ny, is the restriction of
Dy, respectively Ny, to U(t)v for any v € M.

Lemma 2.1. The endomorphism Ny, is U(g)-equivariant.

Proof. By construction Ny, and Dj, commute with the action of t and stabilize each M*.
Let « € ® and = € g,. For v € M#, we have z -v € M#T® and [h,x] = a(h)z so that

Dpx-v+ Npx-v=2aDp-v+ Ny v+ a(h)zv.

By definition of M*, we have Dy, - v = p(h)v for any v € M#. This implies Dpz - v =
(w(h) + a(h))x - v and Dy, - v = p(h)x - v. Therefore Nz - v = xNp, - v. We conclude
that Nj, commutes with the endomorphism of M induced by z. Therefore Ny, is U(g)-
equivariant. U

Given M € O Lemma [2.1/implies that we can define an U (t)-module structure on
M by letting h € t C U(t) act via Np,. As the action of each h on M is locally nilpotent,
this action extends to an A-module structure.

Lemma 2.2. Let M be an object of O1:>°, then the A-action on M factors through A;.
Moreover, this Ar-module structure makes O1> into a full subcategory of U(g) 4,-mod.

Proof. In order to prove that the A-action factors through A — Ay it is enough to prove
that for h € t N I*® the endomorphism N}, is zero. This is a direct consequence of the
fact that [* is a semi-simple Lie algebra and that the L-vector space U(I**)v is finite
dimensional for any v € M (by definition of @/>°). As the U(g)-action commutes with
the A-action by Lemma the module M is an U(g)a,-module. Finally we note that,
given h € t, the construction of IVj is functorial in M. O

Remark 2.3. Let M € O and p € Homp(t, L) then the above construction implies
that
M* ={ve M |hv= (u(h)v) + pr(v))v Vh € t}

Let M € (’)gfg. Lemma also implies that we can define another structure of an
U(g)-module on M where an element h € t acts through the semisimple part Dj; and
the action of an element x € g, for a € ® is not modified. We denote this U(g)-module
structure by M*°. Then M is an object of O, and [OS15, Lemm. 3.2] implies that
there is a unique structure of algebraic B-module on M lifting the structure of U(b)-
module on M?®5. This B-action is compatible with the original U(g)-module structure
on M in the following sense:
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Lemma 2.4. Let M be an object of Oy, endowed with the B-module structure defined
above. Then
b-(X-(b7'-v) = (Ad(D)X) -v

foranybe B(L), X € g andv € M.

Proof. 1t is sufficient to prove the formula for b € N(L) and for b € T'(L). If b € N(L),
then b = exp(n) for some n € n. It follows that Ad(b)X is equal to the finite sum
S k=0 mad(n)*X and that the action of b on M is given by the series Y ;- 4n” (which
is locally finite). Therefore we have,

_ 1
b-(X-(b71-v) = Z (—1)emnan£~u
k0,00

1 m
= Z — Z (—1)k_m< >nan£ -V
ms0 M k

=Y (ad(n)™X) 0 = Ad()X .

m=0 :

If be T(L), then if « € U {0} and X € g,, and if v € M*, we have

b (X (07" w) =0 (X (u(07)v)) = (1 + ) (B)u(d~ )X - v
=ab)X -v=Adb)X -v

as Ad(b)X = a(b)X. O

For later use, we note that we can resolve objects in ngg as follows:

Lemma 2.5. Let M be an object of Og,. Then there exist finite dimensional U(b)-
modules Vy and Vi and an ezxact sequence of U(g)-modules

Ulg) XU (b) Vi — U(g) Qv (6) Vo — M — 0. (2)

Moreover, this exact sequence is B-equivariant for the B-actions (on each of the three
terms) defined just before Lemma .

Proof. The existence of a finite dimensional U(b)-module Vj and a surjective map
U(g) ®u@) Vo = M is a consequence of Proposition The existence of V; and
of the map U(g) ®yp) V1 — U(g) @y (s) Vo follows again from Proposition applied
to the kernel of U(g) @) Vo = M. The B-equivariance is a direct consequence of the
definition of the algebraic action of B-action on each term of the sequence . O

13



2.3 Deformations of the category O

Fix I C A and let M be some U(g)a,-module. For p € X*(T'), we define the Aj-
submodule
MVt ={ve M|Vhet h-v=(pr(h)+ u(h))v}.

We note that for M € O this coincides with the generalized eigenspace for p by
Remark Inspired by the construction of [Soe92 §3.1], we define Oélg as the category
of U(g)a,-modules M such that

o M is finitely generated over U(g)4, ;
o« M =@,cx+q) M" and each M" is a finite free A;-module ;
o for any m € M the Ar-submodule (U(pr) ®1, Ar)m is finitely generated.
Lemma 2.6. Let M be an object of(ailg. Then for anyn > 0, the U(g)-module M /m} M

is an object of (’)il’go and M /m;M is in Oilg‘

Proof. This is a direct consequence of the definitions. O
For A e X *(I)}r we define the deformed generalized Verma module of weight X\ as
Mr(X\) = U(g) ®uy) (L1(N) @1 Ap)

where UQJ[) acts on A; via the composition U(ps) — U(ly) LN U(31) — Ar. The
module M;(V) is an object of Oilg and we have an isomorphism of U(g)4,-modules

M]()\) RA; A[/m] = M[()\)

2.3.1 Duality

Recall that there exist an internal duality functor M — M" on the category Oq (see
[HumO8|, §3.2]). We will define an analogue on 6alg- Let M be an object of the category
(55@. We define an action of U(g) on M* := Homuy, (M, As) by = - f(m) = f(7(x)m)
where 7 is the anti-involution of U(g) defined in [HumO8, §0.5]. We then define M" to
be the sub-U(g)-module of M* given by

MY = € (M

REX*(T)

Lemma 2.7. If M is an object of the category (5£1g, then so is MV. Moreover there is
a canonical isomorphism M = (M"Y)V. Consequently MY /m;M" ~ (M/m;M)" is in

the category Oilg'
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Proof. We have a canonical isomorphism of Aj-modules

M* ~ H Homy, (M*, Ar)
REX*(T)

and we easily check that (M*)* = Homu, (M*, Ay) for p € X*(T). As any M* is a finite
free Aj-module, so is (M*)* = (MV)H.

Let ny = ae—o+\&; Ba denote the nilpotent radical of the parabolic Lie subalgebra
opposite to pr. Note that a U(g)a,-module M such that M = @b, M*" with M* finite
free over Ay is in @ilg if and only if we can write M = U(ny) - (@,c5 M,) for some
finite set S C X*(T). By Lemma , the object M /m;M lies in the category (’)glg and it
follows from [HumO8|, §9.3] that (M/m;M)Y lies in (’)élg. This implies that there exists
a finite set S C X*(I) such that

(M/miM)" =U(ny) - (D M/mrM)"H).
pes

It follows that for any p such that (M/m;M)Y* # 0, the map

D Q1/md)Y s (M/m M)
uezae_@\% Na
w'es
WAv=p
given by the action of the corresponding element of U(n} ) on each summand, is surjec-
tive. As M* is a finite free A;-module and A; is a local ring, we deduce from Nakayama’s
Lemma that the map
@ M\/uu/ — Mvnu
VEZQE_(I)\@I Na
ues
W tv=p
is surjective and thus that MY = U(nj) - (@ules MV’“/). This implies that MV is
a finitely generated U(g)a,-module and we also deduce from this equality that M" is
locally U(pr) a,-finite.

In order to prove that M = (M")" we note that the natural map M — (M")* of
U(g)a,-modules factors through (M")V and respects the weight decomposition. More-
over as M* is free over Ay for all u, the induced bi-duality M* — (M**)* morphism
is an isomorphism. ]

2.3.2 Blocks
Let Z(g) denote the center of U(g) and let x : Z(g) — L be a character of Z(g). Let O,

be the subcategory of objects M of Oy such that z — x(z) acts nilpotently on M for
any z € Z(g). For I C A, we denote by (9)1( the full subcategory of objects of (’)glg which
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are also in O,. We deduce from [HumO8, Prop. 1.12] that there is a decomposition into
blocks
Oh, =EoL.
X

We write @i for the subcategory of objects M of 6£Ig such that M/m;M lies in (9)1(,

and similarly (95’(’00.
Remark 2.8. For A € X*(T), let x be the character x, defined in [HumO8) §1.7]. Then
loc. cit. implies that Mj(\) is in O{(A.

Lemma 2.9. We have decompositions 6£1g =D, 6>I< and (’)il’go =D, (’){C’oo.

Proof. Let M be an object of (Z{lg. For a character x : Z(g) — L and p € X*(T), let
M#HX denote the subset of elements x € M* such that (z — x(2))"x — 0 for the m;-adic
topology on the finite free A;-module M*. We easily check that MX := @,,c x«(p) M"X

is an U(g) 4,-submodule of M which lies in (5>I< and that M = @, MX. The case of Oil’go

is similar. O

Lemma 2.10. Let A\, A2 € X*(T). Assume that MI(/\l) and M]()\Q) are in the same
block Oi for a character x : Z(g) — L. Then there exists w € W such that w - \; = Asg.

Proof. By Remark the claim follows from the same claim in the category Oi. As
M;(A1) and M(A2) are quotients of M (A1) and M (A2), this is a consequence of [HumO8,
Thm. 1.10]. 0

When A is a character of t, we often write by abuse of notation O (resp. (’)ﬁ’oo, (’3{\)
for the block O, (resp. Oifo, (’N))I(A) where x) is the character of Z(g) giving the action
of the center on M (\) (see [Hum08, §1.7]). In particular, x» = x, if, and only if, there
is w € W such that w- A = p.

Corollary 2.11. Let A € X*(T) be a dominant weight and let xx be the associated
character of Z(g). If M is an object of O)IQ (resp. Oifo), then M* = (M™M)®.

Proof. Assume that this is false. Then there exists « € ® and = € g, such that
xM? # 0. Thus there exists p1 > A such that M* # 0. As M lies in the category 6élg
(resp. O)I(7OO)7 we can choose i to be maximal which then implies nM* = 0. As M* # 0
Nakayama’s lemma implies that there exists v € M#* which is non zero in MH*/mMH.
Then v defines a map M 7(p) — M with g > A, which is non-zero after reduction by m.
Thus it induces a non-zero map M;(n) — M/mM € O,,. It follows that p = w - A

which is a contradiction. O
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2.3.3 Deformed Verma modules

Let A € X*(T) and let V be a finite dimensional U(g)-module. Then we have an
isomorphism of U(g) 4-modules

M) @LV ~U(g)a Qupy. (Vie ®L A(N)).

Indeed there is a canonical map from the left to the right, which then is easily checked
to be an isomorphism. As V}, is a successive extension of one dimensional U (b)-modules,
and as U(g)a ®up), (—) is an exact functor (as follows from the PBW Theorem), we
have a filtration (Fil;) of M (\)®7,V such that each subquotient Fil; / Fil,_; is isomorphic
to M (X + ;) for v; a weight of V. Moreover the family (1;) is the family of weights of
V' (counted with multiplicity).

Proposition 2.12. Let K denote the fraction field of A. Then the filtration (Fil; ® 1K)
of ( M(\) @1 V) ®@a K splits in the category of U(g) x-modules, i.e. there erists an iso-
morphism of U(g) ik -modules

(M(\) @ V) ®AK2@(M(/\+V¢)®A K)

7

compatible with the filtration (Fil; @ 4 K).

Proof. This is a consequence of the paragraph preceding [Soe92, Thm. §]. O

Lemma 2.13. Let A € X*(T)} be a dominant weight (with respect to P;) and let V be
a finite dimensional U(g)-module. Let M be an object of Oiigo. Then the map

Homy(g), (Mr(A) @1 V, M) = Homy (g (M;(\) @1, V, M/m; M)

given by reduction modulo my is surjective.

Proof. The L-vector space Homp,(V, L) has the structure of an U(g)-module induced by
g-action defined by z-¢ = —¢(x-) for z € g and ¢ € Homp(V, L). For any U(g)-modules
M; and Mo, the adjunction isomorphism Hompy (M; ®p V, My) ~ Homrp (M, My ®p,
Homp (V, L)) is g-equivariant and hence induces an isomorphism,

Homgy ) (M1 ®, V, Ma) ~ Homy(g) (M1, M2 ®1, Homp (V, L)).

Thus, as M ®1, Homp,(V, L) lies in Oi{go we can assume that V = L. Using Lemma

we can assume that M is in Oi"’o for some character xy and by Remark it is sufficient
to consider the case where y = x). By construction of the deformed generalized Verma
modules we have Homyg), (M;(A),M) = (M*)™ and Homyy(g) (Mr(\), M/m;M) =
(M /m;M)* ™. However it follows from Corollarythat (MMM = M* and (M /m;M)N™M =
(M/mp)>. Tt is thus sufficient to prove that the map M* — (M/m;M)? is surjective,
which is obvious. 0
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Proposition 2.14. Let M be an object of the category Oil’go. Then there exist weights
AL, A € X*(D)T and finite dimensional U(g)-modules W1, ..., W, and a surjective
map of U(g)a,-modules

(M;(\) @ W) @ - @ (Mr(\,) @ Wy) — M. (3)

In particular M is a quotient of an object of the category (Xlg. Moreover there exists an
integer N > 0 such that the map (@ factors through

((MI(/\I) XL Wl) ©---bD (]\7[()\7«) XL WT)) ®Ra; A[/mﬁv.

Proof. By [HumO08, Thm. 9.8] (and its proof), there exist dominant weights A1, ..., A,
finite dimensional U(g)-modules Wi, ..., W, and a surjective map

(Mp(\) @ Wi) @ - - (Mp(\.) @ W,.) — M /myM.
By Lemma this map can be lifted into a U(g)4,-equivariant map
Mi(\) @ W1 & - Mi(\) @ Wy — M

which is surjective by Nakayama’s Lemma. The last assertion is a consequence of the
fact that M is finitely generated as a U(g)-module and all its elements are killed by some
power of m; so that M is killed by mY for some N > 0. O

2.4 Bimodule structure

Let £ : Z(g) — U(t) be the Harish-Chandra map. Recall that it is defined as follows:
for x € Z(g) there exists a unique element £(z) € U(t) such that x € £(x) + U(g)n (see
[Kna0l, Lem. 8.17]). For any v € X*(T') we denote by t, the unique endomorphism of
U(t) such that t,(z) =  + v(x) for z € t. Note that t_;, o induces an isomorphism
from Z(g) on to U ()" (see [Kna0l, Thm. 6.18]). For a dominant weight A € X*(T) we
define a map

hy: AL Z(g) 225 AeL @U() 222 A ,w A
following [Soe92, §3.2], It follows from [Soe92, Thm. 9] that h) is surjective (note that

Wi in loc. cit. is trivial in our situation). If I C A is a finite subset, tensorization on
the left with py: A — Aj yields a map hy : A @, Z(g) — A @4w A.

For w e W, let I, C Ar ®1, Z(g) denote the kernel of the map

z@y—(zpr(Ad(w)y))

haw : Ar®1 Z(g) 2 A @ 4w A Al

It is not hard to see that this kernel only depends on the choice of w € W \W.

Proposition 2.15. For w € 'W, the A; ®1, Z(g)-modules M;(w-\) and M;(w-\)" are
annihilated by I,.
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Proof. The result for My(w-\)" follows from the result for My(w- )Y and the inclusion
My(w-X\)Y C Homu(Mj(w- ), A).

Hence it is enough to check that the action of A; ®;, Z(g) on Mj(w - \) factors through
hyw. As this action is central and My(w- \) is generated by Mp(w-\)*> as an U(g) a,-
module, it is sufficient to check that the action A; @ Z(g) on Mj(w - ) factors
through h) ,,. Using the fact that n acts trivially on ]\71(10 ~A)@A an element = € Z(g)
acts on this space via . For the clarity of the computation let us write ¢, : U(t) — A
for the L-algebra homomorphism associated to an L-linear map v : t — Aj and let
L:t<> A— Ar. Then for z € Z(g) and v € M;(w - \), we have

eunt:(§(2)) = Cuirioarw 1) (E-56 (§(2)) = Extsgru1() (s (E(@)))
= ey10y(ha(@) = pr(Ad(w)(hr(2)))

(where we use that the image of t_s, o & lies in U(t)"). As an element y € U(t) acts
by multiplication by ey.a4.(y) on My(w - \)**, we conclude that an element z ® z €
A; ®p Z(g) acts by multiplication by zp;(Ad(w)(ha(z))) on My(w - A)**, which is the
desired formula. O]

Remark 2.16. The ring U(t) (resp. U(3r)) is the affine coordinate ring of the (affine)
L-scheme associated to the dual t* of t (resp. to the dual 37 of 37) so that A (resp.
Ar) is the stalk of the structure sheaf of t* (resp. of 37) at the origin. The ideal I, is
the ideal defining the irreducible component Ty 4, of (37 X/ t*)(0,0) consisting of pairs
(A, ) € 37 x t* of characters such that p = w(\).

Later in the paper we will view the L-scheme t* as the Lie algebra t" of the dual torus
TY of the Langlands dual group GY, that we consider as an algebraic group over L. As
we will later specialize to the case where G is isomorphic to a product of r copies of GL,,
the reductive group G is self dual and we will identify t* = t" with t in order to avoid
the additional (—)Y in the notation. In particular we will consider U(t) as the affine
coordinate ring of t. The inclusion 37 < [} induced by the projection py : [; — 37 is then
identified with the inclusion 3y < [} of the center of the Lie algebra of the Langlands
dual group of L and again we use self duality (in the case of products of copies of
GL,,) to identify this map with 3; < [;. Hence we obtain a canonical map 3; < t of
L-schemes corresponding to the morphism U(t) — U(37). With this identification the
ideal I, defines the irreducible component T} ., of (37 X¢/w t)(0,0) Whose points are the
pairs (z,y) € t? such that y = w™!(x).

We finally recall the following result of Soergel (Endomorphismensatz 7 [Soe90]).

Proposition 2.17. The action of Z(g) on P(wg - \) factors through the map ty o & :
Z(g) - L ®, 4w A and induces an isomorphism L @ 4w A ~ Endp(P(wp - \)).
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3 The Emerton—Jacquet functor

Let G be a quasi-split reductive group defined over Q,. Let B be a Borel subgroup
and 7' be a maximal torus of G contained in B. We set G = G(Q,), B = B(Q,),
T = 1T(Qp). We also fix L a finite extension of Q, which will be the coefficient field
of our representations. We assume that L is big enough so that the torus T' xq, L is
split (and then G xq, L is split). We denote g, b etc. the Lie algebras of G xq, L,
B xq, L etc. In the following we will consider the category ReplLaG of locally analytic G-
representations on locally convex L-vector spaces, as well as the corresponding variants
for the (Qp-analytic) groups B, T, etc. In [Eme06al Def. 3.4.5] Emerton constructs a
functor
Jp : Rep?G — RepeT
that we refer to as the Emerton—Jacquet functor. It is defined as follows: Let Ny be a
compact open subgroup of N and let T% := {t € T | tNot~' € Np}. If V is a L-linear
representation of B, we endow the L-vector space VN0 with the action of the monoid
T+ defined by
[t]v = [Np : tNot 1] Z ut(v).
u€Ny /tNot—1

Then Jg(V) is the finite slope space (VV0)g of VN0 with respect to the action of T+ on
which the T -action extends to a locally analytic representation of 7.

3.1 Families of locally analytic representations of the Borel subgroup

Let s € Zzo be an integer and let II be a locally analytic L-representation of Zj x B.
We consider the following hypothesis on II:

Hypothesis 3.1. There exists a locally analytic representation of Ny on a locally convex
L-vector space of compact type V such that

ITAVES C™(Z5, L)®LV.

Given s, we set S := OL[[Z5]] and write Spf(S)"® for the rigid analytic generic fiber
of Spf(S). This space is a rigid analytic open polydisc and we write

Srig = F(Spf(S)rlg, OSpf Srig)

for its ring of rigid analytic functions, which is a Fréchet L-algebra (when endowed with
its natural topology). We note that a finitely generated, projective S 8-module C defines
a vector bundle on Spf(S)™8. As every vector bundle on a rigid analytic polydisc is free,
it follows that C is free as well, i.e. every finitely generated projective S™&-module is
finite free. Moreover, finite dimensional quotients of S*'& admit resolutions by a perfect
complexes:
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Lemma 3.2. Let a C S™8 be a closed strict ideal such that dimy S™8/a < oo. Then
there exists perfect complexr Cy of ST8-modules which is a resolution of S™&/a and such
that Cy = S™8.

Proof. As S[1/p] is dense in S*8, its image in S*'8/a is dense L-vector space and, as
S8 /a is finite dimensional, is in fact equal to S™8/a. Setting ag := a N S[1/p], we have
S[1/p]/ag ~ S™&/a. As S™8 is a flat S[1/p]-module, it is sufficient to prove that S[1/p]/ag
has a finite resolution by finite projective S[1/p]-modules, which is a consequence of the
fact that S[1/p| is a regular noetherian ring. O

Let C, be a complex of finite free S*&-modules. For each n > 0, C, is endowed
with its canonical topology induced by the topology of S™8, then the differentials in the
complex C, are continuous. The complex II* := Homgrig(Co,II) is then a complex of
locally analytic L-representations of Z; x B. We also set I170:* := Homgrig (Co, IT™V0) and
Jp(II)® := Homguig (Co, Jp(1I1)).

Lemma 3.3. Let 0 - U — V — W — 0 be a short exact sequence of topological L-
vector spaces of compact type (resp. nuclear Fréchet spaces) and let X be a topological
L-vector space of compact type (resp. nuclear Fréchet space). Then the following sequence
15 exact

0URX > VeLX - WerX — 0.

Proof. The claim follows from [Schlll Lemm. 4.13], [ST02, Cor. 1.4] and from [Emel7,
Prop. 1.1.32]. O

Lemma 3.4. Let 11 be a locally analytic representation of Z,, x B satisfying Hypothesis
3.1 Then the two complexes II® and TIN0:* are complexes of L-vector spaces of compact
type with strict continuous transition maps. Moreover for any integer n > 0, we have
an isomorphism of topological T - modules

Hn(HNO’.) ~ H”(H.)NO.

Proof. Fix an isomorphism H‘Z;X No =~ Cla(Z;, L)®pV whose existence comes from hy-
pothesis As any C,, is a finite free S™8-module and as the completed tensor product
—®p— commutes with finite direct sums ([Koh07, Lem. 1.2.13]), we have an isomorphism
of complexes of topological representations of Zj x No:

IT* ~ Homguig (C, Cla(Z;, L)®LV.

As Cla(Zf,, L) is an admissible locally analytic representation of Z;, the complex Hom grig (Ce, Cla(Zf,, L))
has strict transition maps with closed images ([ST03, Prop. 6.4]). We deduce from this
fact and from Lemma that the complex II® has strict transition maps and that
we have topological isomorphisms H™(I1*) ~ H"(Homgsiz(Ce,C?*(Z5, L)))&LV for any
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n > 0. The commutation of @7 with finite direct sum implies that we have a topological
isomorphism of L-vector spaces for any m > 0:

(Homgrig (Cyn, TIN®) o Homguie (Cy, C*(Z5, L)) V0.

We deduce as before that the complex II*™° has strict transition maps and that we have
isomorphisms

Hn(HNO,o) ~ Hn(H.)NO
for any n > 0. O

Proposition 3.5. For any integer n > 0, there is an isomorphism
H"(Jp(I1)*) ~ Jp(H"(II*))

of locally analytic L-representations of Zj x T'.

Proof. Tt follows from [Eme06al, Prop. 3.2.4.(ii)] that there is a natural continuous 7" -
equivariant map of complexes (ITV0*)g, — TIVo-* inducing a continuous T F-equivariant
morphism H”(Hgo") — H"(IIVo*). By loc. cit., the universal property of the functor
(—)gs provides a T-equivariant map H "(HNO’ ) — H™(ITNo:*)g,. Tt follows from Lemma
[3-4] that it is sufficient to prove that this map is a topological isomorphism.

We now deduce from [Eme06al Prop. 3.2.27] and [Ful, Thm. 4.5] that given an exact
sequence 0 - U — V — W — 0 of spaces of compact type with continuous action of
T+, then 0 — U — Vi — Wi — 0 is exact, the image of Uy is closed in Vi and the map
Vis = Wi is strict. The open mapping theorem then implies that the sequence is strict
exact. As the complex ITN0-* has strict transition maps by Lemma we conclude that
the map H ”(HN ) — H™(I1N0:*)g is a topological isomorphism. O

Proposition 3.6. Let IT be a locally analytic L-representation of Z, X B satisfying the
hypothesis E Let a be a closed strict ideal of S*'® such that dimp, S“g/a < 400. Then
the map

a Qgrig JB(H)/ — JB(H)/

18 injective.

Proof. By Lemma there exists a perfect complex C, of S™8-modules such that, Cy =
S™e. Ho(C,) ~ S™8 /a and H;(C,) = 0 for i > 0. By Hypothesis we have I|zsx v, =
ClaL(ZS L)®LV for some topological L-vector space of compact type V. As C, has strict
transition maps, it follows from Lemma |3.3) E 3 that the complex Cy @grig II' >~ Co@ V' is a
resolution of (S™8/a)®,V’. We then deduce from Hom guie (Cy, 1)’ =~ C; @gue [T for any
i > 0, that H'(Homgug(C,,II)) = 0 for 4 > 0. Therefore Proposition implies that
H(Hom giie (Ce, Jp(IT))) = 0 for i > 0. We denote by (—)’ the duality between spaces
of compact type and Fréchet spaces. This duality implies that H;(Ce Qgrie Jp(II)) = 0
for i > 0. As a = Coker(Cy — C1), we deduce that

a ®Srig JB(H)/ = COker(CQ ®Srig JB (H)/ — Cl ®Srig JB(H)/)
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3.2 Families of locally analytic representations of ¢

Let IT be an admissible locally analytic L-representation of Z; x G. The aim of this
section is to use II in order to construct a functor

M — HomU(g)(M, H)

from the category (’)glog to the category of locally analytic Z; x B-representations, and
then, by composing with Jp, to locally analytic Z;, x T-representations. We will usually
assume that we are in the following situation:

Hypothesis 3.7. There exists a uniform open pro-p-subgroup H of GG, an integer m > 0
and a topological Zj x H-equivariant isomorphism

Mizswm =~ C™(Zy x H,L)™.

Recall from section that if M is an object of Ogj,, there is a unique algebraic
action of B(L) on M which lifts the structure of U(b)-module on M*. We endow M
with the action of B = B(Q,) obtained by restriction to B.

Let M be an object of Og}, with its semi-simplified B-action. We define an action of

B on Homp, (M, II) by
b-f=bf(b""-)

for f € Homp(M,II) and b € B. It follows from Lemma that this action preserves
the subspace Homgys(g)(M,II). We moreover endow Homp () (M, II) with the left Z-
action inherited from the one on II. While the definition of the B-action using the
semi-simplified action on M might not seem very natural at a first glance, the following
lemma says that this definition applied to deformed Verma modules allows us to compute
generalized eigenspaces. Given an U(t)-module X we write

X[(t=NF={ze XVt et,(t—At)*z =0}
With this notation we have the following result:

Lemma 3.8. Let A € X*(T)} and M = M()) ®a, Ar/m%. Then there is an isomor-
phism
Homyy(g) (M, 1I) =~ (II¥ &, L;(\))[m}]

of B-representations, where (=)' denote the dual (algebraic) representation. In particu-
lar, when I =0,

Homy(g)(M(A), IT) = (I" (A1) [m*] = (IT'[(£ = N)*HAT).

Proof. We compute using the U(g)-structure
Homy () (M, 1) = Homy4)(U(g) @ue) (L1(A) @1 Ar/mf),1I)
= Homy ) (Lr(\) ® Ag/mf, 1I™)
= Homgy(Ar/m}, I @ L;(A)')
= (™ ® Li(\)))[mf].
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Moreover each equality is compatible with the semi-simplified B-actions. ]

Lemma 3.9. Let I1 be a locally analytic representation of Z; x G and let M be an object
of ngg. Then the Zy x B-representation Homy g (M, 11) is locally analytic.

Proof. Let U(g) ®up) V1 — U(8) @ue) Vo — M — 0 be a resolution as in Lemma
Then Homy; gy (M, II) is the kernel of the map

Homy 4y (U(9) ®u o) Vo, IT) = (Vg @1 I1)® — Homy o) (U(g) @u(e) Vi, 1) =~ (V/ @ IT)°

which is continuous and B-equivariant. Therefore Homg; (g (M,II) is isomorphic to a
closed B-stable subspace of Vj @ II. As V} is an algebraic finite dimensional representa-

tion of B, the representation Vj @ II is locally analytic and hence so is HomU(g)(M ,II).
O

As Homy;(4) (M, IT) is a locally analytic representation of B this action may be derived
and induces the structure of an U(b)-module on Homy g (M,II). Via restriction to
U(t) C U(b) we may view Homg ) (M, II) as an U (t)-module.

Lemma 3.10. Let II be a locally analytic representation of Zy, X G and let M be an object
of Ogty- Then the U(t) action on Homyg)(M,II) factors through a finite dimensional
quotient.

Proof. By Proposition there exist dominant weights A1, ..., A, finite dimensional
g-modules V1,...,V, and a surjective map

MA) QL Vi & M\)®LV, — M.

Moreover by Lemma there exists k& > 1 such that this map factors through m*
(recall that A is the localization of U (t) at its augmentation ideal m). Therefore we have
an inclusion of U (t)-modules

Homy(g) (M, IT) — @) Homyg) (M (\i) @4 A/m* @, Vi, I0).
=1

By Lemma HomU(g)(ﬂ(Ai)/mk ®r Vi, ) = (T V;(\;))*[m*].

Let puq,...,us be the finitely many characters which appears in the restriction to
U(t) of Vi(A1),...,Vi(Ar). Then the action of U(t) on Homy (g (M, II) factors through
the quotient of U(t) by the intersection of the k-th powers of the kernels of the p;. O

Lemma 3.11. Assume that Il is an admissible locally analytic L-representation of Z; <G
satisfying Hypothesis and M € OF},. Then Homgy () (M, I1) satisfies Hypothesis
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Proof. We can assume that Ny C H. As we assume Hypothesis [3.7] there is an isomor-
phism IT 2 C**(Z3 x H, L)™ ~ C'*(Z3, L)®C(H, L)™ of Z3 x H-representation.

Let [U(g) ®ue) V1 — U(g) @u(s) Vo] be a resolution of M as in Lemma Then
Homy gy (M,C*(H, L)™) is the kernel of the map

(Vo @1 C*(H, L)™)* — (V{ @1, C**(H,L)™)". (4)

We claim that this is a strict map, then the lemma follows, as exactness of the func-
tor Cla(Z‘;, L)&r(—) implies that we have an isomorphism of locally analytic Z5 x No-
representation

Homy gy (M, IT) ~ C*(Z$, L)& 1, Homy () (M, C*(H, L))™.

In order to prove that is strict, we use an additional H-action. We let H-act on
C'*(H, L) by right translation and extend this to V/ @, C'*(H, L) by acting trivially on
V/. This action commutes with the (diagonal) action of U(b), as the U(b) action on
C'*(H, L) is induced by left translations. It follows that (V/ @, C'*(H, L)™)" is a closed
H-stable subspace of an admissible locally analytic H-representation, and hence an
admissible locally analytic H-representation itself. Hence is an H-equivariant map
between admissible locally analytic H-representations and hence a strict map which

proves the claim. O

Proposition 3.12. Let IT be an admissible locally analytic representation of Zp x G
satisfying the hypothesis and let M be an object of O;’fg. Then the locally analytic
representation Jp(Homy ) (M,11)) of Z; x T is essentially admissible.

Proof. Let U(g) @@y Vi — U(g) ®upy Vo = M — 0 be a resolution of M given by
Lemma [2.5 Then we have an exact sequence

0— HomU(g) (M, H) — HomU(g)(U(g) ®U(b) V(), H) — HomU(g)(U(g) ®U(b) Vl, H)

of locally analytic representations of Z;, x B (see Lemma . As the functor Jp is left
exact ([Eme06al Lem. 3.4.7.(iii)]), this induces a short exact sequence

0 — Jp(Homy(g) (M, II)) — Jp(Homy4)(U(g) ®u(s) Vo,11))

— Jp(Homy () (U(g) @y V1,11))
of locally analytic representations of Z; x T. As the kernel of a morphism between
essentially admissible representations is essentially admissible ([Eme06al, Thm. 3.1.3)), it
is sufficient to prove that Jp(Homy(4)(U(g) ®@y(e) V, 1)) is essentially admissible for any
finite dimensional algebraic representation V of B. As an algebraic representation of B

is an extension of rank 1 object, it is sufficient to prove this when V is 1-dimensional
and V" = V. The left exactness of Jg implies that

J(Homy () (U(g) ®u(p) V. 11)) 2 Jp(Homy ) (V,II")) ~ Homy () (V, J(11)).
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By [BHSI7D, Prop. 3.4] (whose proof follows [Eme06a, Thm. 0.5]), the locally analytic
representation Jp(II) of Z; x T' is essentially admissible. As U(t) is finitely generated,
we conclude that Homy ) (V, Jp(II)) is essentially admissible. O

Lemma 3.13. Let I be a locally analytic representation of Z;, x G satisfying Hypothesis
(37

(i) The functor M + Homyg)(M,11) from Oglg to the category of locally analytic
representations of Zy, x B is exact.

(i) The functor M + Homgq) (M, 1) Mo from Ogly to the category of locally convex
L-vector spaces sends short exact sequences on short exact sequences with strict maps.

Proof. The assertion is [BHS19, Lem. 5.2.5]. We recall the proof as we will need
notation for the proof of Let M be an object of the category Ogy,. Let H C G be
a uniform compact open pro-p-subgroup. Recall (see for example the proof of [ST03]
Prop. 6.5]) that Mz« pg = lim _ 1L with

I, = Hom§™ (D, (Z;, x H) @p(zs .y 11, L).
As M is a finitely presented U(g)-module, we have

HomU(g)(M, II) ~ hﬂHomU(g)(M, II,) = liﬂHomUr(g) (M,,11,)
r<l T

with M, = U,(g) ®u(g) M. Note that there exists an integer m > 0 such that I, ~
Hom{*™(D,(Z; x H), L)™. Therefore we have

HOII]DT(H) (DT(H) ®U(g) M, HT)
~ Homiont(DT(H) ®Ur(g) MT7 Hom(iont(Dr(Zz’ L), L))m’

for r < 1. As the functor M +— M, is exact and D,(H) is a finite free U,(g)-module,
this proves (i)

Now we prove As Ny is a compact group and L is of characteristic 0, it is
equivalent to prove after replacing Ny by an open subgroup. Therefore we can
assume that Ng = H N N and that H = (NN H)(T N H)(N N H) where N is the
group of ,-points of the unipotent subgroup of G opposite to N. Let r < 1. The
space Homy(g) (M, I1,)Mo is the space of maps from M to II, that are equivariant for the
actions of Ny and U(g). Therefore we have

HomU(g) (M, HT)NO = HomUT(g)Q@UT(n)DT(NO) (Mra HT‘)
 Hom ™ (Dy (H) (0, ()0, oy (o) Mrs Hom™ (D, (2, L), L))"

As D, (H) is a finite free right U,.(g) ®y, ) Dr(No)-module (see [Koh07, Thm 1.4]), this
proves the claim. O
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Theorem 3.14. The functor M — Jg(Homy g (M,1I)) from the category Ogy, to the
category of essentially admissible representations of T is exact.

Proof. This is essentially a consequence of Lemma and we conclude as at the
end of the proof Proposition (3.5 O

3.3 The case of Banach representations with coefficients

Let R be a complete local noetherian Op-algebra. As above we will write R™® for the
ring of rigid analytic functions on (Spf R)™8. Let IT be an R-admissible R-Banach repre-
sentation of the group G (see [BHS17D, Def. 3.1]). We assume that our representations
satisfies the following property:

Hypothesis 3.15. there exists an integer s > 0, a local morphism of Op-algebras
S = O[[Z;]] — R such that, for some (resp. any) open pro-p-subgroup Gy C G,
the S[[Go]][1/p]-module II" := Hom$*™(II, L) is finite free (as a consequence II is also
S-admissible).

Using the hypothesis, one shows that the R-analytic vectors IT®~2" and the S-analytic
vectors II°~2" of II coincide and they also coincides with the subspace of Zy, x G-locally
analytic vectors in II (see [BHS17b, Prop. 3.8]). We will simply denote this subspace by
I in what follows. This is a locally analytic representation of Zy, x G with an action
of R"® commuting with G. Moreover if we forget the R"%-action, the representation IT'?
satisfies Hypothesis

In the following we will write T for the rigid analytic space of continuous characters
of T and fo for the space of continuous characters of the maximal compact subgroup
To C T. We recall that the ring of rigid analytic functions on Tp is identified with the
algebra D(Tp, L) of L-valued distributions on Tj. Restriction to Ty defines a canonical
projection T — fg. Moreover, the derivative of a character at 1 defines a weight map

wt : Ty — t*, (5)

where by abuse of notation we write t* for the rigid analytic space associated to the
L-vector space t*. The map wt is étale and locally finite. Moreover, étaleness implies
that for any character g : Tyg — L we can identify the tangent space of fo at 6y with
the L-vector space t*.

Lemma 3.16. For any object M in Ogy,, the dual Jp(Homy () (M, 1)) of the Emerton-
Jacquet module Jp(Homy(g) (M, 1)) is coadmissible as an RYE& 1 O(T)-module.

Proof. This is essentially the same proof than for Proposition [3.12| using the fact that
Jp(I1'*) is essentially admissible as a representation of ZZ/ x T for any s’ and surjection

Or([Z3]] - R by [BHSITH, Prop. 3.4]. O
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Let M be an object of Ogf,. It follows from Lemma @ that there exists a unique
up to unique isomorphism coherent sheaf My (M) on Spf(R)™ x T such that

F(Spf(R)rig % T,MH(M)) = JB(HOHIU(Q)(M, Hla))"

In particular we obtain a functor from ngg to the category of coherent sheaves on
Spf(R)"E x T.

Theorem 3.17. The coherent sheaf My (M) on Spf(R)"&xT is, locally on Spf(R)"$xT,
finite free over Spf(S)™8. In particular, if nonzero, it is Cohen—Macaulay of dimension
S.

Proof. Let Ty be the maximal compact subgroup of T and let ﬁ be the rigid analytic
space of characters of Ty over L. Set N := Jp(Homy 4 (M, 1)), Tt follows from the
proof of [BHS17hl, Prop. 3.11] that there exists a family Z of pairs (U, V') where U is a
rational open subset of Spf(R)"8 x T and V is a rational open subset of Spf (9)rie x Ty
such that V' is the image of U and such that Supp(Mn(M)) C U,y)ez U. Moreover,
we may assume that I'(U, Mp(M)) is a finite projective O(V')-module that is a direct
factor of O(V)@Srig@LD(TO7L)N.

After shrinking each U and V' if necessary, we may even assume (by the construction
of the family 7) that for each (U,V) € Z, the rational open V is of the form Vi x V5
with V; rational open in Spf(S)'® and V5 rational open in To. It is sufficient to prove
that, for any pair (U, V; x Vo) € Z, the O(V)-module I'(U, M(M)) is finitely generated
and flat.

The map Vo — t* has finite fibers (as the weight map is locally finite), and hence
there are only finitely many points of V5 lying over a given character of U(t). It thus
follows from Lemma [3.10|that the action of L[Tj] on I'(U, M(M)) factors through a finite
dimensional quotient. It follows that I'(U, M(M)) is finitely generated over O(V7).

Let m C O(V1) be a maximal ideal. As O(V}) is an affinoid L-algebra, m is closed in
O(V1) and O(V;)/m is a finite extension of L. As the image of S™& in O(V]) is dense,
we have S™&/(S"8 N m) ~ O(V;)/m. The ideal a := S™8 N'm of S™8 is finitely generated
by Lemma so that the sheaf a ®@grig My(M) is coherent and

L(Spf(R)"8 x T, a @grie My (M)) ~ a @guie [(Spf(R)"E x T, My (M)).

As the functor M — T'(U, Mp) is exact on the category of coherent sheaves, we have
an isomorphism

Therefore we deduce from Proposition that the map
m ®O(V1) ®F<U, MH(M)) — F(U, M(M))

is injective. This implies that I'(U, M (M)) is a flat O(V})-module. O
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Corollary 3.18. Assume that the representation Il satisfies Hypothesis|5.15. Then the
functor M +— My (M) is an exact functor from the category O;’fg to the category of

Cohen—Macaulay sheaves on Spf(R)"& x T. Moreover if M (M) is nonzero, its support
s s-dimensional, where s is as in Hypothesis|3.15

3.4 Comparison with the parabolic Jacquet functor

Let II be an R-admissible Banach representation of G satisfying hypothesis We
end this section by computing the evaluation of My on generalized (deformed) Verma
modules in terms of Emerton’s parabolic Jacquet-module.

Let I C A be a subset of simple roots. Let A € X*(T)] be an algebraic charac-
ter dominant with respect to py. Recall that, by [Eme06al, §3.4], the L-representation
Jp, (I1'*) of L; is locally analytic. Following [Wii, §5.2], we define

Jp (1) = Homy () (Lr(N), Jp, (11%)) @1 Li(A)
JrA(I1%) == Jpar, (Jp, (IT%),).
Similarly to Lemma we have the following finiteness result:

Proposition 3.19. The R"6&,0(T)-module Jr (1) 4s coadmissible.
Proof. This is a consequence of [Wul Lemm. 5.1 & 5.2]. O

By the above proposition there is a coherent sheaf Mﬁ”\ on Spf(R)"& x T such that
T(Spf(R)"8 x T, ML) = Jy (112

For k > 1, let T ;" be the k-th infinitesimal neighborhood of the closed subspace Ts™ of
smooth characters in 7 and let ik be the closed immersion of TSm in 7. Moreover, for
XA € X*(T) C T, we write t : T —» T for the map defined by t,\(d) =JA.

Proposition 3.20. Let A € X*(T )+ be an algebraic character of T dominant with
respect to Py and let M = M;()\) ®a;, Ar/mF € Ogly- Then there is an isomorphism of
coherent sheaves on Spf(R)"& x T':

Mu(M) ~ iy it tsME

Proof. Using the left exactness of the functor Jp, (—), we have an isomorphism an R'8-
equivariant morphism of locally analytic representations of Ly :

Tp, (Homy (g (Mr(A) @4, Ar/m*, T1%)) ~ Homy ) (L1(A) @1 Ar/m", Jp, (T1%)).
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Therefore

Homy (A @1 Ar/m¥, Jpnr, (Jp, (I1%),))
~ JpnL, (Homy g (Ar/m*, Homy gss) (L1(), Jp, (IT%))))
= Jpnr, (Homy i,y (Li(A) @1 Ar/m*, Jp, (I1%)))
~ Jpar, (Jp,(Homy ) (Lr(A) @ Ar/m* 11%)))
~ Jp(Homy(g) (Mr(X) @4, Ar/mF, 11'?))

where the first isomorphism comes from [Wu, Lemm. 5.3]. The claim now follows form
the fact that the source of this chain of isomorphisms is the dual (of the global sections)

of zk*zZt}‘\M{])‘ and the target is the dual of M (M). O

4 Quasi-trianguline local deformation rings

Let F' be a finite extension of Q. We keep the notation of section [3| but we specialize
ourselves to the case G = Res(rg,q,)/0, (GLnFeew,) = [y, Resr, /g, GLn,F,. We fix B
the upper triangular Borel subgroup and T the diagonal torus. It is therefore sufficient
to choose L a finite extension of @, splitting all the F;,. We point out that, though the
field L of coefficients is the same as in the preceding section, the group G in this section
should be considered as the Langlands dual group of the group in section

Let X be the set of embeddings of F' in L. This set can be decomposed as Yp =
Hv‘p Y F,, where X, is the set of Q,-linear embeddings of F), into L and where the index
set is the set of places v of F' that divide p. We have a decomposition

g~ (P Lie(G) ®reyq,r L) ~ €P Lie(GLn L)

TGEF TEEF

Let A be the set of simple roots of G, with respect to B;. Then

A= H A, Ar= {041777 ce. 7a’l’b—1,7'}

TEEF

where o r,...,0n—1, are the simple roots of the copy of Lie(GL,, 1) corresponding to
7. For I C A we denote P; the standard parabolic subgroup of G corresponding to I.

4.1 Local models

Let g := G; x£1 b be the Grothendieck-Springer resolution of g (which is considered as
a scheme over L not just as a vector space in this section). We have a closed embedding
g — G /B x g given by (9B, X) — (bB,Ad(g)X) and set

X =gxg9CGL/Br xgxG/Br.
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More generally if I C A, we set
581 =Gy, x L1 (31 Dnp)

where we recall that P; is the parabolic subgroup of G associated to A and py is its Lie
algebra. Moreover, we write 37 for the center of p; and ny for its unipotent radical. Again
we consider all these L-vector spaces as L-schemes. We have also a closed embedding
'gvgj — G /Py % g given by (9P, X) — (9P, Ad(g)X) and we set

Xp, =0y, Xg8 = G /P; xgx G /By.

In particular we have X, = X. There scheme X, decomposes into irreducible compo-
nents as follows:
Xp;= U XpwCGL/PrxgxGL/B.
weW\W

Here X, . is the closure of on open subset Vj,., C X,,, which is by definition the
preimage of the G-orbit of G- (1,w) C G/P; x G /B, where w € W is a lift of w € W \W
(see [BD) Cor. 5.2.2] for details). In this paper we need to control the singularities of
Xy,. Even though, for our purpose, the result of [BHS19, Rk. 4.1.6] would be sufficient,
we mention the following more general result.

Proposition 4.1. Let w € W. Then X, is smooth if, and only if, w is a product of
distinct simple reflections.

Proof. We note that the natural action
t-(9B,hB,N) = (9B,hB,tN)

of G,, on X by scaling on the g-factor extends to an action of the monoid A'. This action
obviously preserves each X,,. As the singular locus is closed the non-singular locus, if
non-empty, contains a point of the form (gBhB,0) We will thus prove the previous
proposition using [BHS19] Proposition 2.5.3 (ii).

We first assume that w is a product of distinct simple reflections. In this case it is
enough to prove that

a) U, is smooth in G; /B x G} /B;
b) " has codimension lg(w) — lg(w') in t for all w’ < w for Bruhat ordering
(with lg the Bruhat length).

By Fan’s Theorem [BL00, Theorem 7.2.14], if w is a product of distinct simples reflexions,
then U,, is smooth and @ is true. Thus we only need to prove @ For w € W, let us
introduce

l(w)=min{k >0 |w=ry...7, 7 € W a reflection}

(we recall that reflection is an element of the form s, where a € ® is a root, but not
necessarily a simple root). By [Car72, Lemma 2] and [BHS17al Lemma 2.7] we have
l(w) =dimp t — dimy, t* = d,, (in the notations of [BHSI7a]).
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Claim 4.2. If w is a product of distinct simple reflections, we have
fww' ™) = E(w) — (w') = Ig(w) — lg(u)
for all v’ < w.

If Claim is true, we have £(ww' ™) = dimt — dimt**" " = lg(w) — lg(w’) thus
Proposition 2.5.3 of [BHS19] applies and X,, is smooth. We now prove the claim. The
second equality of the claim is a consequence of [Car72, Lemma 3] as w and w’ are
products of pairwise distinct simple reflections. Indeed, a product of pairwise distinct
simple reflexions si ... sy is always a composition of reflections s; along vectors v; such
that vy,...,v; are linearly independent. Thus [Car72, Lemma 3] implies ¢(w) = lg(w)
and £(w') = lg(w').

We write w’ = s;, ...s;, and w =t ...t as reduced expressions of pairwise distinct
simple roots such that there exists a; < ... < ag satisfying ta; = Si;- For a; < 7 < a1
let r; denote the reflection r; := s;, ... s;,t;s, ...s;,. We then have

’LU’LU,_1 :tl PN tbsik <S4y

=t1 ... tay—1[Sitar+18it] - - - [Sirtas—15i1][Si1 Sintas+18i 80|
Taj+1 Tag—1 Tag+1
e [Sil e SiktakJrlSik e 5@'1] N [Sil e siktbsik e 31'1]
Tb
:tl e ta1_1Ta1+1 o Tag—1Tag+1 v v Tp.

In particular, £(ww'~1) < lg(w) — lg(w') = £(w) — £(w"). Now Claim |4.2| follows from

Claim 4.3. Let w € W and w’ be a product of distinct simple reflections. Then
L(ww'™) = b(w) — L(w') = L(w) — 1g(w’).

We now prove Claim [£.3] By induction on the number of simple reflexions appearing
in w', it is enough to prove ¢(ws) > ¢(w) — 1 when w’ = s is a simple reflexion. Note
that for any w we have dimy, t“*Nt* > dimy, t** — 1 as t° is a hyperplane in t. Moreover,
N =t Nt* C Y. Thus dimt¥ > dim t** — 1. Using /(w) = dim t— dim t* we hence
find

L(w) < l(ws) + 1.
Thus ¢(ws) > ¢(w) — 1, which proves Claim

We now prove the converse, i.e. that X, is singular, if w is not a product of distinct
simple reflections. We hence assume that w is not a product of distinct simple reflections.

It is enough (but actually equivalent) to prove that X, is singular at (B, B,0). We
will use Mowlavi’s results [Mow23|. The pair (1, w) is a good pair ([Mow23]), and thus
[Mow23| Theorem 6] applies. Hence [Mow23, Proposition 3.2.2] gives an exact formula
for the tangent space at x = (B, B,0) € (X, NV1)(L). This can be rewritten as

dimy, T, X,, = dimy, Tﬁ(x)Uw — dy +dimp, t + lg(wo)
> dim B + Ig(w) — 1g(w) + dimy, t + 1g(wo),
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as w is not a product of distinct simples so lg(w) > d,, ([BHS17a] Lemma 2.7), and
where we use the notation E| dy = dimp, t — dimy, t*. Thus

dimy T, X,y > 2dim B + dimy t = dim G, = dim X,

i.e. X, is not smooth at z. ]

We write X for the inverse image of X, under the canonical projection G /B x
gx G /By — Gr/Pr x g x Gy /By,. This scheme can also be defined as

X1 = (G xBr 31 ®ny)) x40,

in particular Xy = X. The map X; — X, is a P;/B-torsor and thus is projective and
smooth. We deduce that we have a decomposition in irreducible components

X = U X7 w,
’wGW[\W

where each X;,, — Xy, is projective and smooth. Moreover, we have a closed em-
bedding X; < X induced by the closed embedding 3; & ny < b, and this induces
a closed embedding Xj, < Xymax, as each fiber of X; — X, over a point in
Vprw contains a (dense) open subset consisting of points that lie in the Schubert cell
GL(1,w™) C G/B x G/B.

Lemma 4.4. The schemes X and Xy, are generically reduced.

Proof. As X is smooth over X, , it suffices to prove the claim for X,,. For w € W,
let Uy = G (1,w) C G;,/P; x G1,/B and let V,, C X;, be the inverse image of U,,. It
follows from [BD| Prop. 5.2.1] that the V, are smooth L-schemes, and they all have the
same dimension. As they also cover X,,, their generic points are the generic points of
the irreducible components of X,,. This shows that X, is generically reduced. O

Recall that we have two maps ki,k2 : X — t (see [BHS19, §2.3]) defined by
ki(g1B, N, g2B) = gi_lNgi(mod n). By construction, the image of iy x, lands in 3;
and the map ry|x, factors through X,,. This provides a commutative diagram

where Oy is the restriction of the map (k1, k2) to X7.

The following result is the analogue of [BHSI9, Lem. 2.5.1] in our context, with
analogous proof.

'see [BAS1Y] just before Proposition 4.1.5
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Lemma 4.5. The irreducible components of 31 Xy t are the (T1w)wew,\w where

TI,w = {(Z7Ad(w_l>(z)) | KAS 31}

Moreover, the irreducible component X, (resp. Xy, w) is the unique component of Xy
(resp. Xy, ) whose image under O (resp. Oy, ) dominates Ty .

Remark 4.6. For future use, we make the following notational convention: When F' = Q,
we have G = GL,, 1, we will use the notations X,,, X, 1, Xy 1. etc. for the schemes X,
X1, X1 ete.

4.2 Partially de Rham deformation rings

For each place v|p of F', we fix r, : Galp, — GL,(L) a framed ¢-generic Hodge-Tate
regular crystalline representation, that we assume that the (¢, I')-module D,i4(r,) asso-
ciated to r, is crystalline p-generic with regular Hodge-Tate type in the sense of [HMS)
§3.3&§3.4]. We also fix a refinement R, = (¢1,...,¢n) € L™ of r,, (see loc. cit.). We will
use the notation r = (ry),|, and R = (Ry),|, and say that 7 is p-generic Hodge—Tate
reqular and that R is a refinement of r.

vlp

Let Cr, be the category of local artinian L-algebras. Fix v|p a place of F. Let XE
be the groupoid over Cj of deformations of r,. It is represented by a formal scheme
over L that we also denote by X" by abuse of notation. We recall from [BHSI9, 3.6]
that, given the refinement R,, the groupoid of trianguline deformations of M, , is rep-
resentable by a closed formal subscheme th%v C XEJ. Here M, , the (p,I')-module
over R 1[1/t] obtained from Dyig(ry) by inverting ¢ which is equipped with the unique
triangulation corresponding to the refinement R,. We set W, = Wygr (Drig(r)[1/t]) and
Weo = War(Ma,) and let Xy, 1w, , denote the groupoid of deformations of (W, W)
as defined in [BHS19, §3.3].

Fix a finite subset I, C A,. For an object A of Cy,, we define Xg/i‘iw. (A) to be the
subset of all (Wa,Wa,e) € Xw, w,, (A) such that for any 7 € Xp, and dw € Ar NI,
the Bj{R—represen‘cation Wai QK L / Wa,j+1 ®Kk L is de Rham, where j is the largest
integer < ¢ such that a,; ¢ I (and j = 0 if 7 is the smallest integer such that a; » ¢ I).
It is obvious from the definition that XV%J W., isa subgroupoid of Xy, w, -

For an object A of Cr, and ry € Xf:f;zv(A), we denote by M4 o the unique triangu-
lation of Dyig(r4) lifting M, ,,. We say that r4 is P;-de Rham if

(War(ra), War(Mae)) € XBI“WW (A)

vy

(see [Wu, Def. 3.10 ]). It now follows from [Wu, Lemm. 3.11] that this functor is repre-
sentable by a closed formal subscheme of th%v that we denote Xé“;g“. More precisely,
we have an isomorphism of groupoids

Iy—qtri _ q,qtri Pr,
X"'U,Rv - X"'U,Rv XXvaWo,v XWU,W.,U.
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Fix an L ®q, Fy-basis o, of WvGalK and let XVDVv be the groupoid of deformations of
the pair (W, ay,). We set

O _ O
XWmW.,v - XWU XXWU XWv»Wo,v
Iy—qtri,0 _ 4,1, —qtri g
XT"U;RU - X""u,Rv XXW?J XW’U

As the map Xit%ﬂ — Xyt Xxyw, Xw, W, is formally smooth by [BHS19, Cor. 3.5.6],

we deduce that the map XTI; ;zcim’m = X+ XXy, ng: ’v?/. , 1s formally smooth as well.

If I =]lyple CAandif a = (ay),), is fixed, we set Xf;zqtri = [T B P |

Ty, Ro
I—qtri,0d , I, —qtri,[
XT,'R '_ Hv|p erva ’

We consider the point
Tpar = (9B,0,hBp) € X((L) C (Gr/Bp x 9 x G/Br)(L), (6)

where g € G(L) (resp. h) is the matrix sending the standard flag (corresponding to
our fixed basis ) of [, WSGalk to the complete flag I[Lp War (M) 25 (resp. to
the Hodge flag). We deduce the following result (see [BD, §6.3] in a slightly different
context):

Theorem 4.7. There exists a diagram of formal L-schemes with formally smooth maps

I—qtri g I—qtri,™ f v
XT,R XT’,R XI@de

Proof. Let I =[], s, I, with I, C A, for v € S,. Note that we have a decomposition
X1~ [lves, X1, where Xy, is the L-scheme defined in the same way as X7 but for the
group Resp, /Qp GL,, F,. We also write zpqr = (xde,v)vesp where 4R, is the image of
Tpar in X7,. We just have to check that the groupoid

va O
Xyt XXwy KW o X Xw, X,

is represented by the completion of X7, at zpqr,,. This can be checked easily as in the
proof of [Wu, Lemm. 3.11] using [BHS19, Cor. 3.1.9 &Thm. 3.2.5]. O

We finally note that the map x; from above induces a map of formal schemes x; :
X1 wpqr — 31, Where 37 is the completion of 37 at 0, and thus a map

I—qtri,Od ~
XT,R — 31

This maps factors into a map of formal schemes 1 : XT] ;zqm — 37

For w € W such that zp,qr € X1, (L), we denote by XT{ %qtri’w the schematic image
of

I—qtri,OJ v I—qtri
XT,R XXI " XIuwuljde - XT,R
»IpdR
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and by X% (resp. X. x Oltrlw) the schematic inverse image of {0} under ; in X4

(resp. XI qt“w).
The schemes X, - qm and X, - qtrlw are formal spectra of complete local noetherian

I— qtrl and RI qtri,w

rings that we denote by R, . It follows from the constructions that

I— qtrl w

moreover R, is an 1ntegral local ring.

5 Global construction

Let F' be a totally real number field and let E/F be a totally imaginary CM extension
of number fields, in particular [E : F| = 2. We assume that all places of F' dividing p
are unramified and split in £/F and denote by S, the set of places above p in F'. We
fix a set X of places of E/ dividing p such that, for each place v € S, there is exactly one
place of ¥ above v. Let U be a unitary group in n variables for E/F that we regard, via
Weil restriction, as an algebraic group over Q. We assume that U(R) is compact and
and that Ug, is quasi-split. This implies in particular that there exists an isomorphism
Ug, =~ Ilves, Resk, g, GLn,p, that we fix from now on. From now we note G = Ug,
identified with [[,cg, Resp, g, GLn,p, via this fixed isomorphism and we use notations
of section (3], i.e. L is the choice of a field of coefficients that is assumed to be big enough
so that all embeddings of E (equivalently of F) in Q, factor through L. Moreover,
B C G is the Borel subgroup of upper triangular matrices, ' C B is the maximal torus
of diagonal matrices, IV is the unipotent radical of B etc.

5.1 Classical and p-adic automorphic forms

We write T' = T(Q,) =~ (Hvesp FvX>n and let Ty ~ (Hvesp (’)}X;v)n C T denote its

maximal compact subgroup. We denote by T' (resp. Tp) the rigid analytic spaces over L
parametrizing the continuous characters of T' (resp. of Tp) and recall from [5| that there
is a weight map

wt : Ty — t*

with values in the dual Lie algebra t* of T' (considered as a rigid space over L). We will
often, by abuse of notation, also write wt for the composition of wt with the canonical
projection T' — Ty. Recall that we had identified X*(T) with a Z-lattice in t*. Often we
will identify X*(T') with Z"F:Q,

Definition 5.1. Let § € T' (resp. € Tp) be a character.

(i) The weight of § is the image wt(d) under the weight map.

(ii) The character 0 is called of algebraic weight if wt(9) € X*(T) C t*.
(iii) The character § is called algebraic if it is of the form

B (21 @1,z ® 1) e [T (T o r(z))
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for some k = (k],...,kl)rpesr € ZMFQ Tt is called dominant algebraic if k € X*(T)*,
ie. if kT > ... 2 k] for all 7.

Note that k£ — J;, defines a section of the weight map over the algebraic weights, and
we use this map to identify X*(T') with a subset of T' (resp. Tp).

Let KP C U(A®P) be a compact open subgroup, called a tame level that we assume
to be of the form He#p K, where K, is a compact open subgroup of U(Qy). Let I, be
the Iwahori subgroup of G = G(Q,) = U(Q,) with respect to our choice of B. For any
compact open K, C U(Q,) we consider the Shimura set

Shirr, = UQ)\U(A®)/KVK,.
As U(R) is compact, this is indeed a finite set of points.

Definition 5.2. The completed cohomology of the tower (SthKp)Kch(@p) of Shimura,
sets is:
I:=1°®o, L, with II°:= limlim H(Shkrk,, Or/77),
KP

n

see [Eme06b].

The completed cohomology is an L-Banach space endowed with a continuous action
of U(Qyp). This space is naturally identified with the space of continuous functions

fU@QN\U(A®)/KP — L. (7)

We denote 11" the subspace of locally analytic vectors in I for U(Q,). This is the
subspace of functions in which are locally analytic. As II' is a locally analytic
representation, there is a natural U(g)-action on II'* obtained by deriving the G =
G(Qp)-action. Here, as above, we write g for the Lie algebra of G, and b, t, n for the Lie
algebras of the Borel B, of the torus 7" and of the unipotent radical N of B.

Definition 5.3. The space of overconvergent p-adic automorphic forms of tame weight
KP is the space
STKP) = () =l ()N,
NoCN(Qp)
where Ny varies among the compact open subgroups of N(Q,). Given a weight x € t*,
the space of overconvergent p-adic automorphic forms of tame weight KP and weight s
is the eigenspace

SL(KP) c ST(K?)
of eigenvalue « for the U(t)-action.
Denote by T(KP) = Z[KP\U(A>P)/KP] the Hecke algebra of Hecke operators over
Z of tame level KP. Then T(KP) acts by convolution on ST(K?) and Sf(KP). Let S be

a finite set of prime numbers containing p and all the ¢ such that K, is not hyperspecial.
The subalgebra T := Qigs Te C T(KP) is commutative.

37



Definition 5.4. Let
T(Qy)* = {diag(af,...,ap)y € T(Q,) | v(al) > ... > v(ay), Vv € Sp}.

The Atkin-Lehner ring A(p) is the sub-algebra of Z[T'(Q,)] generated by the elements
teT(Qp)*.

Let 6 : T — L* be a continuous character. Then we can extend § to a character
A(p) — L whose restriction to T is given by §. By abuse of notation we still write &
for this character of A(p).

Note that there is a cofinal system of compact open subgroups No C N = N(Q,)
such that tNot~1 C Ny for all t € TT. We hence can define a Hecke action of A(p) on
ST(KP) = (IT'*)" by letting t € T(Q,)* act on f € (I'*)™ via

1
[t]f = (a: — W Z f(:cnt)) ,

nGNQ/tNot_l

where Ny is a sufficiently small compact open subgroup of N such that f € (II'*)M and
such that tNot~! C Np.

Let T be the commutative algebra T° ®z A(p). Definition provides a structure
of T-module on ST(KP) and Si(KP).

Definition 5.5. An overconvergent p-adic automorphic form f € ST(K?) = (II'*)" is
called a finite slope eigenvector for the A(p)-action if, for any t € T(Q,)", there exists
a; € L™ such that

tlf = af.
More generally f is of finite slope for the A(p)-action if for all ¢t € T(Q,)", there exists
a polynomial P € L[X] such that P(0) # 0 and P([t])f = 0.

Given a continuous character § : T — L*, we write ST(KP)[§] for the eigenspace
with respect to the A(p)-action of eigensystem ¢ : A(p) — L. Note, that by definition
this eigensystem is automatically of finite slope and of weight x = wt(J). Moreover, the
A(p)-action on ST(KP)[§] uniquely extends to an action of Z[T(Q,)].

Remark 5.6. An overconvergent automorphic form of tame level KP with eigenvalue
0 : T — L* for the Hecke-action at p (i.e. for the action of the Atkin—Lehner ring) is
thus the same as a locally analytic function

[ U@Q\U(A®)/E? — L,

such that there exists a compact open subgroup Ny C N(Q,) so that, for all g €
U(Am),t € To,n € Ny,

flgtn) = 6(t)f(9),
and such that moreover, for all t € T(Q,)™, [t]f = 4d(¢)f.
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Definition 5.7. The space of classical automorphic forms of tame level KP is the sub-
space SY(KP) = (II)") of ST(KP) = (II'*)" of elements which are K,-finite for some
(resp. any) compact open K, C U(Q)).

We note that this subspace is stable under the action of T.

For any character x° : T¥ — L, we let II[x°] (resp. ST(KP)[x°], resp. S (KP)[x°])
denote the subspace of x“-eigenvectors for T in II (resp. ST(KP), resp. S(KP)). If
§: T — L is a character of T (defining a character of A(p)) and if y = x° ® § is the
corresponding character of T = T*®z.A(p), we write ST(KP)[x] etc. for the corresponding
eigenspace.

Let m be a maximal ideal in T°. We then define

Iy =1, ®o, L, where II; =1

=)

(I /m 1)

i

As there are only finitely many maximal ideals m of T such that (II° /71 II°), is nonzero,
the space Il is a topological direct summand of II stable under the actions of U(Q))
and T.

Recall that if m is a maximal ideal (whose residue field is assumed to equal kr)
such that Il is non zero, then we may associate to m a continuous representation
p: Galgp — GL,(kz) which is conjugate autodual, and unramified away from S. Such
representations p are called modular (see for example [BHS17h, §2.4]).

5.2 Patching the completed cohomology

We fix a maximal ideal m C T such that IT,, # 0 is non-zero and denote by 7 : Galp —
GL, (k1) the corresponding modular Galois representation. For each place v of F' which
splits in E we write

Py = P|Galp,
for a choice of ¥|v of E. From now on we assume that, for v € S, the place v splits
in E/F, we make a fixed choice v|v as before such that v € X if v| p, and denote
S = {v|v € S} so that S is in bijection with S and contains X. For v € S we write R%'
for the universal lifting (i.e. framed deformation) ring of p, and define

O
1z, Rﬁv

to be the maximal reduced Z,-flat quotient.

Remark 5.8. If v|p we have in fact, by the main results of [BIP23], Rgﬂ = REDU' Using the
main result of [DHKM24] we find that the same applies to places v 1 p, as the deformation
rings RD may be identified with versal rings to the moduli space of L-parameters. We
still keep the notations introduced above in order to be consistent with the notations
from the references for the patching construction below.
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We denote by ;s the quotient of R5; corresponding to the deformation problem
Q — _1-ngn o
S:(E/F7S7S7OL7P7€1 5E/F7{RﬁU}UES)

in the notations of [CHTOS8, §2.3], where §g/p : Galp — {#£1} is the quadratic character
associated to E/F, and

loc ._/\*D
R = QR
veS

We assume the following (strong) Taylor-Wiles hypothesis
Hypothesis 5.9. 1.p>2;

2. the extension E/F is unramified and E does not contain a (non-trivial) p-th root
¢pofl;

3. the group U is quasi-split at all finite places of Q ;

4. the level KP is chosen such that K, is hyperspecial whenever the finite place v of
F is inert in E ;

5. the representation p|ga, " is adequate.
P

)

By [CEGT16] sections 2.7,2.8, (see also [BHSI7h, Théoréme 3.5]), we have the fol-
lowing data.

Proposition 5.10. There exist
1. an integer g > 1 ;
2. a continuous, admissible, unitary Ro.-representation o of U(Qy) over L, where

Ry = RIOC[[xl, gl

3. a local map of local rings S := OL[[y1,- .., yt]] — Reo with

n(n+1)

t=g+dim R — [FT: Q) 5

and a local map of local rings Roc — Rp s such that
(i) there exists an Op-lattice 1, C Il stable by U(Q,) and Roo such that
(Hgo)/ = Homop, (Hgov OL)?

is a projective So[[Kp]]-module of finite type (via S — Roo) for some (equivalently
all) compact open subgroup K, C U(Qy) ;
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(7i) the map Ry — R5 s induces an isomorphism
Ry /aR ~ Rp s,

of local noetherian Or-algebras and an isomorphism of continuous admissible unitary
R /aR-representations of U(Qyp) on L

Mo[a] ~ Iy,
where a = (y1,...,y:) denotes the augmentation ideal of S,

It is a direct consequence of this proposition that the R.-representation II,, of
U(Qp) satisfies Hypothesis We note that the same applies to a slightly more
general context:

Lemma 5.11. Let V be a finite dimensional algebraic representation of U(Qp) over L.
Then the Rso-Banach representation o, @1,V satisfies Hypothesis [3.15,

Proof. As Il satisfies Hypothesis |3.15| for any open pro-p-subgroup H of U(Q)) there
exists an isomorphism of Z! x H-representations Moozt xm C(Zt x H,L)™ for some
m > 1. But then

(Moo @1 V)izg s = C(Zy x H, V)™ ~ C(Z} x H,L)™ 4™V 0

In the reminder of this paper we will use the following notations: we set

—

B \ri ~ B \ri
AP = Spf(®U€S\SpRﬁv) e~ [ Spf(R;)"™,
veS\Sp
where U9 := Spf(Or[[z1,. .. ,a:g]])rig is an open polydisc. Moreover, we set

._ o) O i
Xﬁp = Spf(@vESpRﬁv)rlg’
Koo = Spf(Roo)™® = XP x X x UY.
By construction the space X contains X5 s = (Spf R@‘g)“g as a closed subspace. For
a point x = (2P, x),2) € Xoo(L) and a place v of F dividing p, we denote by p;, the

framed representation Galp, — GL,, (L) associated to . Finally we write p,, for the
the family of representations (puv)y|p-

6 Patching functors

In this section, we keep notations and conventions of section [5| In particular, we have
G ~Tlyes, (L Xq, Resg, g, GLy,F,) which is an algebraic group over L and we consider
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the associated categories O, (’)gfg and (7)alg as in section [2| (for the choice of the upper
triangular Borel subgroup B).

We fix once and for all a point x € X5 (L) such that x maps to the origin in
(Spf Soo)™® (i.e. the point defined by the augmentation ideal of S..) and we denote
by R the completed local ring of X at x.

6.1 Locally analytic patching functors

We fix a smooth and unramified character ¢ : T(Q,) — L* and consider € as a point of

~

T.
By Lemma [5.11], we can apply Corollary to the admissible locally analytic rep-
resentation IT% | and obtain a functor
%, — Coh(Xo x T)
M — MHoo (M )

Definition 6.1. For M ¢ (’)gfg we define
Moo,:r,s(M) = -/\/ll_loO (M)m,s

to be the stalk of My (M) at (z,¢).

It follows from Proposition that Mo 5 (M) is a Cohen-Macaulay }A%w7z-module
and is follows from Theorem that the functor M +— My, o(M) is exact.

Remark 6.2. We also have the following description:
la, 001\ INQ [44q OO !
Meg (M) == (Homyy(g) (M, T [m3]) N [m2] )

where m. is the maximal ideal of A(p) ®z, Q, = Qu[T(Q,)"] corresponding to the
character ¢ and m, is the maximal ideal of R[1/p] corresponding to z.

Remark 6.3. Note that we have two U(t)-module structures on My 5 (M): The first
one comes from the nilpotent U (t)-module structure on M as in section The second
one comes from the action of U(t) induced from the locally analytic T-structure on 1T .
It is a tautological consequence of the construction, but we point out that these two
actions coincide.

Definition 6.4. Let I C A be a finite subset of simple roots and let M be an object of
Oilg- Then we define
Mg (M) = lim Mo o o(M /m}).
n

Proposition 6.5. The functor M — M 5 (M) is ezact on (Xlg and for each M € 6£Ig

the §w7x-m0dule Mooz (M) is finitely generated and Cohen-Macaulay of dimension
t + dimg 37. Moreover Mog 5.(M) is flat over U (3r).
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Proof. Let Sy, be the completion of Seol1/D] along the maximal ideal generated by the
augmentation ideal a of So,. Moreover, we write U for the completion of U(3;) at the
maximal ideal mj.

By exactness of the functor M ., we have
Moo ze(M/mi*h) /mf = Mg o (M/m])

for any n > 1. It follows from Theorem m that Mooz (M/my) is a finite projective
S -module. We denote its rank by r > 0. The exactness of My, ;. implies that
Mooz e(M/m?) is a finite projective Seo , @1 U(3r)/m}-module of rank r and it follows
that ./\/looza(M) is a ﬁmte projective SOO®LU1 module of rank r. As the action of
SOO®LU1 factors through Roox we deduce the result. The exactness of the functor
Mo,z is a consequence of the exactness of Moo g restricted to OF}, and the fact that
each system (Mg 5 (M/m7)), satisfies the Mittag-Leffler condition.

Let t = (t1,...,tn) be a regular sequence generating the maximal ideal of U (31)m,-
This is also a regular sequence generating the maximal ideal of the completion U;. By
exactness of the functor Ss, ®7, — on strict exact sequences of Fréchet L-algebras, the
sequence t is §M®Lﬁ1—regular. As Mooz (M) is a finite free §W®Lﬁj—module, the
sequence t is Moo 5 (M )-regular. This is equivalent to flatness over U (371)m, - O

6.2 A factorization property

We use the spaces and notations introduced in section |4 A point z € X (L) is said to
be crystalline ¢-generic and Hodge-Tate regular if for all v|p the representation py , is
crystalline o-generic and Hodge-Tate regular. Let z = (p?, pp, 2) € Xs(L) be such a
p-generic Hodge-Tate regular point. We fix a refinement R of pj,.

Recall that G ~ Hvesp (L xq, Resp, /g, GLn,F,). If I is a set of simple roots of G,
we set

I—qtri I—qtri o
X R —prpxX R x U9.

This is a closed subscheme of (Xa), and we write Rog, —» RI qm

quotient map. Moreover, for w € W, we set

the corresponding

I—qtri,w . 255 I—qtri,w 10
X = XPp X pr,R x U9.

IR = (1,05 sPnw)olp € [yp(L™)", we define ég to be the smooth unramified
character of T' defined by

(xl,va .. ‘/I"TL’U ‘p — HH (P;}IZU(II ,v )

vlp

where ¢, denotes the cardinality of the residue field of F,,. We use the notation My, » =
Moo 2.5~ The goal of this section is to prove the following result.
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Theorem 6.6. Let © € Xo(L) be a @-generic Hodge Tate regular crystalline point and
let R be a refinement of x. Then, for any M € OX", the Roo xz-module Moo » R (M) is

killed by the kernel of the map ROO@ —» RIatri FEquivalently its support is contained in

00,z,R

alg ’

I—qtri
00,z,R *

Proof. This is a consequence of Proposition Proposition and Corollary
which will be proved below. O

We will prove the auxiliary statements in (the proof of) this theorem by making use
of variants of the construction of eigenvarieties. More precisely, for a subset I C A, a
character A\ € X*(T)} (dominant with respect to P;) and an algebraic representation
V of G we will consider the scheme-theoretic supports

el = Supp(MI’/\ ) C Xoo x T
EL V)= supp(/\/lIAV) C Xoo X T,

where Mﬁjo respectively Mﬁ;\Ov are the coherent sheaves associated to Jy x(TI'2)" re-
spectively to Jrx((Ie @1 V)2) (see section for the notation). We will link the
completions of L (X) resp. EL (A, V) at points (z,0) € Xs x T to the quasi-trianguline
deformation rings of sectlon [ This 1s done in two steps: we first show that the set-
theoretic support of MH resp. of /\/l AV s contained in the (quasi-)trianguline locus
(see the proof of Proposition E We then prove that £L ()\) resp. EL (A, V) is reduced
(see the proof of Proposition . The proof of the latter statement follows the usual
argument in the case of eigenvarieties, see e.g. [BHS17bl Corollaire 3.12 and Corollaire
3.20]: the general properties of eigenvarieties (deduced from the fact that the sheaves
./\/lIH:<> resp. Mﬂi‘ov are locally finite projective over (Spf Sso)™® x Tj imply that EL (X)
resp. £L (X, V) have no embedded components. Hence it is enough to produce on each
of their irreducible components a point y such that €L (\) resp. &L (A, V) are reduced
in a neighborhood of y. By the same projectivity argument as above, the point y can
be chosen so that the weight map to T o is smooth at this point. Reducedness then
boils down to checking that the Hecke operators (that generate the local ring of &L (\)
resp. £L (A, V) at y) act semi-simply on the fiber of ./\/lH resp. M V' over T} which
in turn follows from the fact that Hecke-operators act semi-simply on spaces of classical
automorphic forms. We now give the details of these arguments.

Let 6 = (01,0, 0n0)ulp € T(L) be a parameter for a quasi-triangulation of x at

p, i.e. the trianguline filtration of the (¢, I')-module Djig(py)[l/t] over Ry r[1/t] has
graded pieces R, 1(0i,)[1/t]. As x is Hodge-Tate regular, there is a natural map

qtrl
X z,R T5 )

mapping a deformation at p of the (¢, I')-module Djlg(pv)[l /t], equipped with its trian-

guline filtration, to its parameter (see e.g. [BHS19, eq (3.15)]). If ¢ is locally algebraic
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of the form § = Aég for A € X*(T') and some smooth character 6z € T'(L), we shift the
previous map to get _ R
w=1t_\ws: ng,n — Tg\R

which only depends on the chosen refinement. This induces a map

. . yqtri - SA
X W XOO,I’R — Xooz X T5R,

or equivalently, a homomorphism ﬁoo,w ® O:/ﬁ\ 5r — Rio_;t%
Proposition 6.7. Let A € X*(T)] be a weight dominant with respect to P;. The ]?ioo@—
module Moo » R(Mr(X)) is annihilated by the kernel of Roo » — Riggt% More precisely,

Mw7x,R(MI(A)) s an ]TZOO@ ® O% 5r -module and annihilated by the kernel of

D A I—qtri
Ry ® OT’JR — R

00,x,R"

Proof. 1t follows from Proposition and the definition of MOOIR(M 7(A)) that
r * I\
MocaR(M1(N) = (M) (o 5)

as an ]%oo,x ® (9% 6R-module. It is thus enough to show that the completion of /\/IIHO)‘o at
the point (z, Mgr) € Xoo(L) X IA“(L) is supported at the closed subspace

. . pI—qtri vl A
1 X Wws XOO,JJ,'R — XOO,CC X T(;)\(;R‘

We closely follow the proof of [Wul, Prop. 5.13]. Let us write &, C X X T for the
scheme-theoretic support of the coherent sheaf defined by Jp(Ily)’. By [Wu, 5.4] this
contains £ (\) as a closed subspace. As in the proof of [Wul, Prop. 5.13] we consider
a proper birational map f : £, — € such that the universal (¢,T")-module over &£,
has a quasi-triangulation, and write £7 for the preimage of L ()\) in & . Let Y C &7
be the Zariski closed reduced subspace of £Z whose points are exactly the points of £
where the universal filtered (¢, I')-module over R[1/t] is Pr-de Rham. As in [Wu], the
existence of Y is a consequence of [Wul, Prop. A.10]. It follows that for any y € Y lying
above (x,dg) the map

ffy — Xoo X T
factors through X;T;%gy. Let U C £L()\) be an affinoid open subset containing = and a
Zariski dense subset of points which are de Rham (and in particular P;-de Rham) and
trianguline with parameter given by &L (\) — T. Such a neighborhood exists by [Wl,
Prop. 5.11 & 5.12]. We deduce that f(Y) D U and hence f~}(U) C Y and we conclude
as in the proof of [BHS19, Prop. 3.7.2] (see the erratum in [BD]) that the map

Uz rsr — Xoo X T

factors through X7~ 4% O

00,z,R*
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Corollary 6.8. Let V' be an algebraic representation of G, then

M = Moo or(Mi(N) @1, V)

I—qtri

is annihilated by some power of the kernel of ]TZOO@ ® O’},dn — R r-

Proof. We recall that
Mi(\) @r V =U(g) ®up,) (Li(N) @1V 2 U(g) @,y (L1(N) @ Vip,)

and that V|p, is an extension of algebraic irreducible representations of L;. Exactness
of Mg 2= (see Proposition implies that the }A%wvx—module M is an extension of
Em7z7R—moduIe of the form Mm7x,R(M[(u)) for p € X*(I)}r. We deduce the result
from Proposition O

Proposition 6.9. Let V be an algebraic representation of G. Then the schematic sup-
port EL (N, V) of the coherent sheaf associated to Jrx((Iloo @1 V)'2)' ds reduced.

Proof. We follow closely the proof of [BHS17b, Cor. 3.20] replacing, where it is nedeed,
some arguments by results of [Wu]. To simplify notations we just write & = &L (\, V)
and M = Mﬁi‘ov for the reminder of this proof.

Let A be the radical ideal of Og. Assume that N # 0 and let x € £ be a point in
the support of V. Let T} be the preimage of )\m[?s € (tN*)* under the map

T — ¢ — (tN Y,

where the first map is the weight map . According to [Wu, §5.4] there exists an open
affinoid neighborhood U of x and an open affinoid subset W C f)‘\’ x Spf(Seo)™ such that
I'(U, M) is a finite free O(W)-module (such a data exists according to the results of [Wul
§5.4]). Then I'(U, N) is the radical ideal of O(U). Moreover, as O(U) = I'(U, O¢) is a
sub-O(W)-module of End(I'(U, M)) (by the same argument as in the proof of Theorem
respectively of [BHS17b, Prop. 3.11]), the same is true for I'(U,N). Therefore
(U, N) is a torsion free O(W)-module and its support has the same dimension as W
and hence contains an irreducible component Uy of U. As a consequence the support of
N contains an admissible open subset of £. As the support of A/ is also a closed analytic
subset of &, it follows from [Con99, Lemm. 2.2.3] that the support of N contains an
irreducible component of £. It hence suffices to produce on each irreducible component
of £ a point y such that £ is reduced in a neighborhood of y.

By [Wul Prop. 5.11] every irreducible component of £ contains a point with algebraic
weight.

Therefore we fix a point x € £(L) with integral weight \ € f/{’ Let U be an open
affinoid neighborhood of x and W C T} x Spf (Ss)™& an open affinoid open subset such
that M = T'(U, M) is a direct factor of O(W)&rJp,(Jp, (e @1, V)y)'. Let A= O(W)
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and B = O(U). Then M is a finitely generated B-module and a finite projective A-
module. Let C' > 0 and C’ > 0 as in the proof of [Wul Prop. 5.11]. We set Z C W be the
subset of algebraic character dy, such that, for any simple root o ¢ I, (N +v, ) > C’ for
any v weight of VV. This is a Zariski dense subset of W. Then for z = §y/0sm With dgm a
smooth character, using Proposition we see that the B-module M, = M ®k(z) is a
direct factor of Jp(Hom(M(N'), s ®1 V). Let (z,d) € U be a point above z, i.e. § =
Ox0sm, then arguing as in loc. cit., we have Homg(]-"g(N ®r VYV, 5sm5§1),1'[00 [p2]) =0
for any subquotient N of Mj(\') different from L(\'). This implies that M, is actually a
quotient of Jp(Homy ) (L(N) @1 VY, 1l )) which is isomorphic to a finite direct sum of
Jp(Homyy(g) (L(1), Il )) with p dominant. The proof of [BHSI7b, Cor. 3.20] shows that
the global sections of the coherent sheaf associated to each Jg(Homy () (L(p), 1)) on
UnNk=1({0x}) is a semisimple B-module. This concludes the proof. O

Corollary 6.10. The rigid analytic space EL(X) is reduced.

Proof. This is Proposition [6.9] with V' the trivial representation. O

Corollary 6.11. Let V' be an irreducible algebraic representation of G. Then the }ABOO7I®
Oz, -module Moo o r(Mr(A) ®@p V') is killed by the kernel of the map

A
T57z
) I —qtri
Roo’m & O@A — Roo’x’R.
R

Proof. By Proposition the support of the module Moo,x’R(M[()\) ®p V) is reduced
for any A € X*(T') dominant with respect to P; and any algebraic representation V' of
G. Therefore the result follows from Corollary O

6.3 Bi-module structure on the patched functor

Let M be an object of ngg or @élg. As seen in section there is a natural structure of
A = U(t)m-module on M which provides, by functoriality, the structure of an A-module
on Mooz R(M). This A-module structure extends to an action of the completion A of
A with respect to the maximal ideal m. We recall from Remark that this action
coincides with the structure of an A-module on Mooz R(M) induced from the T-action
on Il.

On the other hand, the ring Rgzr; R also carries a structure of an A-module induced

from the map & defined in section This gives a further structure of an A-module on
the Rgzr; r-module My » »(M). We will show that these A-module structures agree.

For a € A, we denote by a (resp. a) the endomorphism of M ;= (M) defined by
the first (resp. second) action. Note that if M is an object of Oyg, then Moo » 7 (M) is a

finite free AR Ss-module for the first A-module structure by the proof of Proposition
Thus it is A-torsion free (since A is domain).
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Lemma 6.12. For any a € A and any M in O, or @alg, there is an equality

a=a € EndMeszr(M)).

Proof. If M = M(u) @y U(t)/m" for some p € X*(T), this is a consequence of
[BHSI7D, Thm. 3.21], the commutative diagram [BHSI9, (3.30)] and Remark This
implies that for any p € X*(T'), we have a = a on Mo (M (1)).

Now we consider the general case. It follows from Proposition [2.14] that it is sufficient
to prove the equality @ = a when M = M (1)@ V for y € X*(T) dominant and V a finite
dimensional U(g)-module. Let (Fil;) be an increasing filtration of M () @ V such that
Fil; / Fil;_y ~ M (p;) where 1, ..., puq € X*(T) and d = dimy, V (such a filtration exists
by [Soe92, Lem. 8]. Let K denote the fraction field of A. It follows from Proposition

that we have a decomposition of U(g)x-modules

d
(M) @1, V) 04 K ~ @ M (i)
i=1
splitting the filtration (Fil; ®4K). Let p; € EndU(g)K((M(,u) ®r V) ®a K) be the
projector on M (1) k. As

Endy(g), (M(p) @1 V) ®a K) ~ Endyg) (M (1) @1 V)) ®a K

by [Soe92, Thm. 5], there exists, for each 1 < i < d, a nonzero element ¢; € A such
that ¢;p; actually restricts to an endomorphism of M (u) ®r V. We set ¢ = q1 - - ¢» and
a; = qp;- Then the «; are endomorphisms of M (1) ®1 V that stabilize the filtration
Fil,. As each Fil; /Fil;_; is a free A-module, the endomorphisms «; induce the zero
endomorphism of Fil; 1 and M (1) ®r V/ Fil; and the multiplication by ¢ on Fil; / Fil;_;.

In order to simplify notations we set

My = Moo,x,R(M(:u) L V)?
Fil; Moo = Moo 7 (Fil;).

By construction, for each i the endomorphism «; induces an R ,-linear endomorphisms
of Filj M for all j. By exactness of My, r, the family (Fil; M) is a filtration of
My and Fil; Mo/ Fil;_1 Moo =~ MOO:ER(/]\Z[(M)) for any i, so that a and @ induces
the same endomorphism of Fil; M,/ Fil;_; M. Finally, for 1 < i < d, we denote by

o(é) = «;(Fil; M) the image of the i-th filtration step under «;. It follows from the
properties of «; that

o MY c Fil; My
o the quotient Fil; M /(Fil;—1 M + Méé)) is killed by ¢;

. Méé) is isomorphic to a quotient of Fil; M/ Fil;—1 Mo.
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Therefore, we have a = a on Méo) for any a € A and the quotient of My, by the sum of

the Mo(? is killed by ¢%. As M is A-torsion free it follows that a = a. O

Let £ : Z(g) — U(t) be the Harish-Chandra map as recalled in section As in
loc.cit. we write ¢, for the unique endomorphism of U(t) mapping = € t to t,(z) =
x4+ v(zx).

Let h = (hirp < -+ < hpro)ro € X*(T) be the weight corresponding to the
Hodge-Tate weights of p, = (py)y|p and let o = (0,—1,-2,...,1 = n)., € X*(T) be
fixed central shift of the half sum of the positive roots g € X*(T') ® Q. We have a map

Ko A= U/(\t)m — REZiR
induced from the map k2 of section and we define the L-algebra homomorphism
o= ,‘<;2oth_5/G o&:Z(g) — qu
As in [DPS| Def. 4.23], we define, for any v|p, an L-algebra homomorphism
. O,ri
ggg : Z(Lie(Resp, g, GLy)) — R, ™

where p, is the universal family of Galois representations over RD e After completion
at p, and taking the tensor product over all v|p, we obtain an L- algebra homomorphism

¢© s 2(8) = @ Z(Lie(Resy, g, GLu)) — Ry, = B

vlp
Note that the definition of C;CC from p, depends on a choice of a central shift of d (see

the discussion ending [DPS] §4.7]). We choose it equal to d),. More concretely (¢ is
characterized by the following property. This is the unique continuous homomorphism
such that, for any local artinian L-algebra and any local homomorphism f : Rg;r;z — A,
CC’

corresponding to pa = (pa, : Galp, = GL;(A))y,, the composition map Z(g) —

. t, s
R Ais Z(g) 5 U(t) — k(x) where

v|p»

v € Homp(U()", A) ~ Homp (U ()", A) ~ Homy (U (g*)%z, A)
is the map induced by the conjugacy class of the Sen operators
((_)Sen?pA,v)U‘p € (g ®L A)

Proposition 6.13. The homomorphisms (¢ and o defined above coincide.

Proof. 1t is sufficient to prove that for any local artinian L-algebra A and any map
f: quR — A, we have f o (¢ = foa. Note that the map f gives rise to a family
(PAw)v|p of local Galois representations. It follows from [BHS19, Lem. 3.7.5] that, for any
embedding 7 : F}, < L, the 7-part of the Sen polynomial of p, is [[;-; (X — (hi,T + ;7))
where (v; ) € Homyp,(t, A) corresponds to f o kg : U(t) — A. The result is then a direct
comparison of the definitions of o and ¢¢. O
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For each element M of the category Og, or @alg, there is a natural homomorphism
of L-algebras Z(g) — End(M). By functoriality of My 4 =, this gives a map

AN Z(g) — Endﬁw’x(Moo,x,’R(M))-

I—qtri
00,x,R"

The following result tells us that this map factors through R

Corollary 6.14. For any x € Z(g), the element z(x) is the multiplication by a(x)®@1 €

I—qtri
0o,x,R*
Proof. This is a consequence of Proposition and of [DPS, Thm. 9.27]. O

Remark 6.15. Recall that h = (h17y < -+ < hp,rv)ro denotes the weight corresponding
to the Hodge-Tate weights of p. Let X := wo(h) — d;; € X*(T), which is still a dominant
character. Recall that t_s, o & has image contained in U(t)"V. Hence we have

th—s, ©& =1th o Ad(wo) 0 t_g, 0 & = Ad(wo) © tyy(n) 0 t-g7, 0 & = Ad(wp) 0ty 0 &.

Therefore
d®a= (Id@Ad(’wo))OhA AR Z(g) —>A®AW A,

where h) is the map defined in section [2.4]

6.4 Computation of a support

Now we can prove our main result of this section concerning the support of the patched
functor applied to a generalized Verma module respectively applied to its dual.

Theorem 6.16. Let x € Xoo(L) be a point whose associated Galois representation is
crystalline, p-generic and Hodge—Tate reqular. Let R be a refinement of x. Let h =
(hir <+ < hpr)rror € X*(T) be the character given by the Hodge—Tate weights of
pz. Let o7 = det I_Tnég =(0,-1,...,1—=n)r.por € X*(T), where dg is the half sum of
the positive roots, and define A := wo(h) — o € X*(T)™.

Then, for I C A and w € W, the schematic supports of Moo,x,’R(M](wmin - A)) and

Mooz (Mp(w™™ - X)) are either XL 9000 or empty,

Proof. Let M be Mp(w™® - X) or My(w™™ - \)V. As R is generically reduced and

00,z, R

equi-dimensional by Lemma and as Mo (M) is Cohen-Macaulay of dimension

. I—qtri . . . . . . .
dim R__ "%, its schematic support is reduced and is a union of irreducible components
baadh)

I—qtri . s . I—qtri,w’ /
of Spec ROOJR, i.e. it is a union of Spec ROO,%R for some w' € W.

By Proposition the module M is annihilated by I, C A ®p Z(g). This implies
in particular that the action of A7 ®1 Z(g) on M factors through hy. By functoriality,
this gives rise to a structure of an A; ® 4w A-module on My, , =(M). Note that the
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map (K1, k2) of section provides a morphism of L-algebras Ay @ ;w A — Rio_gtg

and, using Theorem @, a second structure of an A; ® 4w A-module on My » r(M). It
follows from Lemmal[6.12] Corollary [6.14)and Remark [6.15] that this two actions coincide
up to composition with Id ® Ad(wp). We deduce that M 5 = (M) is killed by the ideal
of RIZ9™ defining the inverse image of T7ww, C 31 X4 yw t. Therefore Lemma (see

00,2, R
also Remark D implies that the action of Rggt;é factors through Riggt%wwo so that
the schematic support of Mo » = (M) is Spec Ri;gf%wwo. O

7 Main results

Let x = (pp,pP,2) € Xso(L) corresponding to a classical automorphic form of tame
level KP. Moreover, we assume that (the Galois representation defined by) x is crys-
talline, Hodge—Tate regular and ¢-generic (see section at p. This means that
x € X55(L) C Xso(L) and that there exists an automorphic representation m = 7o ®c7f
of U(Ag) whose associated Galois representation p is the representation defined by x
and such that 7; ® W occurs in the locally algebraic vectors of Il for some algebraic
representation W depending on p. In particular, the automorphic representation 7 is
finite slope at p. It follows from the proof of [BHS17al Cor. 3.12] that the image p? of z

in Spf(@,espiw Rgﬂ)“g lies in the smooth locus.

We fix a refinement R = (@14,...,¢nw)v of . Let us denote the 7-Hodge-Tate
weights of pg, for v|p in F and 7 : F, < L by hyr == (hiyr < -+ < hiys). Given
this collection of Hodge-Tate weights we write h = (hy )y, and hy = (hy 7). We then
define R;fsm to be the crystalline deformation ring of p, of labelled Hodge—Tate weight
h, and set

cris,h __ Py cris,hy
RPP - ®v RPU :
Ip
We further define
cris,h cris, hy g
X XP % (Spf RS x T,

o0, z,R

Note that is follows from the definitions that Xgii’}% embeds into Xgi’%‘) for any choice
of a refinement R.

We set

Moy = (hl,v,m h2,v,7— + 17 B hn,v,T + (TL - 1)) = hv,T - 5/G,v,7'7

and gt = (fty,r)v,r, which is thus antidominant (for the upper Borel), and A = wq(h) —
8 = wo - p € X*(T)*. For all v|p in F, we denote by W, the Weyl group of
GL,,(Fy,), which we identify with &,, and denote by $14,...,Sp—1, the simple reflec-
tions with respect to the choice of the upper Borel B, C GL, r,. Moreover, wg, =
Sp—1p--- 520510520 ---Sp—1,0 Will denote the longest element of W,. We then write
W = [, W, the Weyl group of G, = [I,|, GLn,r, with respect to the Borel B =
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Hv‘p B,,. Because of the product structure, we will sometimes abuse notations and sim-
ply write s; for the simple reflections and wq for the longest element.

For a scheme X of dimension d we write Z°(X) = Z4(X) for the free abelian group
on the irreducible components of X. Moreover, for d < d we write Zy(X) for the
free abelian group on the irreducible and reduced closed subschemes of dimension d’.
We recall that a coherent sheaf F on X with d’-dimensional support defines a class
[F] € Zgy(X), see e.g. [BHS19, Equation (2.13)].

7.1 Sheaves and supports.

Let A = wg - p € X*(T)" dominant, integral.

We moreover write

my = dim My » r(L(N)) ® k(z). (8)

It follows from [BHS19, Thm. 5.1.3] that m, > 1 and the proof of [BHS19, Thm. 5.3.3]
implies that m, does not depend on the choice of a refinement R. To z and R we
associate a permutation

Wy R = (wx,Rv)veE - (waz,RmT)v,T ew

defined as in [HMS14) § 3.7]. We recall that these permutations encode the relative posi-
tion of the Hodge—Tate flags with respect to the full flag corresponding to the refinement
R. We recall that, for any object M of Ogf, or (5a1g, the sheaf Mo, » r(M) is zero or
Cohen—Macaulay of dimension d.

Lemma 7.1. Let R be a Cohen—Macaulay noetherian local ring of dimension d' and
let M and M' be two finitely generated Cohen—Macaulay modules. Let (t1,...,ty) be a
reqular sequence of elements of the mazimal ideal of R which is also M and M’-regular.
Assume that [M] = [M'] in Zy(Spec R). Then

(M) (t1, ... tm)M] = [M'/(t1, ..., tp)M'] € Zor—m(R).

Proof. By induction it is sufficient to prove the result when m = 1. Set ¢t = ¢;. Let p be
a prime ideal of R which is a generic point of Supp(M) or Supp(M’). It is sufficient to
prove that [M,/tMy] = [My/tM] in Zy_(Spec Ry/(t)), i.e. that M,/tM, and My /t M,
are two Ryp/(t)-modules of the same length. This is a consequence of [Sta24, Lemma
02QG]. O

Let A C g be the nilpotent cone and let N — A be the Springer resolution. Similarly
to the definition of the closed subschemes X,, C X in [£.1] we define

Zw CN xy NCX
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to be the Zariski closure of preimage under N XN N — G /B x G /B of the orbit
Gr(l,w) CGp/B x GL/B. Set

qtri
00,z, R

Zu = 9(f " (2w N X)) ¥ Xp xTI C X

where f and g are the maps from Theorem

In the following we will make use of the following abusive notation for (local) formal
schemes: Let Spf R be a (local) affine formal scheme. Then we will say that Spf R
is reduced, if R is reduced. Moreover, we will say that Spf R is irreducible if Spec R
is irreducible. More generally, for a given irreducible component Spec R/a C Spec R,
we will refer to the formal subscheme Spf R/a C Spf R as an irreducible component of
Spf R. Similarly, we will write Z%(Spf R) = Z°(Spec R) for the free abelian group on the
irreducible components of Spf R to which we also refer as the irreducible components of
Spf R, etc.

Proposition 7.2. Let w € W. Then the following properties hold:

1) For all I C A and all w € W\W satisfying w™Pwy > w, R , the formal sub-

I—qtri . . . L . . .
scheme X Y27 is reduced and irreducible and coincides with an irreducible compo-
I b

I—qtri
nent of XoorR-

qtri,wwg
00,z, R

2) The schematic support of Mooz r(M(w-X)), forw € W, is contained in X
if wwg = we R, and this sheaf is zero otherwise. Moreover,

[Moo,x,R(M('w . A))} = my, [?qtri,wwo] c ZO(?I—qtri)

00,x, R 00,z, R
for wwg = wy r, where my is the integer defined by (@)

3) There is an equality
— T —qtri
Mooz r(L(wwy - )] =me Y aywlZu] € 22X or)
w'<w

where the a,, € N are the integers defined in [BHS19, Thm. 2.4.7]. In particular
G = 1.

4) For all I C A, the sheaves

Moo o R (My (™ - ) and Mooz (M (w™ - X))

are non zero if and only if WM wy = Wy R.

5) For all I C A, the support of
Mooz R (Mp(w™™ - X)) and Mo zr (Mp(w™™ - X)),

min

_ . pI—qtri,
forw e W\W, is X, 157"

xR WO g My > wg, R and these sheaves are zero otherwise.
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6) The module Mooz (L(N)) is free of rank my over Xo>lhy < x3Mhuo

00,z,R *

7) For any I C A and any w € W, the sheaves
Moo,x,R(M[(wmin - A)) and Moo,x,R(Mj(wmin )Y)

are generically free of rank my over their support.

Proof. We first prove point . As X? is smooth at pP (as recalled _in the begining of
this section), the formal completion X?,» is formally smooth. As U9 is also formally
smooth, the claim follows from the fact that

o —

I, —qtri,0J I, —qtri I, —qtri,[J
XT’U 7R'U XT’U 7Rv and XT’U 77?4; XI,:Ede

are formally smooth and that X Lw,zpar 1S AN irreducible component of X IZpar-

By Theorem the schematic support of the Cohen-Macaulay sheaves
Mooz (Mr(w-\)) and Moo oo (Mr(w - A)V)

is contained in XL which is irreducible. By Proposition as the sheaves are

00,2, R )
Cohen—Macaulay of dimension ¢t + dimj3; = dim Xgo_f% (e.g. [BHS19, equation (5.8)]
and Proposition [3.20)), we deduce that, if non empty, their schematic support is all
I—qtri,w
co,x,R *

By Remark [6.3] we deduce also that

min

I —qtri,w™ M wg

Sllpp(./\/loo@,R(MI(w ’ )‘))) - ?oo,x,R

for w € TW. Note that the Jordan-Hblder factors of My(w-\) are among the the L(w'-))
with w’ > w and that L(w-\) is the cosocle of Mj(w-\). Therefore MOO’QE,R(MI(w')\)) #
0 if and only if Mo o »(Mr(w - X)) # 0 if and only if Mo 5= (L(w - A)) # 0. Therefore
the non nullity assertions in [4) and [5)| follow from the exactness of M, = (Proposition
and from [BHSI9, Thm. 5.3.3]. This proves {4)| and

We prove point @ By [BHS19, Remark 4.3.1 and Proof of Theorem 5.3.3, Step 7],
the schematic support of My =(L(X)) is contained in the crystalline locus Xgli’f;z -

)

ngﬁ, which is smooth and irreducible of the same dimension as the support of

Mooz R(L(X)). Thus these coincide and My 5 r(L(A)) is free of rank m, over the
crystalline locus.

No we prove point The first assertion has already been proved with 4)| and
therefore it remains to prove the assertion on the cycle. It follows from the proof [BHS19)

Thm. 5.3.3] that Moz »(M(w - X)) is generically free of rank m, for wwg > wy r. As

qtri,wwo
Xoo,:r,'R

applied with

is Cohen—Macaulay, the result is a consequence of point |5)[and of Lemma 7.1

M = Ozgﬂi,wwo and M’ = My r(M(w - X))

o0,z, R
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and to a regular sequence generating the maximal ideal of U(t)n. This sequence is
M'-regular by Proposition
We deduce [3)| from [2)| together with formulas (5.23) and (5.24) of [BHS19] and the

fact that the Verma modules form a basis of the Grothendieck group of the category
Oy, -

We prove point As X;otﬁ%i’w/ is generically smooth for any w’, the module

Mo 2R (M) is generically free, say of rank r, over its support where

M € {Moo o (Mp(w™™ - X)), Moo o (Mp(w™™ - A)V)}.

I—qtri,w
Roo,x,R

such that U intersects the support of Moz g (L(w™™ - X)). The claim then implies

Now we claim that there exists an open an subset U in the regular locus of Spec(

r = m,. Indeed, the restriction of Mgz (M(w™™ - X)) to U is locally free since U
is regular. Therefore Moo o = (M(w™™ - X)) is locally free of rank r over its support
intersected with U. It follows from the point [3)[that M ;= (L(w’- X)) is not supported
at the generic point of Z,min,, for w’ > w™™ and that Meg » = (L(w™™ - X)) has length
m, at the generic point of Z,min,,. As L(w™" - \) appears with multiplicity one in
M (w™®. \) and all other subquotient are of the form L(w’-\) with w’ > w™", we have
r = m,. We now construct an open subset U with the claimed properties. We set

U = g(f_l(vwminwo ﬁ X17wminw07de)) X Xgp X Ug,
where f and g are the maps of Theorem @ and V min,, is the preimage of the Schubert
cell Gy (1, w™™wy) C G1,/B x G1,/B in X[ min,,. This is an open and smooth subset of
X7 yminyy,: indeed, the maps f and g are formally smooth, the formal scheme Xfot; R~

X;?;;Z is formally smooth and the point as pP lies in the smooth locus of X”. O

Proposition 7.3. Assume that xpqr is a smooth point of X min,,,. Then
Moo,x,R(M(wmin . )\)) and Mm7m7R(M(wmin . )\)\/)

are finite free O?qtriywmi'nwo -modules.

co,x, R

Proof. We write w™® = w to simplify the notations. By Remark the two U(t)-
module structures on Mo, o = (M (w - A)) coming from the U(t)-action on M (w - A) and
the one coming from the derivative of the locally analytic action, coincide. Thus we have
the equality between Moo ;= (M (w - A)) and the localisation

Mooz R (M(w - N)) = ii* Moo oo (M (w - \)),

where i : 75 — T denotes the inclusion of the closed subspace of smooth characters.
A similar remark applies to the dual Verma module. In particular, it is enough to show
that the O patriwwg -modules

c0,z, R

Mo or(M(w-N)) and Moo o m (MY (w - X))
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are finite free. But these modules are Cohen-Macaulay with support the localization at
z of XA which is smooth. O

7.2 Recollection on Bezrukavnikov’s functor

The aim if this section (or even of the paper) is to identify the patching functor that
takes objects in Oyl (or more generally in Oglog) to Cohen-Macaulay modules on certain
Galois deformation rings with a functor constructed by Bezrukavnikov in geometric rep-
resentation theory (more precisely: with the pullback from our local models to the Galois
deformation rings). Before doing so, we will need to recall the result of Bezrukavnikov.

Recall that X = g xgg where g is the Lie algebra of G, = [[,ex(L xq, Resg, /g, GL»)
as in section and denote by X" the completion of X along the preimage of {(0,0)} €
t Xy tin X. Moreover, we write X = X x {0}, where the fiber product is taken
with respect to the map w1 : X — t of [4.1] that maps (¢B,hB, N) to ad(g~')(N)
(mod n) € t. As in the preceding sections we fix the shift

1-n
5 =det 2 6g € X*(T)

of the half sum of the positive roots dg.

Theorem 7.4 (Bezrukavnikov). Let A € X*(T') be a dominant character. There exists

an exact functor
B:0,, — Coh%(X"),

such that
1) for all M € Oy, the sheaf B(M) is a Cohen-Macaulay sheaf,
2) for allw € W there is an isomorphism B(M (wwp - \)¥) =~ Ox—,
8) for allw € W there is an isomorphism B(M (wwo - A)) ~ wg—,

4) the image B(P(wp - X)) of the anti-dominant projective P(wg - A) is the structure
sheaf O,

5) the image B(L(X)) of the algebraic representation L(X) is the line bundle O(—d )X
(9(—5’@) on G /B x G /B which is viewed as a closed subscheme of X" via a

(9B,hB) — (9B, hB,0).

This result is (a small part of a result) due to Bezrukavnikov and his collaborators
whose proof is spread out through the papers [Bez16, [BR12, [BL23, BR22]). For the
convenience of the reader, we explain how to get the result in the previous form.
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Proof. By the main result of [Bezl6], there are reverse equivalence of categories
U : Dyo o ¢+ DP(Coh(g xg §)) : @00,

which we can then localize on X C X. Up to use translation functors, we can fo-
cus on the case A = 0. By [Bezl6, Corollary 42 | the functor ¥ in fact takes val-
ues in (G-equivariant) coherent sheaves on X, when restricted to perverse sheaves
F € Pervn(G/B). Moreover, the Beillinson-Bernstein localization theorem, more pre-
cisely by [BG99] Localization Theorem 2.2, provides an exact fully faithfull embedding

of categories
Oy, — Pervy(G/N).

Composing the Beillinson—Bernstein equivalence with Bezrukavnikov’s functor (noting
that the blocks O,, and O,, are equivalent) we get the exact functor B.

Denote 1 = wp- A denote the antidominant weight in the dot-orbit of \. Now the proof
of [BL23, Proposition 5.8] implies that B(M (s-u)Y) = O for all simple reflection s and
B(P(1)) = O. Bezrukavnikov’s main result [BezI16, Theorem 1] implies that ¥ (hence
B) intertwines the convolutions on both sides. Here the convolution on the category
Oy, =~ O,, is inherited from the convolution in Pervy(G/B) defined as in [BR22, 7.].
We write w = $1...s, and compute convolutions on both sides. By [BR12, Theorem
2.2.1] we have

By [BR22, Lemma 7.7] we have M (w - u)Y = M(sy - pu)Y * -+ x M(s, - p)¥ and hence
B(M(w-p)") = Ox_. Moreover, by [BR12, Theorem 2.2.1] again, the dualizing sheaf of

X, is given by the convolution

* o vk

YX. T WX, WX,

But [BR12, Proposition 1.10.3] implies that the inverse of O« for the convolution is
wx, and as B is compatible with convolution, and as the inverse Cof M (s-p)V is M(s-p)
(agam using [BR22, Lemma 7.7]for example), we deduce wx— = B(M(s - p)). Finally 5.
is a consequence of [BL23| Lemma 6.7] (with P = G). O

Recall that we have fixed a point z € X, associated which we have defined the
positive integer m, in .

Corollary 7.5. The functor B induces an exact functor

B : Oy, — Coh(Xgr; R)

such that, for all M € Oy, the sheaf B,(M) is a Cohen-Macaulay sheaf and such that

Moo (M)] = my[B,(M)] € 20X 4%).
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Proof. Let G be the completion of G at the unit element. As the representations (py ),y
defined by the point x are crystalline and hence de Rham we may choose a basis a of
W(z) = [lyex War (Drig(pz,0)[1/t]) and define a point zpqr associated to x (or rather
to the representations (py),|p) as in @ For all M € O,,, the sheaf B(M) is a G-
equivariant sheaf on X" and hence gives rise to a G;-equivariant sheaf on )Z'xp ar- Now
by [BHS19, Theorem 3.4.4. and Corollary 3.5.8], see also Theorem above, we have a
diagram

qtri,[J
Xoo,x,R

Ny
qtri X/\

00,x,R TpdR*

More precisely, the map 7 forgets the deformation of the fixed basis «, and hence it
is a G;-torsor. Moreover, W formally smooth and G;-equivariant for the natural left
actions g-a := &og~! on the source (acting only on the deformation of the isomorphisms
ay : L ®q, Fy s W,) and g - (kB,hB,N) = (gkB,ghB,g ' Ng) on the target of W.

It follows that the pullback of B(M)?  at X,

ZTpdR TpdR
and hence descends to a coherent sheaf

along W is a G;-equivariant sheaf

B.(M) € Coh(Xxd™ ).

00,z,R
It follows from the construction that M +— By (M) and that B, (M) is Cohen-Macaulay,
as B(M) is. Moreover, B, is exact, as W is formally smooth and hence flat.

It remains to check the assertion on cycles. But as taking cycles is additive and B,
is exact, we only need to check this equality on a generating set of the Grothendieck
group of Oy, such as the Verma modules M (w - ). Hence the desired equality follows
from the previous result on Bezrukavnikov’s functor together with Proposition O

7.3 A detail study of local models when n = 3
From now on we assume n = 3, so that the group G; is

G1, ~ (Respgyq,/0, GLa) xq, L~ [] (L xq, Resp,jq, GLar,) ~ [[ GLs..

’UESP TEX R

We identify the previous local Weyl group W with [[. W, and each W, with Wgr,, ~ &3
and denote s1 7, 52 - the two simple reflection corresponding to the choice of the upper
Borel, and wg r = s1,752,,51,~ the longuest element in W;. If 7 is understood, we often
omit it from the notation.

As in section we denote by X the Steinberg variety for the group

G = Respegq,/0, GLa;

o8



over L. As L is assumed to contain all Galois conjugates of I we have X ~ [] x, X3 (see
Remarkfor the notation X3). The Steinberg variety X (resp. X3) has dimension 9/
(resp. 9) and 6/>~| (vesp. 6) irreducible components X, w € W (resp. X3, w € G3),
see e.g. [BHS19, Proposition 2.2.5].

Proposition 7.6. For w = (wr)ex,, let s = [{T € ¥p | wr = wo}|. Then the
component Xy, is smooth if and only if s = 0. Moreover, if s # 0, then the component
X s Cohen—Macaulay but not Gorenstein. More precisel, let

LpdR = (gﬁv hﬁ’ N) = (gTﬁTaNTa hTET) € Xw(L) = H XS,ZUT(L)a

TEX R

and assume that N, = 0 when w, = wg. Then
dimL WX, & k(IL'de) = 2T,

where r = |{T | w; = wo, and g; B, = h:B.}|.

Proof. The smoothness is a consequence of Proposition As X = [l en, X3, it is
enough to prove the analogous result for X3 only. Indeed, by base change and com-
position of upper shriek functors, the dualizing sheaf of X is a derived tensor product
®H; prwx;, where pr : X — X3 is projection to the 7-component. But as the product
X =1][, X3 is a product over a field, we find

*
wx = Q) prwxs-
T

Thus from now on we denote X3 simply by X.

It is thus enough to prove that the fiber of wx,, , is 2-dimensional at a point of the
form (¢B,0,9B). Let q : § — g denote the Grothendieck resolution, then X ~ G; x£
g1 (b). Moreover, Y := ¢~1(b) decomposes into irreducible components ¥ = U,ew Yo
such that X, ~ Gy, x2Y,,. Hence it is enough to prove that WYy, has fiber dimension
2 at the point ypar = (B,0). As X, is Cohen-Macaulay and flat over t (cf [BHSI9,
Proposition 2.2.3]), we have the base change formula wy, ®x X ~ o We are thus

reduced to compute the dualizing sheaf wy— of the irreducible component
wo

on = on Xt {O}

of Y = ¢~ !(n). This scheme now has dimension 3 and we can use explicit computations.

A point of Y(L) is of the form (¢B,N) € (G/B x g)(L). We use the embedding
G/B — P2 x (P?)V that sents a full flag (0 C £L C P C k?) to (L C k*,P C k?). In
homogeneous coordinates ([zg : 1 : 2], [yo : y1 : y2]) the condition £ C P is given by
Toyo + x1y1 + x2y2 = 0. Let ?0 C Y denote the open subset defined by the condition
xg = yo = 1. It is enough to compute on this open subset, as this is a neighborhood of
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the point ypqr = (B,0) = ([1:0:0],{0:0:1]). On 7" we can thus remove yo from our
equations. Let us write
0 w2 w3
N = 0 Uu23
0
for the universal matrix over Y . The ideal defining

40
Y, C Z = Spec(k[z1, T2, y1,u12, u23, u13))

is then given by
Ly, = (ugzxe, ui2(x2 + x1y1), w1221 + 1322, u23y1 — wi13(T2 + 1Y1))-

We remark that we can replace uia(z2+x1y1) by w229 —x 13221 using the third equation,
and that automatically y1ui2ues = 0 using our new equation and ua3y1 —u13(ze+1y1) =
0. We then check (e.g. using Macaulay2) that

A A A
0— 0% 05 =505 % 0y

is a resolution of Oz/I,,, where

a1 Y1u13 — U12 t
2y 0 T1u12 + T2U13
ToU9
AI _ Z1 Uu23 A// _ ¥
= 0 —UpoU93 ) = Y1u12u23
0 2ot T1y1u13 — Y1u23 + T2U13
T2Y1U13 — T2U12
0 T1U12 + ToU12

—T2uU23 —Yy1u23 0 T2 —Y1u13 0
Tiulz + T2U13 YUz —Yiui2 —y1 0 —Y1u13 + u12
A= 0 T o 0 1 0
0 0 0 — X9 U192 0
0 0 0 T U13 U93

Let i : ??UO — Z denote the canonical closed embedding. Then the dualizing sheaf can

be computed as w0 = *Extd, ((’)Y—OO, Oz) which is given by
wo w,

woo =~ 0%/ < (y1,y1u13 — wi2), (22,0), (21, u12), (0, wrguaz) >,

wQ

as Tougz = Tauiz + Tauiz = 0 on ?2,0. It follows that the fiber of W0 at Ypdr is
U}O

2-dimensional. O

Lemma 7.7. Let J C Agr,.

60



1. For w € W(GL3) ~ &3 the component X3 ,, is smooth if w # wy.

2. If xpar = (9B3, hB3,0) € X34, (L), with gB3 # hBs, then xpqr s a smooth point
Of X3,w0'

3. For 0 # J C Aqgr, = {s1,s2} the component X3 ;i is smooth for any W €
WAWaL, -

Proof. Point |1]is Proposition For the point |2, denote w’ the index of the Schubert
stratum in which x,qp lies. By [BHS19, Proposition 2.5.3(ii)] it is thus enough (as
Uy, = GL3 /B3 x GL3 /B3 is smooth) to prove that codim(t“0®'~1) = Ig(wp) — lg(w’).
But this codimension is what we have denoted ¢ (wow/_l) in the proof of Proposition
Asw' # 1and n = 3, wow ! is a product of distinct simple reflections thus E(wowl_l) =
lg(wow'~1) = lg(wy) — lg(w'). For point 3| as n = 3 we have that J = {s1},{s2} or
J = {s1,s2}. Denote P = P;. In the case J = {s1,s2}, then P; = GL3 and X3 ;7 =g
is smooth. It is sufficient to prove the case of J = {s1} (the other case is exactly the
same), where an explicite computation gives the smoothness (alternatively, when w™"
has length < 1, [BD| Corollary 5.3.4] also implies smoothness). O

Corollary 7.8. Let w = (w;)r € W and let I =[], I C A. Let xpqr = (Tpdr,7)r =
(9:B,,h:B., N;) be a point such that N; = 0 whenever I, =), w, = 1. If

MOO,LB,R(MI(wmin : )‘)) (T’@Sp. Moo,x,'R(MI(wmin : )\)\/))’

min

[auiw " _module, then there exists an embedding T such

is not a finite free over X,
that I =0, wy =1 and wy g = 1.

Proof. Assume that there is no 7 such that I, = ) and w, = w; g = 1. Lemma
then shows that the local model X7 is smooth at zpqr. By the support

yl-atriwwo _ supp Moo7x7R<]\7[(w N)

00,z,R

is smooth. Thus Moo s = (M(w - A)) is a free of rank m, over XL 9hwwo By Remark

00,x,R )
its follows that Mo o = (M7(w - A)) is a free of rank m, over ?i;gf%’wwo,
The same argument also applies to Moo,w?R(M[(w “A)). O

Proposition 7.9. For all w € W the sheaf By(L(w - X)) is cyclic. Moreover, for all
w € W such that wwy > wy g the sheaf Moo(L(w-N)) is free of rank my over its support.

Proof. Recall that, for w € W, Z, is the closure in N x N N of the preimage V,, of
the Bruhat Cell U, = G;(1,w) C G,/B x Gr/B. By [CG10l Prop. 3.3.4], V,, can be
identified with the conormal bundle of U, in N x N ~ T*(G,/B x G, /B). As g is
isomorphic to direct sum of copies of glz, the closure U, of U, in G; /B x G /B is
smooth, hence a local complete intersection. This proves that the conormal bundle of
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U, is a closed smooth subscheme of N xN containing V,, as an open dense subset so
that it coincides with Z,, and Z,, is smooth. This implies that 3, is a smooth. As
Mo 2R (L(wwg - A)) is Cohen-Macaulay, it follows from Proposition and from the
fact that a,, v = 0 for w # w’ (see [BHS19, Rk. 2.4.5]) that the sheaf M » = (L(wwg-\))
is locally free over its support. O

7.4 The case of dual Vermas

For later use, let us recall the following Lemma.

Lemma 7.10. Let R be a commutative local ring and let I C J two ideals of R. Let m >
landm: (R/I)™ — (R/J)™ a surjective R-linear map. Then there exist isomorphisms

o (R/I)™ — (R/I)™, b (R/I)™ — (R/I)™
such that p o™ = 7o) = can®™ where can : R/I — R/J is the quotient map.

Proof. Let (e1,...,en) be the standard basis of (R/I)™ as an (R/I)-module and (f1,..., fm)
the standard basis of (R/J)™. Then (7(ey),...,m(em)) is a generating family of (R/J)™.
As a surjective endomorphism of a module is bijective, we see that (mw(e1),...,7(ep)) is
also a basis of (R/I)™. Therefore we can define ¢ by the formula ¢(7(e;)) = f;. Now, for
any 1 <i<m,let f/ € (R/I)™ such that 7(f/) = f;. By Nakayama Lemma the family
(fi,.-., f,) generates (R/I)™ and so is a basis of (R/I)™. We can therefore define 1)
by the formula 1 (e;) = f/. O

We will use the previous Corollary to start a devissage which will be assured by
the following two Lemmas.

Lemma 7.11. Let M be an object of Oy, and let Q1,...,Q, be quotients of M. Let Q)
be the smallest quotient of M dominating all the Q;, i.e. @ = M/(MyN---N M,) where
M; = Ker(M — Q;) for 1 <i<r. We assume that

(i) for any 1 < i < r, the sheaf Moo o =(Qi) is free of rank m, over it support;
(ii) for any 1 < i < r, the sheaf B(Q;) is cyclic (generated by one element);
(iii) for any 1 <i <7, Supp Moo r(Qi) = Supp By (Q;) ;

(iv) the sheaf B, (Q) is cyclic.

Then the sheaf M 2= (Q) is free of rank m, over its support and

Supp(Mz,0o,r(Q) = Supp(B:(Q)).

62



Proof. To ease notation we note m = m;. Let’s prove the result when r = 2. Let
A= ngj;ﬁ be the ring of global sections of fng;ﬁ and let I; = Ann(B,(Q;)) for
i € {1,2}. Define Qg the largest common quotient of @1 and Qq, i.e. Qo = M /(M;+ M>).
Then we have a short exact sequence

0 —Q —=Q1®Q2s— Qo — 0.
By exactness of M, » =, we have a short exact sequence
0— Moo,x,R(Q) — Moo,x,R(Ql) @ Moow,R(QQ) — Moow,R(QO) — 0

where the map Q1 ® Q2 — Qo is given by (z,y) — = — y.
We fix isomorphisms (A/;)™ = Ms» 1 (Q;) for i € {1,2}. As Qo is a quotient of

both @)1 and )2, we have surjective maps

(A/Iz)m — Moo,x,R(Qz) — Moo,x,R(QO)a
which factor through (A/(I; + I2))™. Using Lemma we can choose the previous

isomorphisms such that the following diagram commutes

(A/I)™ @ (A)I)™ S0 A0 4 Lym —— 0

p i g

Moo,a:,’R(Ql) @Moo,x,’R(Q2) — Moo,x,R(QO) — 0.

As the kernel of the upper horizontal map is isomorphic to (A4/(I1 N I2))™, we obtain a
commutative diagram

0 —— Moo,z,T\’,(Q) O Moo,z,R(Ql) EBMOO,JC,R(QQ) I Moo,x,R(QO) — 0.
(10)
As Ann(B,(Q)) = I1 N I and B,(Q) is cyclic, there exists an isomorphism B, (@) ~
A/(I; N I). Moreover, by hypothesis, we have Supp(B,(Q;)) = Spec(A/I;) so that the

maps A/(I1 N Is) ~ B,(Q) - B.(Q;) factors through isomorphisms A/I; ~ B,(Q;).
Therefore, by exactness of B,, we also have a commutatif diagram

0 —— (A/(I N 1) 0% (a/n) @ (A/I)

5 ;

0 —— B(Q) ———— B(Q1) @ Bx(Q2) —— B, (Qo) —— 0.

This implies that we have an isomorphism A/(I; + I2) =~ B;(Qo). As B,(Qo) is Cohen—
Macaulay, so is A/(I1 + I3). As the ring A/(I; + I) is Cohen—Macaulay, the vertical
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right arrow of diagram (9)) is a surjective map (A/(I1 + I2))™ = Moo2.r(Qo) between
two Cohen—Macaulay modules with the same cycle by Corollary It is therefore an
isomorphism and the Snake Lemma allows us to conclude that the left vertical arrow in
is an isomorphism.

Assume that the result is proved for some integer r > 2. Let Q1,...,Q.11 be
quotients of M satisfying the hypotheses of the Lemma. Let Q" be the smallest quotient
of M dominating all the @; for 1 < ¢ < r. Note that B,(Q') is a quotient of B,(Q)
and is therefore cyclic. By induction, Mu  =(Q’) is free of rank m over its support
and Supp Moo » r(Q') = Supp B;(Q'). The quotient @ is now the smallest quotient of
M dominating Q" and Q,41. Therefore the case r = 2 implies that Mo » z(Q) is free
of rank m over its support and Supp Muo o 7(Q) = Supp B, (Q), which concludes the
induction. O

Lemma 7.12. Let M be an object of the category O,,. Assume that Mo » = (M)
is generated by m, elements and By(M) is cyclic. Then Mq (M) is locally free
of rank mgy over its support, its support is Cohen—Macaulay and Supp Moz (M) =

Supp B (M).

Proof. We prove the result by induction on the length of M. If M is simple this is done
in Proposition [7.9} Thus we can assume that we have a short exact sequence

0—L—M-—7—Q—0

with L simple such that My, =(L) # 0 and that the result is true for Q. Let I =
Ann(Meo o 2(M)), Ip = Ann(B,(M)), J = Ann(B,(Q)) and K = Ann(B;(L)). Then
we have two short exact sequences

0 — B,(L) — B,(M) — B,(Q) — 0
0 — Moo r(L) — Mooz R(M) — Moo »r(Q) — 0.

The first exact sequence shows that ﬁoo,x /K ~ J/Ip sothat Ip = JK. The second exact
sequence shows that Ig C I. Therefore, as My 5 =(M) is generated by m, elements,
we have a surjective map

By (M)" ~ (Eoo,m/IB)mz - MOO,J:,R(M)-

These modules are both Cohen—Macaulay of the same dimension with identical associ-
ated maximal cycle by Corollary [7.5 therefore this map is an isomorphism and Ip = I.
Moreover as My 5 »(M) is Cohen-Macaulay, so is its support. O

Theorem 7.13. For anyw € W such that wwg > wy r, the coherent sheaf Moo » = (M (w-
M)V s locally free of rank my over its support.

Proof. As M(w-\) is a quotient of M (\)V for any w € W, Lemma implies that it
is sufficient to prove the result for w = 1.
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Recall that W = [[,.p,; Wr and write wy, g = (wz-). Let J C Hom(F,L) be
the set embeddings such that w,, = 1. Let E be the set of elements w = (w,) € W
such that w, € {s1,s2} if 7 € J and w, = 1 if 7 ¢ J. By Corollary and Lemma
for w € E, the module My, »(M(w - A)¥) is free of rank m, over its support
and Mooz (M (w - AN)Y) = By (M(w - \)¥)™. Let Q be the smallest quotient of M (\)Y
dominating all the M (w-A)Y for w € E. Lemma [7.11]implies that M » = (Q) is free of
rank mg over its support and My 5 2(Q) = Bz(Q)™*. Let N be the kernel of the map

Let I of the form [, ;{si, } where i, € {1,2}. Then the image of the map M(\)¥ —

MY = Qs Qr = Krey L(ss—i, - Ar) Ky M(Ar)Y. By Corollary the module
Moo o r(Mp(X)Y) is free of rank m, over its support. Thus Mo » =(Qr) is generated
by m, elements, and its quotient

Ly = [X]7 € JL(s3i, - Ar) ® % M (wy 7wo - Ar)Y,

satisfies

Moo,x,R(LI) = Moo,x,R( & L(S?)—i-,— : /\7') X & L(wz,rwo : )\T))
TeJ T¢J

by Proposition [7.2l Moreover, by Proposition [7.9] this module is free of rank m, over
its support so that its fiber at x has dimension m,. This implies that the following
surjective maps are all isomorphisms

k()™ ~ Mooz r(Mr(N)Y) ® k(7)) = Mooz r(Qr) ® k()
S Moo ar(Lp) @ k(z) ~ k(z)™.

As moreover Ker(Mj(\)Y — Qr) = N N M;(\)Y, we see that the map
Mooz R(NNM(N)Y) @ k(z) — Mooz r(M(N)Y) @ k()

is zero. As M ()Y is multiplicity-free, we have N = Y ;(N N M;(A\)Y) and we conclude
that the map
Mooz mR(N) @ k(z) — Mooar(M(N)Y) ® k(z)

is zero. Therefore Mooz R(M(N)Y) ® k(z) ~ Moo r(Q) ® k(z) ~ k(z)™ and we
conclude with Lemma since B (M (X)) is cyclic. O

7.5 The case of the antidominant projective

Theorem 7.14. The coherent sheaf Mooz r(P(wo - X)) is free of rank my over its
support.

Proof. Recall that A = U(t)y and set D := L ® 4w A. By Proposition the action of
Z(g) on P(wp-\) induces a structure of D-module on P(wg-A). As M(A)Y is an injective
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object, it follows from [Soe90, Prop. 6], that M ()Y ~ P(wy - \) @p (D/mp), where mp

is the maximal ideal of D. We have also a local map of local algebras a: D — qum
o0,z,R

defined in section [6.3] It follows from Corollary [6.14] that these define the same action
of D on Meozr(P(wo - A)). As moreover the functor Mo,z is exact, we have an
isomorphism Mg o R (M (N)Y) ~ Mooz R(P(wo - A)) ®p (D/mp). As moreover the map
AR w A — O?qtri is a local map of local rings, we have an isomorphism M 2 r (P (wo-

co,x, R
A) @ k(z) = Moo or(M(A)Y) @ k(z) and thus dimy, Moo 5 2 (P(wo - X)) ® k(x) = my
by Theorem We conclude by Lemma [7.12] O

Corollary 7.15. Let Q be a quotient of the anti-dominant projective P(wq - \) in the
category Oy, . If Moo 2 r(Q) # 0, then it is finite free of rank m, over its support and
its support is Cohen—Macaulay.

Proof. As Moo 2 r(P(wp - X)) (resp. By (P(wp - A))) is free of rank m, (resp. 1) over its

support by Theorems and we have that Mo » =(Q) (resp. Bz(Q)) is generated
by at most m, elements (resp. cyclic). It follows from Lemma Mooz R(Q) is free
of rank m, over its support and that its support is Cohen—Macaulay. ]

Corollary 7.16. For all w € W, the coherent sheaf
Moo,a:,'R(P(w ' )\)\/)’
s free of rank my over its support.

Proof. By Corollary it is sufficient to prove that My » = (P(w - A)Y) is non zero
and that there exists a surjective map

Pwy - \) — P(w-A).

As P(wq - A) is the projective envelope of L(wg - A), this is equivalent to showing
that the socle of P(w - \) is isomorphic to L(wq - A). By [Str03] Thm. 8.1], the socle of
P(w - A) is isomorphic to L(wg - A\)™ with m = [P(w - A) : M(A)] = [M(A\) : L(w - \)]
by [HumO8, Thm. 3.9]. As g is isomorphic to a direct sum of copies of gl ;, we have
[M(A) : L(w-X\)] =1 for any w € W.

Moreover, as [M(\) : L(\)] = 1, we have
[P(w-A)Y : LA)] = [P(w-A): L\)] = 1.

As Mooz R(L(N)) # 0, we have Moo » (P(w - \)Y) # 0. O
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7.6 Duality

qtri

. . . =5qtri
coz,R Of dimension dim &

00,x, R’

For a Cohen-Macaulay sheaf 7 on X we write w%qm

c0,z, R

for the dualizing complex and set

FY = RHomgqs (F,whe )[—dim .

00,z,R
Xoo,a:,R co,z, R ’7

This complex FV is a coherent sheaf concentrated in degree 0 to which we refer to FV
as the shifted Serre dual of F.

Lemma 7.17. Let F be a mazimal Cohen—Macaulay coherent sheaf over ?2?;73 Then

[FV] = [F]. As a consequence if Y C ?ﬂjff;R is a maximal Cohen—Macaulay closed
subscheme, we have [wy] = [V].

Proof. Let R be local complete regular ring such that O—qwi  is isomorphic to a quo-

7,
tient of R. Then we can compute JF V by the formula F¥ = Ext%(F, R) where d is the
codimension of ?EK;R in Spec(R). By definition, we have [F| = }°, a(z)z where the
sum is over all maximal points in Supp(F) and a(z) is the length of the finite length
R.-module F,. Let z € Spec(R) be a maximal point of the support of F. The lo-
calization R, of R at z is a local regular ring and we have F, ~ Ext%z (F., R,). As
Ext‘li%z(—, R.) is a an exact functor on the subcategory of finite length R.-modules and
dimy,(. Ext‘}l%z(k(z), R.) =1, the length of the R.-module Exthz (F., R,) is a(z). So we
have the proved the claim. ]

Proposition 7.18. Let M be a subobject of the anti-dominant projective P(wg - \). As-
sume that Mooz r(M) # 0 and let Y be the support of Mooz r(M). Then Moo o r(M)
s isomorphic to w?” and Y is Cohen—Macaulay.

Proof. Let @ be the quotient of P(wq - A) by M. If Mq »=(Q) = 0, then Theorem
m implies the result. So we can assume that My »(M) # 0 and Mo » =(Q) # 0.
By Corollary [7.15, M » =(Q) is isomorphic to O%* for Z C X,

qtri .
co,z,R Maximal Cohen—
Macaulay. Using Lemma [7.10, we can construct a commutative diagram

0—— Moo,x7R(M) — Moo,x,R(P(wO : /\)) — Moo,x,R(Q) —0

0 Ker oM. ew™ L ome g

co,z, R

Let I be the ideal defining Z. As ?;ff;n and Z are Cohen-Macaulay of the same
dimension, the involutivity of the duality implies that we have I ~ wp,, where Y =
Supp(/) so that we have the result. O
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Theorem 7.19. For all w € W, with wwy > wy R, the sheaf Moo R(M(w - X)) is
isomorphic to

(g™

)

Proof. Tt follows from Propositions and that Mooz r(M(w - \)) =~ wy* where
Y = Supp Mooz (M (w - A)) is Cohen-Macaulay. However it follows from Theorem

that Y C Ao, By Lemma we have an equality [wy] = [V] and it

00,z,R

follows from Corollary [7.5| that [Mog » (M (w - X))] = my [?2;‘“;%“0] Therefore we have
V] = [XL%"] and thus Y = Xoo 2™ O

We choose for all A dominant weight, and all w € W a surjective map m,, : P(wy -
A) — P(w - \)Y (see proof of Corollary [7.16]).

Lemma 7.20. For all map fu. : P(w-\)Y — P(w' - X)Y there exists a map fmw/ :
P(wg - A) — P(wg - \) such that the following diagram commutes

Plwg - A) — Pw - \)

bl w

Plw-A)Y 25 )Y

Proof. As my @ P(wg - \) — P(w' - \)V is surjective and P(wg - \) is projective, the
map Hom(P(wp - A, P(wo - X)) — Hom(P(wo - A), P(w’ - \)¥) is surjective, thus there
exists fy, v mapping to fy, . o m,. This proves the claim. O

Lemma 7.21. Let F be either B, B, or Moo o r. There exists a family of isomorphisms
indexed by w € W
Uyt F(P(w-A)Y) = F(P(w- X)),

such that for any w,w' € W and any if fyu @ P(w- )Y — P(w' - \)Y, the following
diagram commutes

}-(fw,w’)
—

F(P(w-A)Y) F(Pw' - A)Y)

J‘I’w J\pw, (12)
FGY )Y
F(P(w- )Y —— F(P(w"-\)Y

where we denote by the same symbol (-)V the duality in O and Serre duality on coherent
sheaves.

Proof. Let w € W. The sheaves F(P(w - \)¥) and F(P(w - \))Y are isomorphic to
the same quotient of F(P(wp - A)) by Theorem for B, B, and Corollary and
Propositionfor M.z r- This implies that there exists an isomorphism ¥, : F(P(w-
A)Y) = F(P(w-\))Y such that the following diagram commutes
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F(P(w- ) —2 F(P(uwo - \)"
lfm) lf(ﬁ;)v (13)

F(P(w-\)) —22 F(P(w-\)Y

Fix w, w" and let’s show that the diagram is commutative. Let f,, v € Hom(P(w-

AV, P(w' - \)V). By Lemma there exists a map fy, v € End(P(wp - A)) such that
the diagram is commutative. We first consider the following diagram

F(P(wy - N)) —225 F(P(wp - \))
|7 |70 (14)
Wy
F(P(wo-\)Y) —= F(P(wpy-\)Y
But as fw,w/ € Endp(P(wo - A), P(wg - A)) ~ D = L ®@,w A, it follows from Corollary

for F = Mooz and [Bezl6l Prop. 23] for F = B,, and the fact that ¥, is
O yari-linear, that this diagram commutes. Now consider the diagram

co,z, R

F(rY,)V
F(P(wo - A)) o) F(P(w' - )Y
Ug T U
F(P(wo - \) - ) F(P@! - 0)Y) P
FOL Y
~ F(m)Y
F(Fuou) F(P(wp - \)) () F(P(w-\)V
\I’wO ]:(fw,w/) /
Wy
F(P(w - N)) ) F(Pw - \)V)

All faces, except maybe the right hand one (which is the one of the statement), of
this cube are commutative diagrams by functoriality and diagrams , , .
Moreover F(my), F(my)Y, F(mw), F(ml)Y are surjective, thus the last right hand face
also commutes. O

Corollary 7.22. For any M € Oqg, there is a compatible choice of isomorphisms

Uy F(MY) = F(M)Y,
where F is either the functor B,B; or Mu oz r- In particular, F is compatible with
duality.

Proof. Choose a resolution

P P(ui) — P P(N;) — M — 0. (15)

J
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Then we have two exact sequences

0— F(MY) — @]:(P()\j)v) — @f(P(Mz‘)V),

and
0 — F(M)" — P FPN) — PF(Pm)".
j i
For the second one, recall that if K denote the Kernel in equation so that

0—K-—@PH) — M-—0,
J

then, as F(K) is CM of the same dimension as the other modules, we have
0— F(M)Y — @ F(P(N))" — F(K)Y — 0,
J

which is exact. Moreover, by the previous Lemma we have a commutative diagram
with vertical isomorphisms

0 —— F(MY) —— @, F(P(\j)V) —— @, F(P(1:)")

‘/@j U, l@l Ty
0 —— F(M)" —— &; F(P(N)) —— @i F(P(i))"

which induces an isomorphism Wy, : F(MY) — F(M)". O

Corollary 7.23. There exists an isomorphism of functors B'* ~ Mu o R.

Proof. By a similar argument to the proof of Lemma [7.2I] we can construct a family
indexed by w € W of isomorphisms

(I)w : Bx(P(w : )\)\/)mz ;> Moo,x,R(P(w ’ )\)\/)

such that, for any w,w’ € W and any [y . € Hom(P(w-\)Y, P(w’- )V, the following
diagram commutes

Bo(fu
By(Plw)¥yme o) g (plaf - 2)Y)

¢ o
Moo,a:,R(fw’ /) , v
Moz r(P(w-N)Y) — 7\/1007I7R(P(w “A)Y).

Such a family of isomorphisms provides an isomorphism of functors between BI'* and

Mo 2 = restricted to the full subcategory of Oy of injective objects. As the category Oy
has enough injectives, this isomorphism extends to all of O,. ]
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7.7 Consequences

In this section we keep the setting introduced in subsection In particular n = 3.

Lemma 7.24. Let p,\, R be as above and let x € X (L) the point corresponding to p.
Then for all M € O,,,

!/

a 0
Moo R (M) @ k(w) ~ (Homys(g) (M, T [m,])N [ms,])
Proof. By construction (see Remark , we have

!/
Moo m(M) = (Homysg) (M, T2 [m) Vo [m2])
By Corollary the X x T-structure on the sheaf Mooz R(M) factors through
xdm L X x T. Thus,

Moo (M) ® k() ~ (Homp (g (M, T2 [my]) Vo [ms, ) 0

Corollary 7.25. Let § : T — L* be a continuous character and let x° : T — L be a
character such that there exists f € ST(KP)[x® ® 6] an overconvergent p-adic eigenform
on the group U(3). Assume that the Galois representation p associated to f is crystalline
strictly dominant and p-generic at p satisfying . Let r = {1 € £ | wyrr = 1}|.
Then

dim ST(KP)[x® ® 6] = 2" dim S (KP)[x° ® 8] # 0.

Proof. The assumptions imply that the character ¢ is locally algebraic and that it factors
as § = 0\0r for some A\ € X*(T)" and some unramified character dg. By Breuil’s
adjunction formula [Brel5l Théoreme 4.3] (see also [BHSI9, eq. (5.5)]) and [BHS19,
Lemma 5.2.3] we have

STEP) [P © 8] = Homy(g) (M (V) IT*[x°]) Y0 [ms ],
SYUEP)[x” @ 6] = Homyg) (L(A), T [x]) 0 [m .

In particular, by Lemma [7.24] these spaces are indentified with the dual vector spaces of
the fiber of Mo » R (M (X)) resp. of Moo » R (L(A)) at k(x). Thus, as my, = dim Mooz = (L(A))®
k(x), the result is a direct corollary of Theorem (and Proposition [7.6)). O

We can also deduce the following corollary on the structure of the completed coho-
mology II (see Definition , which is a representation of G := U(Q,). Let gl be the

Lie algebra (over L) of the group GL3 and for a dominant A\ we consider the extension
N(A) = [L(s1-\) @ L(sa - \) = L(\)] € Exty(L()\), L(s1 - A\) @ L(sa - \)),

which is non trivial when mapped in each of Exty(L(N), L(s; - ), for i = 1,2. This
extension is the quotient of the Verma module M (\) by M (s1s2 - A) + M (s2s1 - A).
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As before we consider the Lie algebra

g = Lie(Gf, ~ (Respgy0,/0, GL3) xq, L)~ ][] b

’TEZF

with Borel b ~ []_b,. Associated to a dominant weight A\ = (\;), € X*(T)* and
wR = (WR +)rex, € W we define the object

N(A,wmz( X e X Nm)

TwR, +#1L TwR =1

of the category O,, = X, Ofclf’bf. We also define

)\ ’LUR &S )\’T)wRT OX)\?

where
®w<w7z,7—wo L(w ’ )‘T) if WR,r #1

S(Ar,wrr) = . )
( R, ) { @Z(w);ﬁl L(’UJ . )\7—) @N()\T) if WR,r = 1
so that S(\, wr) = @ycwruw, L(w - A) if wg # 1 for all 7, and

N()\, wR) (- S(/\, wR),

otherwise.

If M is a U(g)-module, we denote Hompg (M, E) the U(g)-module with underlying
vector space Hompg (M, E) and action of v € U(g) given by

(v-@)(m) :=¢(tm), ¢ € Homg(M,E),m e M,

where v +— t is the anti-involution of U(g) extending —1 on g. We denote B the
Borel opposite to B, whose Lie algebra is b with @ its nilpotent radical. We then
denote B = B(Q,),B = B(Q,) and §p the modulus character of B. We then de-
note M’ := Hompg(M,E)"™ the vectors which are killed by a finite power of . If
M = @xex+m), Mx € O%° then M’ € O%°. Finally recall that if M € O%° and § is a
smooth character of T'(Q,), then Orlik-Strauch constructed (see [OS10] or also [Brel6])

G
FE(M’ 5)a

which is a locally analytic representation of G. In particular, locally analytic principal
series are of this form : if M = M()\)Y € 0% then
FS((MN)YY,6) = indS(6,0)™. (16)

Let p : Galp — GL, (L) be a crystalline, Hodge-Tate regular and ¢-generic autod-
ual representation satisfying Hypothesis such that IT[m,] # 0 where m, is the ideal of
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T® @ L associated to p. Let R a choice of refinement and dg the associated unramified
character. Denote A = (\;); :== HT(p) — dq¢ € X*(T)* the (dominant) algebraic charac-
ter associated to p as before, where HT (p) = (h17 > -+ > hp7)rexn, € X*(T) gives the
Hodge-Tate weights of p. As II[m,] # 0 and p satisfies Hypothesis , it corresponds to
a point x € Xoo(L). Denote wyr = (wp,R,r)rexn, and m, :=m, > 1 as in Section

Corollary 7.26. For p, A\, R as above and all w < wrwp, we have

dim Homg(ind%(éw.ﬁnégl)la, M [m,]) = m,.
Proof. By [Brel5, Proposition 4.2] and [BHS19, Lemma 5.2.3|, we have, for all M € O

0 _
Homys(g) (M, 1% [m, ) [ms, ] ~ Homg(q,) (Fa(M',6r65"), 1% [m,))
= Hom(gﬁp)(M ®r C(Np(L),6r), I[my]).

Thus, using equation and Lemma we deduce that the statement is equivalent
to

dim Homy gy (M (w - A)", % [m,)[ms] = dim Moo, 2(M(w - \)Y) @ k(z) = my,
which is Theorem [T.13 O
Corollary 7.27. For p, \, R as before, we have an injection of (g, B(L))-modules

(SO\wp ) @1 CX(Np(L), )%™ < 1%, .
or, equivalently, an injection of G-representations
FE(S(\ wpr), drdp")¥™ C [m,].
Moreover each map from fg(M(w -\, 6r05") to M[m,] factors through the previous

representation fg(S’(}\, wor), OROG).-

Proof. The two statements about injections are equivalent and each of the m, asserted
maps comes from a section of

Homm(g) (SO, wp,r), I [m, )N [mgy ],

by the adjunction recalled in the proof of the previous corollary.

We already know, by [BHS19], that for all w < w, grwg we have, in previously used
notations .
dim Homg; gy (L(w - A), M [m, )V [ms | = ma = m,.

Moreover, for each w, rwo > w with w,r » # 1 if w; = 1, we have
. 0

m, = dim Homg; gy (M (w - A), % [m, )V [mys,,]
NO

= dim Homyyg) (L(w - A), I [mp])™ [may ],
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by Corollary Thus, for those w, all maps from M (w - A) factors through L(w - A).

So we really need to take care of the direct factors of S(A, w, =) where a factor N(A-)
appears. Such a factors is of the form

X Lw: AR N(A), S=LUl,

Tely Tels

and is a quotient of M (w-A) where w = (w;) with w; = 1if 7 € I3, and even of M(w-\)
where I = { s1 ;|7 € I; such that w, =1=w,xrr}.

We first prove that any map from M;(w - A) has to factor through S(\,w, %) and
more precisely through the previous factor.

Choose 19 € I so that wyr . = wy = 1 and for i = 1,2 let s]° € W with

(s1°)7 = w, = if 7 # 19, and w,, = s;. Then

M](SZO . /\) C M](w . )\)

Moreover, M;(s]° - A) has a quotient

QP ==X LO)RL(si - Ay) B X M(w, - Ar),

Tel TEI2:TH#T0

and we first prove that maps from M;(s[° - \) into I1'®[m,] factors through Q°. This is
equivalent to proving that Moo (M (s]°)) @ k(z) — Moo o r(M(N)) ® k(z) factors
through Mo » r(Q]°) ® k(z). By Corollary this is equivalent to the same question
for B,.

Claim 7.28. If G = G1 x G2, A = (A1, A2) is an algebraic weight and O, = OX>\1 &OXAQ,
then
Ba(M; X M) = Bg, (M) X Bg, (Ma),

where By is Bezrukavnikov’s functor of Theorem [7.4] for the group H, under the obvious
isomorphism of Steinberg varieties

XG = XG1 X XGQ.

Proof. This follows from the very construction of Bezrukvanikov’s functor. The functors
Bg is even defined on the larger category D°(Pervy(G/N)) and compatible with its
monoidal structure. Then, by Theorem [7.4] we know that dual Vermas are sent to
the structure sheaves of the respective components by Bg, and similarly for Bg,. In
particular we have an isomorphism

Bo(M((wy,ws) - (A1, A2))") = By (M (wy - A1)Y) B Bay (M (w2 - A2)").

As the functors B and Bg, X Bg, are both monoidal and triangulated, using translation
functors we deduce that Bg and Bg, KB, are isomorphic on projective objects. Thus by
the same proof of Lemma and Lemma we deduce the isomorphism of functors
on Oy, . O
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So we want to prove that By(M(s]® - X)) @ k(z) — By(Mi(w - X)) ® k(x) factors
through Q°. By the previous claim, it suffices to show one 7 at a time using M (s]°-\) =
M(s; - Ary) W Mp(w™ - A™). Thus when 7 # 79 this is obvious for 7 € I and reduces

to freeness of X3, when 7 € I; as before. For 7 = 79 this amount to show that, for
k # ¢ € {1,2} the map

By (M (sgsp - Ary)) @ k(z) — Bp(M(s; - Ary)) @ k(z),

vanishes. But as B, (M(s; - A,)) is free of rank 1, this is obvious. Thus, we have a
factorisation through Q7° for all 79,7 = 1,2, thus

Mooz r(Mp(w - A)) @ k(x) = Moo 2 (M) ® k(z),
where

M= X LB X MO)/(M(sisa-Ar) + M(sas1- ).

: : =1
TWp R+ 71 TW, R,r NOw)

Now we prove the last part of the statement, i.e. any map from (the Orlik-Strauch
induction of) a Verma M (w - A) to II'*[m,] will factor through S(A, wg). Assume given
a map in Homyg g (M (w- A), IT2[m,])¥" [ms, ], and let I; = {7 € Sjw,r,r = w, = 1} and
I its complement, then by the previous argument the map factors through

X L(w- - Ay B X N(A).

Tely Tels

As any quotient of this module is a sub-representation of S(\, w, ), we have that any
map
FS(M(w - \)*,0r05") — I[m,]

factors through ]:g(S()\, woR)*, 0RIZ).

We now prove the injective part. As S(A\,w, ) is the direct sum of terms of the
form, for w € W,

M1z, = X Lwr AR N(A,), T =1LUD,

Tely Tels

where Iy C { 7 € ¥|lw,rr = w, = 1}, we first prove that the direct sum of m, copies
of (the Orlik-Strauch induction of) each term M, j, 1, injects in T [my]. First remark

dim HomU(B) (Mw711,12 ) m [mp])[m572] = 2|I2|mp7

by the previous factorisation of Mj(w - p) for some I C I; and the computation using
B, (and using Proposition [7.6). Now each quotient of My, , s, is of the form

My s \J = & L(wr - Ar) X |X| N(Ar),

TeLUJ rel\J
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for some J C I (remark that if 7 € Iy, w, = 1), and thus
dim Homys(g) (My, 1,010 T [mg]) [ | = 21207l

We deduce that the dimension of homomorphisms modulo those which factors through
a strict quotient is

2|12\mp _ Z (_1)|J|+12|12|*\J\mp =m,.
0£JCI2

In particular there are m, independent injective maps from Fg(M{“ .1y OR) tO I,

Now when w and Ij, Iy varies, these objects have distincts irreducible in their socle.
Thus the direct sum of all those maps

B FEM, 1, 00)5™ = FE(S(N, w,r), 0rd5") "™,

w,I,I2
injects into IT[m,). O

Remark 7.29. In particular, for each 7 such that wr » = 1 we deduce the injection of
the locally analytic representation

Fg (N(A-)',0r,705) = [LAs, & LA,, — LALG],
as representation of GL3(F}) (acting through 7), where
LALG := L()\;) @ ind%" (6r +65"),
is an irreducible locally algebraic representation which appears in cosocle, where
LA, = F57(L(s - Ar)', 6R.r85))
is the irreducible, non-locally algebraic, socle of the locally analytic principal series
LA, C ind%: (5S'A75R,76§_})1a.

In this case, the locally algebraic representation LALG appears with multiplicity m, in
the socle by the main result of [BHS19], but also with multiplicity m, as an higher order
Jordan-Holder factor, namely, in the cosocle of the previous fg* (N, (57377(5;?}).

8 Existence of very critical classical modular forms

In this section we show the existence of a classical form f satisfying the hypothesis of
Theorem|[I.2] The main difficulty is to find a form satisfying the Taylor-Wiles hypothesis,
which is moreover completely critical at p (i.e. w,, z = 1).
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For a finite extension F' of Q,, we denote by recp : F* — Galj‘pb the local reciprocity
map sending a uniformizer of F' on a geometric Frobenius. If K is a number field we
denote by Artg the Artin reciprocity map Ay /K* — Gal?}) such that, for any finite
place v of K the precomposition of Artx with the inclusion K < Ay is recg,. If ¥ is
a character of Aj;/K* and v is a finite place of K such that U, is unramified, we write
U(v) for the evaluation of ¥, at an uniformizer of F,*. First, we remark the following,

Lemma 8.1. Let K/Q, be a finite extension and let p, : Galg — GL,(Q,) be a
crystalline representation with reqular Hodge—Tate weights such that there exists a Te-
finement Fq C Deyis(pp) which contains the Hodge filtration. We moreover assume that
the eigenvalues of the linearization of the crystalline Frobenius on Deis(pp) are pairwise
distinct. Then py, is a split sum of characters.

Proof. This is a simple application of weak admissibility. Up to extending scalars, we
can assume that D = Dis(pp) = @, D7 is split, and is a filtered ¢-module. We consider
the linearization ¢/ of the Frobenius on D, where f = [Kj : Q,]. We write Fil®D, for
the filtration on D, induced by the Hodge-filtration on D. The assumption is that the
Hodge filtration on D is ¢-stable i.e. there is a full flag of K ® @p—modules F,, stable
under @, such that, for all 7, if k] < ... < k] are the (opposite) 7-Hodge-Tate weights
(with multiplicities) then F; ; C Fil*»—+1D.. Denote the eigenvalues of gof on F; . by
(¢1,...,9i). Thus by weak admissibility,

Lol + - o(e)) = 3 S Ky

/ =

Now, if G; is a complementary @-stable subspace of F; in D (which exists due to the as-
sumptions on the eigenvalues of /), then we see directly that the 7-Hodge-Tate weights
of G; are k7, ..., k] _;. Thus by weak admissibility again,

1 n—i
Z(W(pir1) + -+ olen) =D ki

/ =
But by weak admissibility of D, the endpoints of both polygons gives

Hlen) + b o) = AT

f
Thus both G; and F; are weakly admissible, thus admissible, thus p, splits accordingly.
As this is true for all i, we get the Lemma. O

It follows that, when n = 3, an eigenform f as in Theorem [I.2] has a split represen-
tation at p. In the case of modular forms, it was asked by Greenberg (see the work of
Ghate and Vatsal [Gha04], [GV04]) if a cuspform whose representation is split at p is
necessarily a CM form. The natural generalization of this question to GL3 would suggest
that we cannot find a form f to apply Theorem with very large image. Fortunately,
we can construct an analog of a CM form for GL3 (more precisely for U(3)) which still
has adequate image modulo p.
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8.1 Choosing a Hecke character

Let E be a CM field with totally real subfield ET = F and let F’ be a totally real field
disjoint from F, such that F’/Q is Galois and such that [F' : Q] = 3. Set K = EF".
This is a CM field. We moreover assume that all the ramified primes of K/FE lie above
split primes in E/E*. Choose two distinct primes p and ¢ such that ¢ is totally split

in K = EF' and primes above p in E* = F are totally split in K. Moreover assume
p>8(=2(n+1) whenn=3)and (, ¢ E.
Ezample 8.2. 1. The easiest choice is F = Q(¢7)T and E = Q(iv/3) so that 7 is split

in E. For this F’, we can also choose E = Q(i,/3), with maximal totally real subfield
ET = Q(+/3) so that E/ET is unramified everywhere.

2. The second easiest choice for F’ is F' = Q({9)*. In this case we can choose

E = Q(iV5).

3. If E = Q(i), we can choose F' = Q(a) with a a root of X3 — X? —4X — 1, which
has discriminant 132.

4. If F/ = Q(a) and E = Q(i), we can choose any prime p > 8,/ congruent to
1,5,21,25 (mod 52), like 5,53, 73, .... In particular in that case we better should exclude
p = 13 as in the early version [Bell0] (who knows?).

5. If F/ = Q(¢7)T and E = Q(iv/3), we can choose any prime congruent to 1,13
(mod 21) like 13,43, 97....

6. If F' = Q(¢7)* and E = Q(4,/3), we can take any prime £ = 1,13 (mod 84) like
13,97,169... and p = 1,13 (mod 21) like 13,43, 97....

7. If we really want to use p = 13 and that p = 13 is inert in I = ET, and if we
want moreover £/ET to be unramified everywhere, we can choose E = Q(i,+/7) with
F' = Q(B) C Q(¢43) as 43 is split in Q(i, v/7)/Q(v/7), with 8 a root of X3 — X2 —14X —8.

In the following we say that a weight k € ZHom(.C)

Hom(K,C), we have |k;, — k| > 2.

is very regular if, for 71 # 75 in

Let U be an algebraic Hecke character of Aj with algebraic very regular weight
k = (kuv)y|oo, such that ¥¢ = ¥V and such that ¥ is unramified both at p and £. Choose
an isomorphism ¢ : C ~ @,. We moreover assume that

(U, p) if p|p in E, we have ¥ (v)¥ (')~ ¢ {1, p} for v # v’ places of K dividing p.

(¥,¢) There exists A|¢ in E, and M|\ in E((,), such that for all v; # vy places of
K dividing A, if v, vy are the corresponding places above X in K((,), ¢«(¥(v])
(mod m@p) # 1(P(v)) (mod m@p).

Consider moreover the following hypothesis on ¥ :
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(U, Ram) If v is a place of K such that ¥ is ramified at v, then v divides a prime which
is totally split in K/Q.

Let U, : Ay — @; be the p-adic realization of ¥ and ¢, and 1, : Galg — @; such
that ¢, = ¥, o Artg. It is a Galois representation satisfying wg = 1y

8.2 Galois induction
Definition 8.3. We denote by p the induced Galois representation

p=indGar vy = {/ : Gale — Z,"| f(gk) = ;" (k)f(9)¥g € Galp, k € Galx),
where the action of g € Galg is given by (g- f)(z) = f(g~ ).

Then p is a three dimensional Galois representation since [K : E] is Galois of degree
3. We claim the following

Lemma 8.4. 1. The representation p := pRF, is absolutely irreducible, in particular
p s absolutely irreducible.

2. The representation p(Galgc,)) is adequate.

3. The representation p is polarized, i.e. p° =~ p".

4. The representation pgaly, is split, p-generic, Hodge—Tate regular for any v|p in
E,

5. If v is a place of E such that p is ramified at v, then Homgai,, (pv, pu(1)) = 0.

Proof. We will actually prove that ﬁ(GalE(Cp)) acts absolutely irreducibly, which will
imply point (1| and point [2| will follow by [Thol2] Lemma 2.4. To prove point 1, remark
that if we denote by o € Galg a lift of a generator of the Galois group Gal(K/FE) =<
G >= 7/37, then p has a basis given by f,o - f,0% - f, where f is the function

f: Galp = Galg [[ 0Galy [[ 0*Galx — Z, , k € Galg ~ 1, ' (k), ok, 0%k > 0.

Then o3 - f = 1,(03) f. Thus, after restricting to Galg, there is an isomorphism PlGalx =
Yp ® Yy @ 1/}52, where 7 = (0™t - o). We reduce mod p, where we have a similar
reduction after restricting to Galx. Because of the hypothesis (¥, /) away from p, we
have that pgar, o for N|¢, is the sum of three distinct characters. Moreover the
group Galg acts transitively on these three eigenspaces. Therefore this representation
is absolutely irreducible. To prove point [3| we compute pV. By [CR81] Prop. 10.28], we
have an isomorphism

Vo Galg -1 _ Galg /¢ ~ AC
p’ ~1Indg, ¥, =Indg, ¥, ~p°
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Let us prove As p is totally split in K/F, we have for v|p in E, Galg, C Galg
so that pgaly, ~ VYpo © Yy, @ ng,. As the group Galg acts transitively on the three
places of K over v, we have P|Galg, = @v’lﬂ YPp. Therefore P|Galg, 1S crystalline and
the eigenvalues of the Frobenius endomorphism of Deyis(p|qa, ) are the ¥(v') for v'[v in
K. 1t follows from hypothesis (¥, p) that pjgal,, is ¢-generic. Moreover the Hodge-Tate
weights of p|gal,, corresponds to the algebraic (infinitesimal) weight of ¥, which was
assumed regular so that pga £, 18 Hodge—Tate regular.

Finally we prove [f] Let v be a place of E such that p, is ramified. Then either v
is ramified in K/E or VU, is ramified. Assume in a first time that ¥, is ramified. Then
(U, Ram) implies that v divides a prime of Q which is totally split in K. In particular,
v is split in K/E. As above, we have p, ~ Do Ypor With Pp oy = ¥y 0 recl}il as v’ tp.
Therefore it follows from Lemma below that Homgaiy, (o, pu(1)) = 0.

Now assume that v is non split in K. As K/FE is Galois there is a unique place w of
K over v and p, =~ Inng}f{’; Ypw. By Frobenius reciprocity, we have

o o2
HOIHG&]Ev (pva pU(l)) = HomGale (djp,w @ ¢p,w @ ¢p,w7 qvbp,wXCyde)'

2
—_ g J— g ag —_ g
Assume that Vpw = V) Xeye|Kw- AS Xeye|Kw = Xoye|Kyr W€ deduce ¥y, = Vp  Xeye|Ku

2 3 . .
and Y7, = U7 wXeyelKuw = YpwXeyek, 50 that Ypw = YpwXdq g, Which is false. We
prove similarly than 1, ., # wgiuchc\ K, and deduce Homgal,, (pv, po(1)) = 0. If ¥, #

U, oo, then the characters ¥,,, U, o o, U 0 02 are pairwise distinct and p, is irreducible
so that Homgai,, (pv, po(1)) = 0. If ¥,y = Wy, 0 0, then p, is not irreducible, but clearly

Homgalg, (pv; pu(1)) = 0 (as Ypqaly, # Vplcalg, (1))- 0

Lemma 8.5. Let U : A /K* be an algebraic Hecke character of very regular weight k.
Then, if £ is a prime number which is totally split in K, then W, # Wy || for all places
v,w of K dividing £.

Proof. Let ¥ and ¢ be as in the statement. Fix ¢ : C ~ @, and let |-|; be the unique
absolute value on Q, extending the one on Q. Let W, be the continuous character

AX/K*KX — Q, defined by
Uy (Tw) ifw fl,w foo
U, w(zw) =41 if w|oo
UV (W) HTeHom(Kw,@),T\w 7(2)—1r  if wle,
where 7|w means that |.|,oT extends the absolute value given by w on K, and (ks ) seHom(x,C)

is the weight of W. As the group Ay /K*KZ is compact, we have Im(¥,) C Z;. As 0
is totally split ¢ induces a bijection between {v|¢} and Hom(K,C). Let v be a place of
K dividing ¢ corresponding to 7 (i.e. |.|; 0+t~ '7 extends |.|,) and denote k, = k,~1,. We
have

W ()7 () |e =1

so that |¢(W,(£))| = I**. As £ is a uniformizer of K,, for any v|¢, the result follows. [
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8.3 Construction of an explicit set of Hecke characters

In this subsection we explain one way to find a ¥ as before, satisfying hypothesis
(U, p), (¥,0),(V, Ram). Fix E a CM extension, with £ = F' its maximal totally real
subfield, so that [E : ET| = 2. Fix also F’ disjoint from E, a totally real degree 3 Galois
extension of Q. Choose p,? two primes with are totally split in K := EF’ such that
p > 8. The following Lemma is a more precise version of [CHTO08, Lem. 4.1.1].

Lemma 8.6. Let F' be a number field. Let S be a finite set of places of F'. Let xs be
an unramified continuous character FS = [[,cq FX — C* of finite order. Let T be a
set of finite places of F', disjoint from S and of Dirichlet density 1. Then there exists
a continuous character x : Aj/F* — C* of finite order such that X|px = XS and the

ramification places of x are in T.

Proof. Let U® be the product of the O;ﬂ for v ¢ S. Then F*NU? is a finitely generated
subgroup of F*. Let us write m for the order of the finite cyclic group ys(F* N U).
It follows from the proof of Theorem 1 in [Che51] that we can find finitely many places
wy, ..., w, in T such that the subgroup of F*NU?® congruent to 1 modulo Py, . .., Py, is
contained in (F* NU®)™. We conclude as in the proof of [CHTO0S, Lem. 4.1.1] choosing
for U the product of the U, for v not in S nor {wy,...,w,} and a small enough subgroup
at wi,...,w,. ]

Lemma 8.7. Let K be an (imaginary) CM field with totally real subfield K+ and complex
conjugacy c. Denote ¢ : Af/K* — C* be a continuous character. Assume that there
exists a finite set S of places of K which are split in K/K* and such that ;! = 1., for
v € S. Moreover, assume that S contains the Archimedean places. Let T be a finite set

of places of K that contains S and is stable under c, such that ¢ is unmmzﬁed outside
ofT Then there exists a Hecke character 1/1 AR /K* — C* such that Pt ¢C and

1/1 =, forv € S and such that 1/11) is unramified outside of T

Proof. Let 0 = ¢ o Ng/g+. As S contains the Archimedean places, the character 6 is
trivial at Archimedean places and is therefore a character of finite order. Let Up C
[Toers K. be a compact open subgroup such that )y, is trivial and such that c(Ur) =

Ur. Let
=([[o%,) Ur- (1] K).
vg¢T ves

We have an injection of compact groups
Ng/x+(Ag)/(Ng/r+(Ag) N K*U) — AR /K*U.

Under our hypothesis, the character ¢‘NK/K+(A;<() is trivial on (Ng g+ (Ag) N KXU).

Therefore it extends to a character o of finite order of AIX< trivial on K*U. We thus

have 9 o N+ = ao Ni/g+. It is easy to check that the character J = 1o~ ! satisfies
our requirements. O
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Proposition 8.8. For ecach choice of fields E and F' and places p and £ and very reqular
weight k as above there exists a Hecke character W : A /K> — C* satisfying (U, p),
(V,¢) and (¥, Ram) and such that ¥~1 = ¥¢,

Proof. Let k be a very regular weight. It follows from [Sch88|, Section 0.3, that there ex-
ists a Hecke character Wy of Ay /K> with weight k. Using Lemma we can construct
a Hecke character 6 of finite order such that, setting ¥; = Wy, we have

o the character W, satisfies (U1, p) and (¥1,7) ;

e there exists finitely many primes ¢1, ..., ¢,, different from p and ¢, which are totally
split in K and such that ¥, is only ramified at places dividing /¢4, ..., 4, ;

e we have ‘111_11,1 = WUy ¢y for any place w of K dividing ¢ or p.

Now it follows from Lemma that there exists a Hecke character ¥ of Ay /K™ such
that

. \I’_l — Je° -
e VU, =Wy, if vis a place of K dividing p or ¢ ;

e U is ramified only at places dividing /1, ..., ¢,. ]

8.4 Automorphic Induction and base change

Let ¥ and p as in subsection [8:I]and let U denote the unitary group in three variables for
E/ET that is compact at infinity and quasi-split at all finite places. We need to find an
automorphic form for U whose associated Galois representation is induced representation

p from

Proposition 8.9. There exists an automorphic representation 11 of GL3 g, cuspidal,
cohomological at infinity, unramified at £ and p, polarized, whose associated Galois rep-
resentation is given by p.

Proof. This is the content of [Henl2] Théoreme 3 (as K/FE cyclic of degree 3) for the
existence of the automorphic representation, Théoreme 5 for the compatibility with the
local correspondence at ¢ and p and at infinity (cf. the following remark of [Henl12]).
Polarization can be checked after base change of the automorphic induction to K, where
it follows as ¥¢ = ¥V, and as ¥ # W7 for o € Gal(K/F) such that o # 1. Moreover,
the automorphic induction is also cuspidal (Theorem 2 of [Henl2)). O

Conjecture 8.10. There exists a cohomological, cuspidal, automorphic representation
m of U whose base change to GL3 g is 11.
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Proposition 8.11. If E/E™ is everywhere unramified (e.g. for E = Q(i,/3) or
Q(i,V/7)), then the previous conjecture is true.

Proof. This is [Labl1] Theorem 5.4. O

Proposition 8.12. If F is quadratic imaginary, then the previous conjecture is true.

Proof. By [Mor10] Corollary 8.5.3 (ii), there exists 7’ an automorphic representation for

GU (3) associated to IT x 1, which is automorphic for GLg x GL;. By [HS22] Lemma A.7

(based on [HTO01]), there exists m, an automorphic representation of U(3) associated to
/

7. O

Corollary 8.13. If E is quadratic imaginary or if E/E™ is everywhere unramified, then
there exists a classical form on U(3) satisfying the hypothesis of Theorem .

Proof. Let m be the automorphic representation of U considered above, and let f € &
be an eigenform for the Hecke operators away from a set S of bad places of m. Then
pf = pr = p is crystalline at p and (-generic. In particular it has 3! = 6 refinements
which are automorphic and split at p. Hence there exists an automorphic refinement R
of f with relative position wr = 1 with respect to the Hodge filtration. In particular,
for this choice of a refinement, there exists a refined classical modular form f’ satisfying
all hypothesis of Theorem But, by Lemma (5) we know that f gives, for all
v € S\Sp, a point of Xp% which satisfies Homgaly, (pv, po(1)) = 0. When v splits in

E/E™, such a v is a smooth point by [AI16] Prop 1.2.2. O
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