Feuille d'exercices 5 : Nombres complexes.

0.1 forme algébrique et trigonométrique des complexes

Exercice 1.—

- 1. Ecrire $1 + i\sqrt{3}$ et 1 + i sous forme trigonométrique.
- 2. Soit $Z = \frac{1+i\sqrt{3}}{1+i}.$ Ecrire Z sous forme algébrique et trigonométrique.
- 3. En déduire les valeurs exactes de cos $\frac{\pi}{12}$ et sin $\frac{\pi}{12}.$
- 4. En déduire la forme algébrique de Z^{1000} .

Exercice 2.— On dit qu'un entier N est la somme de deux carrés s'il existe deux entiers a et b tels que $N = a^2 + b^2$.

- 1. Soit $N_1 = a^2 + b^2$ et $N_2 = c^2 + d^2$ deux entiers somme de deux carrés. Posant $z_1 = a + ib$ et $z_2 = c + id$, écrire N_1 et N_2 en fonction de Z_1 et Z_2 .
- 2. En déduire que le produit $N_1 N_2$ est aussi une somme de deux carrés.
- 3. Démontrer que si un entier N est somme de deux carrés alors pour tout entier $p \in \mathbb{N}^*$, N^p est aussi somme de deux carrés.

Exercice 3.—

Quels sont les entiers relatifs n tels que $(\sqrt{3}+i)^n$ soit réel? Imaginaire pur?

0.2 racines carrées et racines de polynômes de second degré

Exercice 4.—

Calculer les racines carrées sous forme algébrique des nombres complexes suivants :

$$15 - 8i$$
, $1 + i\sqrt{3}$, $3 + 4i$.

Exercice 5.—Pour vous entrainer entre vous.

Calculer les racines carrées sous forme algébrique des nombres suivants

$$9 - 6i$$
, $4 + 3i$, $2 + i\sqrt{5}$.

Exercice 6.—

Résoudre dans $\mathbb C$ les équations suivantes :

$$z^2 - 2iz - 1 + 2i = 0$$
, $iz^2 + (4i - 3)z + i - 5 = 0$, $z^2 - (7 + i)z + 12 + 3i = 0$.

Exercice 7.—Pour vous entrainer entre vous.

Résoudre dans $\mathbb C$ les équations suivantes :

$$z^{2} - z + \frac{1}{2}i = 0$$
, $z^{2} - (3 - i)z + 4 - i = 0$, $iz^{2} + (1 + i)z + 1 = 0$.

Exercice 8.— Soit z_1 et z_2 les deux solutions de l'équation $az^2 + bz + c = 0$ avec $a \in \mathbb{C}^*$ et $b, c \in \mathbb{C}$.

Démontrer que $z_1 + z_2 = -\frac{b}{a}$, $z_1 z_2 = \frac{c}{a}$. Grâce à ces relations, résoudre dans $\mathbb C$ les équations suivantes :

$$z^{2} - 2i \sin \theta z - 1 = 0$$
, $z^{2} - e^{i\theta} z + \frac{i}{2} \sin(2\theta) = 0$.

0.3 Racines n-ième

Exercice 9.—

Calculer les solutions complexes des équations suivantes :

$$z^5 = 1$$
, $z^7 = -i$, $z^5 = (1 + i\sqrt{3})^4$, $z^6 = (1 + i)^2$, $z^7 = \frac{(1 + i\sqrt{3})^4}{(1 + i)^2}$.

Exercice 10.—Pour vous entrainer entre vous.

Calculer les solutions complexes des équations suivantes :

$$z^7 = -i$$
, $z^3 = 2 - 2i$, $z^4 = \frac{(1-i)^3}{(1+i)^2}$.

Exercice 11.—racines de l'unité

- 1. Calculer les solutions complexes de l'équation $z^7 = 1$.
- 2. On note $z_0 = e^{\frac{2i\pi}{7}}$. Démontrer que :

$$1 + z_0 + z_0^2 + z_0^3 + z_0^4 + z_0^5 + z_0^6 = 0.$$

- 3. On pose $A = z_0 + z_0^2 + z_0^4$ et $B = z_0^3 + z_0^5 + z_0^6$. Calculer A + B et AB.
- 4. En déduire que A et B sont les racines d'un polynôme du second degré et les calculer.

Exercice 12.—Exercice similaire pour vous entrainer entre vous.

- 1. Calculer les solutions complexes de l'équation $z^5 = 1$.
- 2. On note $z_0 = e^{\frac{2i\pi}{5}}$. Démontrer que :

$$1 + z_0 + z_0^2 + z_0^3 + z_0^4 = 0.$$

- 3. On pose $a=z_0+z_0^4$ et $b=z_0^2+z_0^3$. Démontrer que a+b=-1 et que $a\,b=-1$.
- 4. En déduire que a et b sont solutions de l'équation : $x^2 + x 1 = 0$.
- 5. Calculer les solutions de $x^2 + x 1 = 0$.
- 6. En déduire une expression exacte de $\cos \frac{2\pi}{5}$.

0.4 Pour aller plus loin : ces exercices sont facultatifs et ne sont à faire que si les précédents sont bien compris

Exercice 13.—

Résoudre l'équation :

$$z^6 + (2-i)z^3 - 8 - 8i = 0.$$

(On pourra poser $Z = z^3$.

Exercice 14.— Résoudre l'équation :

$$4iz^{3} + 2(1+i)z^{2} - (5+4i)z + 3(1-7i) = 0$$

sachant qu'elle possède une solution réelle.

Exercice 15.—

Soit $n \in \mathbb{N}^*$.

- 1. Calculer le produit des racines n-ième de l'unité.
- 2. Soit $\omega = e^{\frac{2i\pi}{n}}$, calculer

$$\sum_{k=0}^{k=n-1} \omega^{k p}$$

pour tout entier $p \in \mathbb{N}$.

3. En déduire que

$$\sum_{k=0}^{k=n-1} (1+\omega^k)^n = 2n.$$

Exercice 16.—

1. Soit $z, z' \in \mathbb{C}$. Démontrer l'égalité suivante, (dite identité de la médiane) :

$$\mid z+z'\mid^2+\mid z-z'\mid^2=2\,(\mid z\mid^2+\mid z'\mid^2).$$

2. Soit $z, z' \in \mathbb{C}$ et u tel que $u^2 = z z'$. Démontrer que :

$$|z| + |z'| = |u + \frac{z+z'}{2}| + |u - \frac{z+z'}{2}|.$$

Exercice 17.— On définit une suite de nombres complexes par la donnée de z_0 , z_1 et de la relation de récurence suivante :

$$z_n - z_{n-1} = \alpha(z_{n-1} - z_{n-2})$$

où $\alpha \in \mathbb{C}$. Trouver une condition nécessaire et suffisante sur α pour que la suite soit périodique.