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1. Introduction

A general question in the Langlands program is the relation between automorphic
representations and Galois representations. In such a generality the question is completely
open, but we can restrict to an apparently simpler question : can we relate deformations on
both sides ? In fact, there is a natural geometric interpretation of this question as follows.
Assume that E is a number field, and

ρ : GalpE{Eq ÝÑ GLnpFpq,
is a continuous (i.e. which factors through a finite extension) representation. The deforma-
tions of ρ, with minor technical conditions, with values in finite extensions of Qp, can be
arranged in a natural rigid space Xρ, by work of Mazur. Conjecturally, and now in many
known cases ([CHLN11, CH13, Shi14, HLTT16, Sch15]) automorphic representations give
rise to Galois representations, some of which gives points in Xρ, that we call of automor-
phic nature, or just automorphic. It is then natural to wonder which structure have these
automorphic points in Xρ : is it an algebraic subspace ? a closed one ? is it Zariski dense
?

The first example after the case of characters was studied by Gouvêa-Mazur. In this
situation E “ Q and n “ 2, and ρ is irreducible, modular and unobstructed, so that Xρ is a
3-dimensional open ball. In this situation automorphic points are related to modular forms.
In [GM98], Gouvêa and Mazur show that automorphic points are Zariski dense in Xρ

using the so called infinite fern. Let us explain this name : up to twisting by powers of the
cyclotomic character, we can replace Xρ by a two dimensional open ball. Modular forms
(of finite slope) can be interpolated by a geometric object, the Coleman-Mazur Eigencurve
E ([CM98]), which is a rigid-analytic curve, whose points are refined p-adic modular forms
of finite slope. Generically, a classical modular forms has two refinements, thus gives rise
to two distinct points in the Eigencurve. Moreover the points corresponding to refined
classical modular form are Zariski dense in the Eigencurve. By p-adic interpolation, it is
possible to associate a 2-dimensional p-adic representation of GalpQ{Qq to a point of E .
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The points giving rise to deformations of ρ form a union Eρ of connected components of
E and the universal property of Xρ implies the existence of a map

E ÝÑ Xρ.

Generically, each modular point f in Xρ has two preimage in E , giving rise to two distincts
small curves around those preimages, whose image in Xρ meet only at f . By density, each
of these two small curves has a Zariski dense set of modular points, and for each of these
points there is another small curve passing through, and so on, giving a fractal-like object
which we picture as follows :

giving a justification for the name of the infinite fern.
This article deals with a generalization of this result to more general number fields

and greater values of n. First, we need to assume that the number field E is a CM
field, with totally real field F , in order to be able to associate Galois representations to
automorphic representations. Second, it is expected that for general n the automorphic
points are not Zariski dense in Xρ, thus we reduce to the case of χ-polarized Galois

representations, for a character χ : GE ÝÑ Qp
ˆ
, i.e. continuous group homomorphisms

ρ : GalpE{Eq ÝÑ GLnpQpq such that

ρ_ » ρc b χεn´1, where ρc :“ ρpc ¨ c´1q,

where ε is the cyclotomic character, and c P GalpE{F q is a lift of the unique non triv-
ial element of GalpE{F q. Fix S a finite set of primes of E containing all primes above
p. In this situation, assume that ρ is χ-polarized, absolutely irreducible (for simplic-
ity) and unramified away from S. Let be the complete noetherian local algebra Rχ´polρ

parametrizing deformations of ρ which are χ-polarized and unramified away from S.
Its rigid fiber Xχ´pol

ρ is a rigid space of dimension at least rF : Qsnpn`1q
2 . A natu-

ral source of automorphic points in Xχ´pol
ρ is given by the regular, algebraic, essentially

polarized, cuspidal automorphic representations of GLnpAEq, by work of many authors
([HT01, CHT08, CHLN11, CH13, Shi14] for example). In this paper, we make the follow-
ing hypothesis,

Hypothesis 1.1. — 1. ρ is conveniently modular (see Definition 4.1),
2. All primes above p in F are unramified, and split in E,
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3. χ is crystalline at p, satisfies χ “ χc and satisfies a sign condition (see Hypothesis
3.7 and section 2)

Under the previous hypothesis, we have the following result,

Theorem 1.2. — The Zariski closure of automorphic points contains a (non empty) union of
irreducible components of Xχ´pol

ρ , each of which are of dimension rF : Qsnpn`1q
2 .

We say that our deformation problem is unobstructed if H2pGF,S , adprqq “ t0u where
r is some extension of ρ to GF,S the Galois group of the maximal unramified extension
of F (see section 3). In this situation, we know that Xχ´pol

ρ is a rigid open unit ball in

rF : Qsnpn`1q
2 -variables.

Corollary 1.3. — Under the previous hypothesis, if moreover ρ is unobstructed, then automor-
phic points are Zariski dense in Xχ´pol

ρ .

Remark 1.4. — In [Gui20] Giraud proved that if π is an extremely regular automorphic
representation of GLnpAEq (see [BLGGT14] section 2.1), then there exists a density 1 set
of primes λ of E such that ρπ,λ is unobstructed. As we have assumed ρ to be conveniently
modular, we can actually find some extremely regular π, so that ρ “ ρπ,λ for λ|p, and
thus using [Gui20], up to change λ in a density 1 set, we can assume unobstructedness. In
particular, under our assumption, ρ is part of a compatible system for which in a density 1
set of primes, we have Zariski density of automorphic points in the associated deformation
spaces.

Before explaining the strategy of proof, let us say what was known. The first case was
the case non-polarised, n “ 2 and E “ F “ Q, when unobstructed, which was proven
by Gouvêa-Mazur [GM98], and generalised by Boeckle [B0̈1]. The non-polarised case
for n “ 2 and totally real fields E “ F , and the polarised case of n “ 3 (and general
CM fields E{F ) was proved by Chenevier ([Che11]). A generalisation for greater n; but
under more restrictive hypothesis (of Taylor-Wiles type) on E and ρ, was proven recently
by Hellman-Margerin-Schraen ([HMS22]). All of these proofs uses the analogue (in higher
dimensions) of the infinite fern. We know try to explain our strategy together with the
relation to the previous works.

The Galois representations that we study can be viewed as p-adic (L´ or C´) pa-
rameters of reductive group: GL2 {Q in the situation of Gouvêa-Mazur and UE{F pnq,
or GUE{F pnq, or one of its inner forms, a (similitude) unitary group in n-variables, for
polarized deformation problems. A natural source of automorphic points is given by au-
tomorphic representations of these groups. It turns out that these groups give rise to
Shimura data, that we can use to construct p-adic refined families of automorphic forms,
that is p-adic automophic eigenforms together with the extra data of a refinement. These
families generalize the Eigencurve of Gouvêa-Mazur and are called Eigenvarieties (see
[CM98, Che04, Urb11, Eme06, AIP15, Her19] for example). It turns out that working
with F instead of Q plays little role in what follows, so let us assume for simplicity F “ Q
in this introduction, and also χ “ 1 for the same reason.

For general n, a given automorphic form f has at most n! refinements fi, and gener-
ically exactly n! refinements. Moreover the Eigenvariety E has equidimension n, Xχ´pol

ρ
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has dimension at least (but conjecturally exactly) npn`1q
2 and there is a map Epρqp1q ÝÑ

X pol
ρ which forgets the refinement.

Definition 1.5. — The image of the map Epρq ÝÑ X pol
ρ is called the infinite fern and is

denoted by Fpρq.

Actually we can make our main theorem more precise :

Theorem 1.6. — Under the previous hypothesis, the Zariski closure of the infinite fern Fpρq
in Xχ´pol

ρ is a non-empty union of irreducible components, each of which are of dimension

rF : Qsnpn`1q
2 .

Let us comment the various hypothesis we made. Contrary to [HMS22], we don’t need
to assume ρ absolutely irreducible if we use Chenevier’s determinants, which we do (see
section 3). The hypothesis of being conveniently modular is necessary to expect infinite
fern to be non-empty, and is in practice very close to the usual modularity hypothesis
which is anyway necessary. The hypothesis on the splitting of primes above p is technical,
and we hope to come back on this question soon. The last hypothesis on χ is also technical
and should be possible to relax in parts.

Following the strategy of Chenevier, the main goal is to prove that for a Zariski dense
set of points ρ in the infinite fern, the part of the tangent space at ρ in X pol

ρ coming

from E has dimension at least npn`1q
2 . This will imply that the closure of the infinite fern

Fpρq, has dimension at least npn`1q
2 . As, by construction, automorphic points are Zariski

dense in E , thus in Fpρq, this will prove that the Zariski closure of automorphic points has
dimension at least npn`1q

2 . Thus to prove the assertion on the tangent space, we need to
show that the sum of the images of the tangent spaces TfiE in TρfX

pol
ρ , for well chosen

automorphic forms f , has large enough dimension. But, clearly, as soon as n ě 3 it is not
sufficient that these tangent spaces are pairwise transversal, and this is the main difficulty
to extend the proof of Gouvêa and Mazur. To overcome this problem, Chenevier suggested
a strategy which he applied successfully when n “ 3 and which can be sketched as follows:

1. find a good Zariski dense subset D of the infinite fern Fpρq, the image of E in Xρ ;
2. show that the analog of the question on the tangent spaces of points in D but for

local deformation rings is valid ;
3. show that the Global situation “embeds well” in the local situation, and thus gives

the result.

For the first part, Chenevier suggested to look at automorphic points ρ which he calls
generic: they are crystalline at p and all their refinements are non-critical. More precisely,
if ρ is crystalline at a place v | p, its restriction ρv to a decomposition group at v is char-
acterized by a n-dimensional vector space V “ Dcrispρ|GalpEv{Evq

q with its Hodge-Tate
filtration FHT (a complete flag) and Frobenius operator ϕ. The refinements of ρ corre-
sponds to the complete flags of V stable by ϕ. We say that a refinement of ρ is non critical
it is opposite to FHT . Actually, Chenevier proved that the second step works for crystalline

p1qan open-closed subvariety of E
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points which have n well-positioned non-critical flags and call those points weakly-generic.
He moreover proved that weakly generic points (with some extra but harmless conditions)
are Zariski dense in the infinite fern when n “ 3 and uses those as the subset D.

Concerning the second point, the weakly generic condition is used to carry an induction
in the local situation and prove that tangent spaces of local, refined, deformations problem
spawn the tangent space of the full local deformation ring. This is where the definition of
well positioned refinements comes from.

For the last point, actually it is enough to embed the situation at the level of tangent
spaces. Chenevier proves that for all preimages of points in D, the map E ÝÑ W is
etale, and deduces that some Selmer group vanishes at those points, allowing to embed
infinitesimally the global situation into the local one, transversally to the cristalline locus,
and thus deduce the result. This last argument is classical in the Taylor-Wiles method.

The main issue to generalise Chenevier’s strategy in higher dimensions is that it is
completely unclear that weakly generic points satisfies some density assumptions when
n ě 4 (see remark 5.2).

The strategy of [HMS22] is different but shares some similarities : for the first point
they choose points which are crystalline with some genericity assumptionp2q which are less
restrictive than being generic or weakly-generic. Their set D is then automatically Zariski
dense. For the second point, they use a local model for the local deformations spaces,
which is of purely geometric nature, and a rather evolved but completely elementary
argument allows to conclude in the second point, using not only all refinements but also
companion points, which are extra-points appearing when the refinement is critical (whose
existence is proved in [BHS19]).

Then the third point is the most delicate one and is proved by Talylor-Wiles-Kisin
method via “patched eigenvarieties” (see [BHS19]) under restrictive Taylor-Wiles condi-
tions.

In this article we use a strategy closer to Chenevier’s, but using the local model of
[BHS19] as in [HMS22]. Namely, using the local model and a careful study of its geometry,
we first prove the second point without using companion points but rather generalizing
Chenevier’s transversality result at critical refinements (see section 7). For the first point,
we show that setting for D the set crystalline points satisfying genericity conditions as
in [HMS22] and which have moreover enormous image are actually Zariski dense in the
infinite fern ; we call those points almost-generic (see Definition 5.4) because they will
replace Chenevier’s generic points in our argument. The density of these points is far
from being automatic and the argument is originally due to Bellaïche-Chenevier and Taïbi
(see section 5). Then, for the third point, we show that using the enormous image, and a
result of Newton-Thorne, we have the vanishing of the expected Selmer group at points of
D. We then show that this can be used to relate the global situation to the local one. As
a byproduct, we obtain that our Eigenvariety is smooth at those points, as it was the case
in other situations (see [BHS19, Ber20]) (see section 8). Then, a local calculation which
was previously carried out in [All16], we show that our almost generic points are smooth
points of X pol

ρ of the expected dimension.

p2qprecisely on the Frobenius eigenvalues and Hodge-Tate weights
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The results of Chenevier were combined with those by Allen ([All19]) (who proved that
under some hypothesis every component contains an automorphic point) to prove full
density of the infinite fern when n ď 3, without assuming unobstructedness. We can adapt
this generalisation also here,

Corollary 1.7 (Allen). — Assume hypothesis 8.12, then the infinite fern is Zariski dense in
Xχ´pol
ρ .

The only thing we need to care about for this corollary is that we use classical points
which are automorphic representations for a similitude unitary group, which moreover
contributes to the coherent H0, whereas Allen’s proof a priori only construct an (essen-
tially) polarised autormorphic representation of GLn.

Remerciements : We would like to warmly thank Gaetan Chenevier for very helpful
suggestions concerning this work. We would also like to thank George Boxer, Laurent
Clozel and Olivier Schiffmann for many interresting discussions. Finally, we would like to
thank Anne vaugon and Marc Mezzarobba for their help for using SAGE to compute the
local tangent spaces.

2. A remark on signs

By a theorem of Artin, all elements of order 2 are conjugate in GQ. Let C8 Ă GQ be
their conjugacy class and let H Ă GQ be the closed subgroup generated by C8. There is
a unique continuous morphism ε : H Ñ t˘1u such that εpcq “ ´1 for all c P C8. Let K
be a number field. Then K is totally real if and only if H Ă GK . Let E be a CM field
with totally real subfield F , we have H1 :“ ker ε Ă GE and GF “ GEH . Let c P C8.
We can consider the action of c on GE by conjugacy, and we have GF “ GE ¸ t1, cu. If
ρ is a morphism of GE in some group and c P C8, we set ρc “ ρpc´1 ¨ cq “ ρpc ¨ cq. The
c-conjugacy induces an automorphism c of Gab

E . As H1 Ă GE , this automorphism does
not depend on the choice of c P C8. Let G be a finite abelian group.

Lemma 2.1. — Let χ : GF Ñ G be a continuous character. Then χ|GE “ pχ|GE q
c. Moreover

there exists a character ψ : GE Ñ G such that ψψc “ χ|GE if and only if the elements χpcq
for c P C8 does not depend on the choice of c P C8.

Proof. — Assume that the elements χpcq for c P C8 does not depend on the choice of c P
C8. After composition with the Artin map AˆF {Fˆ Ñ Gab

F , we can view χ as a morphism

AˆF {Fˆ Ñ G which is trivial on FˆpFˆ8q˝. We have to prove that there exists a character

ψ : AˆE{Eˆ Ñ G which is trivial on EˆEˆ8 and such that ψ ˝NE{F “ χ ˝NE{F . But the

same proof that in [CHT08, Lem. 4.1.4] shows that χ is trivial on NE{F pAˆEq X EˆE
ˆ
8.

Conversely assume that χ|GE “ ψψc for some ψ and let c1 and c2 be two elements of
C8. Then

χpc1c
´1
2 q “ χpc1c2q “ ψpc1c

2c2qψpcc1c2cq

“ ψpc1cqψpcc2qψpcc1qψpc2cq “ ψ´1pcc1qψpcc1qψpcc2qψ
´1pcc2q “ 1.
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Note that a continuous morphism χ : GE Ñ G extends to a morphism GF Ñ G if and
only if χ “ χc. The fact that the extension of χ to GF satisfies the assumptions of Lemma
2.1 depends only on the restriction of χ to GE and is equivalent to the fact that χ|H1 is
trivial. Lemma 2.1 can be reformulated as follows :

Corollary 2.2. — Let χ : GE Ñ G be a continuous morphism from GE to a finite abelian
group such that χ “ χc. There exists a continuous morphism ψ : GE Ñ G such that ψψc “ χ
if and only if χ|H1 is trivial. Note that this condition is automatically satisfied if the cardinal
of G is odd.

In this article we will be interested in the density of modular point in deformation
rings. We will say that ρ : GE ÝÑ GLnpQpq, a (semi-simple) Galois representation, is
GLn-modularp3q if there exists a cuspidal, essentially conjugate self-dual (regular algebraic)
automorphic representation Π of GLnpAEq such that ρ » ρΠ,p; where ρΠ,p is associated
in the sense of [BGGT14].

Let χ : GE Ñ Qp
ˆ
be a continuous character and ρ : GE ÝÑ GLnpQpq a continuous

representation such that ρ is polarised by χ, which means

(1) ρ_ » ρc b χεn´1.

If ρ is irreducible then we can define its sign, with respect to χεn´1, λ P t˘1u as in [BC11]
1.1. This is the sign of the pairing appearing in (1).

Theorem 2.3 (Bellaïche-Chenevier). — Let Π be a cuspidal automorphic representation of
GLnpEq that is conjugate self-dual, and regular algebraic. Let ρuΠ be the associated Galois
representation as in Corollary A.8, and ρ “ ρuΠψ for some character ψ : GE ÝÑ Qp. Then
every irreducible constituent r of ρ satisfying (1) has sign λ “ `1 with respect to pψψcq´1εn´1.

Proof. — If ψ “ 1 this is [BC11] Theorem 1.2. In general ρ “ ρuΠψ and χ :“ pψψcq´1 and
ρuΠ has sign `1 for εn´1 thus ρ (and all its irreducible factors) have sign `1 with respect
to χεn´1 by [BC11] Lemma 2.1.

3. Deformation spaces

Denote by k a topological field and O a complete noetherian local Zp-algebra with
residue field k.

Fix E{Q a totally imaginary CM-extension of number fields with maximal totally real
subfield F , and fix S a finite set of finite places of E containing the places above p, and
the ramified places of E, and denote

GE,S “ GalpES{Eq,

the Galois group of the maximal unramified outside S extension of E.
Suppose given

ρ : GE,S ÝÑ GLnpkq,

p3qWe say GLn-modular to distinguish from the rest of the text where we will get modular points using (simili-
tude) unitary groups so in Definition 4.1 we give a slightly different notion, which we call just modular. Of course
by base change (see Appendix) modular is a particular case of GLn-modular.
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a continuous semi-simple Galois representation. From now on we choose c P GF zGE such
that c2 “ 1 a complex conjugation, denoting similarly its image in GalpE{F q. As O is a
Zp-algebra, we have a map Zp ÝÑ k, thus we can see ε as the cyclotomic character with
values in k. We also assume that ρ is polarized by χ, i.e.

ρ_ » ρc b pεn´1χq,

for some character χ : GE,S ÝÑ kˆ satisfying χc “ χ. Following [CHT08] we introduce

Gn “ pGLnˆGL1q ¸GalpE{F q,

where c P GalpE{F q acts on pg, xq P GLnˆGL1 via pxtg´1, xq. We denote ν the
homomorphism Gn ÝÑ GL1 sending pg, xq to x and c to ´1. Finally we denote CO , or C
if the context is clear, the category of artinian local O-algebras with residue field k.

Hypothesis 3.1. — From now on in this section, we suppose that we are in either one of
the two situations : k Ă Fp with discrete topology, O a finite totally ramified extension of
W pkq, or k Ă Qp a finite extension of Qp with its p-adic topology and in this case we set
O “ k. In the second case ε “ ε is just the Zˆp -valued cyclotomic character.

Denote by tr ρ the Determinant (in the sense of Chenevier [Che14, Définition 1.5]) of ρ.
As ρ is semi-simple it is completely determined by tr ρ (by [Che14, Cor. 2.13]). We fix once
and for all a continuous character χ : GE,S ÝÑ Oˆ a lifting χ and such that χc “ χ.

Definition 3.2. — We denote by Fχ´pol
ρ the functor that associate to any object A of C

the set of continuous determinants D lifting tr ρ such that D_ “ Dc b χεn´1. It is pro-
representable by a ring Rχ´polρ ([Che14, Prop. 3.3]p4q). We denote the associated formal

scheme Xχ´polρ “ SpfpRχ´polρ q. When k is a finite field of characteristic p, we denote the

generic fibre of Rχ´polρ by

Xχ´pol
ρ :“ SpfpRχ´polρ qrig.

If ρ is absolutely irreducible, this coincides with the rigid fiber of the polarized-by-χ
deformation space of ρ.

Our goal is to understand the geometry of modular points in Xχ´pol
ρ when k Ă Fp,

O “ OK , K{Qp finite. Keep the slightly greater generality for now and assume that ρ
is Schur.p5q Denote its sign λ. Then we can extend χ, which satisfies χc “ χ to GF »
GE ¸GalpE{F q by setting χpcq “ ˘1. We set χpcq :“ p´1qnλ and χpcq :“ p´1qnλ, so
that µ :“ χεn´1 satisfies µpcq “ ´λ. By [CHT08] Lemma 2.1.1 we can thus extend ρ to a
continuous

r : GF,S ÝÑ Gnpkq,
such that c P GF is sent to c P GalpE{F q via r and projection and ν ˝ r “ χ´1ε1´n (as
extended before to GF ).

p4qfor Rρ, and then Rχ´polρ “ Rρ{I with I “ pDuniv,_pgq ´Duniv,cpgqχεn´1pgq, g P Gq
p5qWe define it the following way : choose r : GF ÝÑ Gnpkq extending ρ by [CHT08] Lemma 2.1.1. Then we
say that ρ is Schur if r is. By [CHT08] Lemma 2.1.7 this is independant of r. In particular it is satisfied if ρ is
absolutely irreducible
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Definition 3.3. — Let Defχr be the functor that associates to any object R of C the set
Defχr pRq of lifts r : GF,S Ñ GnpRq of r such that ν ˝ r “ χ´1ε1´n considered up to
1`mRMnpRq-conjugation. As in [CHT08, Prop. 2.2.9]p6q, this functor is pro-represented
by a local complete noetherian O-algebra Rχr . When k is a finite field of characteristic p,
we denote by Xχ

r the generic fiber of the formal scheme Xχr “ SpfpRχr q.

In the following, all cohomology groups are continuous cohomology groups.

Proposition 3.4. — Assume that ρ is Schur, char k ‰ 2, χpc1q “ p´1qn for all complex
conjugacy c1 and, if k is of characteristic p, Rχr r1{ps ‰ 0. Then

dimpRχr r1{psq ě dimkH
1pGF,S , adprqq ´ dimkH

2pGF,S , adprqq “
npn` 1q

2
rF : Qs.

Moreover the topological Or1{ps-algebra Rχr r1{ps is formally smooth of relative dimension
npn`1q

2 rF : Qs if H2pGF,S , adprqq “ 0.

Proof. — This appeared already in [CHT08, All16], let us give the argument. As ρ is
Schur, adprqGF “ H0pGF , adprqq “ 0 by [CHT08, Lem. 2.1.7(3)]. For each place v|8, we
have ([CHT08, Lem. 2.1.3])

dimkH
0pGFv , adprqq “

npn` χεn´1pcvqq

2
“
npn´ 1q

2
.

Now the equality

dimkH
1pGF,S , adprqq ´ dimkH

2pGF,S , adprqq “
npn` 1q

2
rF : Qs

follows from [CHT08, Lem. 2.3.3]p7q when k is a finite field and from [All16, Lem. 1.3.4]
when k is a finite extension of Qp.

When k is a finite extension of Qp, the result follows from using the analogue of
[CHT08, Cor. 2.2.12] (but without the `1 since here O “ k). When k is a finite field, it
follows from [CHT08, Cor. 2.2.12] that

dimpRχr q ě 1`
npn` 1q

2
rF : Qs.

Let x P SpecpRχr r1{psq be a closed point, px the corresponding prime ideal and rx :
GF Ñ Gnpkpxqq the corresponding representation. It follows from [All16, Prop. 1.3.11(1)]
that the localization-completion of Rχr at px is isomorphic to Rχrx . It follows that

dimpRχr r1{psq ě dimpRχrxq ě
npn` 1q

2
rF : Qs

using the case where k has characteristic 0.
The assertion concerning the formal smoothness follows from [CHT08, Cor. 2.2.12] and

[All16, Prop. 1.3.11]

p6qThere the field k is finite, but we can check that everything carries over in our setting, as already remarked in
[Kis09]
p7qNote that in [CHT08, 2.3], it is supposed that the places of S are split in E but this is not used in their
Lemma 2.3.3.
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Remark 3.5. — The hypothesis on the sign of χ will be satisfied in the rest of the text
where we choose χ “ ψ0ψ

c
0, actually because of the sign theorem 2.3. Indeed, by [CHT08]

Lemma 2.1.1 we need to extend µ “ χεn´1 to GF,S , for an absolutely irreducible ρ, by
sending c to ´λ. Thus the previous hypothesis is equivalent to λ “ 1. Here we use
crucially that χ is of the form ψ0ψ

c
0 as ρ will be of the form ρuΠψ0. Actually, if we keep

track of the L-parameter of the similitude character of π, an automorphic representation
of GU, we have in most case a natural χ of this form which depends on π. In this article
we forget this similitude parameter and force polarisation by χεn´1 using ψ0. We will use
the previous proposition in the case of k Ă Qp and O “ Zp at specific rigid points of
Xχ´polρ in Theorem 8.9.

Proposition 3.6. — Denote ρ as before. Suppose it is absolutely irreducible, and denote r the
chosen Gn-extension as before. Suppose Charpkq ‰ 2. Then the natural map

Rχr ÝÑ Rχ´polρ

is an isomorphism.

Proof. — This is also [All19, Prop. 2.2.3]. Denote ρ, ρ1 resp. R,R1 valued points of
Fχ´pol
ρ , with R1 � R, and ρ1 b R “ ρ. Suppose we have a fixed pairing ă,ą: ρ b

ρc ÝÑ χ´1ε1´n inducing r : GE,S ÝÑ GnpRq by [CHT08] Lemma 2.1.1. Choose any
pairing fixing ă,ą10 for ρ1. Then reducing to R this gives a pairing for ρ, but as ρ is
absolutely irreducible, ρ is also and thus there is only one pairing up to scalar for ρ, i.e.
ă,ą10 bR “ α ă,ą for some α in Rˆ. Choose a lift β of α´1, then set ă,ą1:“ β ă,ą10,
then ă,ą1 reduces to ă,ą and to pρ1, χ,ă,ą1q is associated by [CHT08] Lemma 2.1.1
an r1 : GE,S ÝÑ GnpR1q, reducing to r. Let r2 another point over R1, inducing ρ1 and
reducing to r , then it corresponds to γ ă ., . ą1 with γ ” 1 pmod mR1q, thus writing
γ “ 1 `m with m P mR1 we have γ “ p1 ` 1

2mq
2 pmod m2

R1q and as R1 is artinian, a
direct induction shows that γ is a square in R1, thus r1 “ r2.p8q

The same argument with r for r and r for r1 shows that we can actually choose r inside
Xχr (and thus automatically for any r1 above) and thus proves etaleness, and surjectivity.
As the map is an isomorphism in special fiber, this is an isomorphism.

We will need to assume the following technical hypothesis in this article.

Hypothesis 3.7. — Assume χ : GE,S Ñ Qp
ˆ

is a continuous character crystalline at p.
We assume also that χ “ χc and that χ|H1

is trivial.

From now on we fix an isomorphism ι : Qp
„
ÝÑ C. Let ψ : AˆF {Fˆ Ñ Cˆ be the unique

character such that ψv “ ι ˝χv ˝ArtFv for all v - p, where ArtFv : Fˆv Ñ Gab
Fv

is the local
reciprocity map. We say that an automorphic representation Π of GLnpAEq is polarized by
ψ if it is regular algebraic cuspidal and such that Πc » Π_ b pNE{F ˝ ψq. We recall that
if Π is a polarized by ψ automorphic representation of GLnpAEq, there exists a unique
continuous semisimple Galois representation

ρΠ,ι : GalpF {F q Ñ GLnpQpq

p8q[CHT08] is written over a field, but their proof applies here
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satisfying the conditions of [BGGT14, Thm. 2.1].

Definition 3.8. — A point of x P Xχ´pol
ρ pQpq is GLn-modularp9q if there exists a polar-

ized by ψ automorphic representation Π of GLnpAEq such that ρΠ,ι » ρx.

Our goal is to prove a density result for automorphic points in the previous (polarized)
deformation rings. It follows from [CHT08, Lem.4.1.5] that there exists a continuous

character ψ0 : GE,S ÝÑ Qp
ˆ

which is crystalline at p and such that χ “ ψ0ψ
c
0. We fix

such a character ψ0.
We start with the following reduction to lighten slightly the notations in the rest of the

text.

Lemma 3.9. — Assume χ is as before (in particular crystalline at p), and ρ satisfies ρ_ »
ρc b εn´1. Then there is an isomorphism, which identifies modular points,

X 1´pol
ρ

„
ÝÑ Xχ´pol

ρψ´1
0

.

In particular it is enough to prove theorem 1.6 for χ “ 1.

Proof. — Indeed let ψ0 : GE,S ÝÑ Qˆp the crystalline character given by [CHT08]
Lemma 4.1.5. Then ψ0 is automorphic. Moreover, the isomorphism is given by

ρ ÞÝÑ ρψ´1
0 .

This is obviously an isomorphism, and because ψ0 is automorphic it identifies (GLn-
)modular points on both sides.

4. Eigenvarieties and the infinite fern

The are at least two ways to define Eigenvarieties as explained in [BC09], which –
at least – in our case of interest end up to be the same. We will need to assume some
technical hypothesis, see Hypothesis 4.2, on top of the assumption on χ (see Hypothesis
3.7). By the previous lemma, we can assume χ “ 1.

Let ρ be a semi-simple, polarised-by-εn´1 as before and Xpolρ :“ X1´pol
ρ its polarised

pseudodeformation space. Let G be the quasi-split similitude unitary group of dimension
n over Q whose R-points, for R a Q-algebra, are:

GpRq “ tpg, νq P GLnpRbQ Eq ˆR
ˆ | tcpgqJg “ νJu

where J is the n ˆ n matrix

ˆ

0 ¨¨¨ 1
... . .

. ...
1 ¨¨¨ 0

˙

. Moreover let G1 be the kernel of the morphism

ν : GÑ Gm. As p is unramified in E, we also fix a reductive model GZp of G defined by
the similar formula (replacing RbQ E by RbZ OE ).

We fix embeddings Q ãÑ C and Q ãÑ Qp that we use to identify the embeddings of E
(resp. F ) in Qp with the set ΣE (resp. ΣF ) of embeddings of E (resp. F ) in C. We fix a
CM type Φ for E. For σ P ΣE , we use the notation σ “ σ ˝ c. If τ P ΣF , let στ P ΣE be
the unique element such that τ “ στ |F and στ P Φ.

p9qCompare with Definition 4.1.



12 VALENTIN HERNANDEZ & BENJAMIN SCHRAEN

We fix a PEL datum pE, c, V, x¨, ¨y, hq for the previous group G and denote its signature
ppστ , qστ qτPΣF at infinityp10q. In particular we have that pστ ` qστ “ n doesn’t depend on
τ . We define more generally ppσqσPΣE by pσ “ pστ if σ “ στ and pσ “ qστ “ n´ pστ if
σ “ στ . We also sometimes abuse notation and write pτ , qτ for pστ , qστ . Let pG, hq be a
Shimura datum associated to G. We let S “ pSKqK be the tower of Shimura varieties for
pG, hq ([Lan13] or [Her19] which we will use later). Let µ : Gm Ñ GC be the cocharacter
associated to h and let P be the parabolic subgroup fixing the Hodge filtration associated
to µ. Let M be the Levi subgroup of P fixing the Hodge decomposition of VC (defined
over some extension L of the reflex field). Let p be the Lie algebra of P and let K8 be
the centralizer of hpiq in G1pRq.

Definition 4.1. — We say that a polarised-by-εn´1 representation

ρ : GE ÝÑ GLnpQpq,
is modular if ρ is (strongly essentially) associated to a cuspidal algebraic automorphic
representation π for G as in Definition A.2. We say that ρ is holomorphically modular if its
Hecke eigensystem appears in the space of cuspidal sections of some coherent automorphic
sheaf on some Shimura variety of S . This is equivalent to the fact that π is cuspidal and
holomorphic at infinity; i.e. H0pp,K8, π8 b σq ‰ 0 for some algebraic representation σ
of K8 p11q by [Har90b] Proposition 5.4.2.

We say that ρ is modular if it admits a lift ρ which is modular. We say that ρ is
conveniently modular if it has a lift ρ associated to a cuspidal automorphic representation
π which can be chosen unramified at p and outside S and its Hecke eigensystem appears
in i-th interior coherent cohomology group on some Shimura variety of S , with values in
some coherent automorphic sheaf, for some i ě 0.

If Kp is a compact open open subgroup of GpAp,8q, we say that ρ is conveniently
modular of tame level Kp if π can be moreover chosen such that πK

p

‰ 0.

Hypothesis 4.2. — For the rest of the article, we assume that every v|p in F is unramified,
and splits in E. Moreover we assume that ρ is conveniently modular.

In particular, if v is a place of F dividing p, among the two places w,w of E above
v only one, say w, corresponds to an element of Φ. We fix this choice, which allows us
to identify Ew with Fv . Choose a sufficiently large p-adic field L such that M and P are
defined over L and L splits E, i.e. E bQp L “

ś

w|pPE L. Let T be the rigid space over

L given by
ś

v|p HomppFˆv q
n,Gmq, and W “

ś

v|p HomppOˆFv q
n,Gmq the weight space.

There is thus a restriction map
T ÝÑW.

We fix a tame level outside of p, Kp, which is hyperspecial outside S and deep enough
so that ρ is conveniently modular of tame level Kp.

p10qBecause G is quasi-split these integers are explicit, but we keep the slightly general notation as we think it is
a bit clearer.
p11qThese hypothesis are here to assure a concrete (= computable) way to verify if our π "appears" in an
Eigenvariety. We could introduce the notion of p-adically modular for which we ask for a Hecke eigensystem
appearing in the considered Eigenvariety E whose associated trace is tr ρ. It is enough to assume p-adic
modularity for ρ to get Theorem 1.6
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Let Z 1Kp Ă Xχ´polρ pQpq ˆ T pQpq the set of pairs pD, δq where D is the determinant
associated to (the Galois representation of) a cuspidal, regular, algebraic, unramified at p
automorphic form Π for G appearing in degree 0 coherent cohomology p12q by Corollary
A.8, of level Kp outside p, of Hodge-Tate weights kv,τ,1 ą kv,τ,2 ą ¨ ¨ ¨ ą kv,τ,n

p13q for
each v|p in F ,τ , and δ such that for all v, i, δv,τ,i coincides on OˆFv with

ś

τ τ
kv,τ,i and

sends p to φv,i, where φv,1, . . . , φv,n is an admissible refinement for Πv (and obviously
such that D lifts ρ).p14q

Remark 4.3. — By [Box15] Theorem D, [PS16] or [GK15] Theorem I.3.1, we have that,
under the hypothesis 4.2, Z 1Kp is non empty, i.e. we can choose a lift of ρ that is holomor-
phically modular.

Definition 4.4. — The Eigenvariety for G, ρ, χ “ 1 and Kp is the Zariski closure

EKppρq Ă X pol
ρ ˆ T ,

of Z 1Kp . The infinite fern FKppρq is the image of EKppρq by the first projection.

As G is a unitary similitude group with similitude in Q, thus giving rise to a PEL
Shimura datum, and p is unramified in E, we also constructed in [Her19] an Eigenvariety
for G, for any type Kp outside p. Actually these two constructions compare, and allow us
to deduce the following proposition.

Remark 4.5. — Actually we could take G any similitude unitary group with similitude
factor in Q instead of the quasi-split one. Indeed, as long as p is unramified for G the
construction of [Her19] applies and we get the following proposition. In particular, if we
have a result analogous to [Her19] for ramified primes (i.e. for primes v|p in F which are
ramified, but still assuming v “ ww in E) then all the methods of this article applies (see
[BP20]). For the moment, we still need our p-adic group to be (a product of) GLn to use
results on the trianguline variety, but we hope to come back on this question in the future.

Proposition 4.6. — The rigid space EKppρq is equidimensional of dimension nrF : Qs. The
map

h : EKppρq ÝÑW,

is locally, on the goal and the source, finite. In particular the image of any irreducible component
of EKppρq is open inW . Moreover there exists, for all C ą 0, ZC Ă Z 1Kp consisting of classical
points, crystalline at p, which are moreover C-very regular (i.e. its Hodge-Tate weights satisfies
kv,τ,i ą kv,τ,i`1 `C for all v, τ, i) which is Zariski dense and accumulation at every point of
Z 1Kp .

p12qthis means that H0pp,K8, π8 b V q ‰ 0 for a finite dimensionnal representation of K8. In particular D
is holomorphically modular.
p13qWe choose the convention for which the cyclotomic character has Hodge-Tate weight +1
p14qfor these local data at p we have used the implicit choice of w|v
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We need to introduce a few notations. Let T be the diagonal torus of GZp . Its group of
Qp-points has the following description,

T pQpq “

$

’

&

’

%

¨

˚

˝

a1,w

. . .

an,w

˛

‹

‚

P
ź

w|p inE

GLnpEwq, Dr P Qˆp , ai,wan´i`1,w “ r,@i, w

,

/

.

/

-

.

Denote by T 1 the subtorus with trivial similitude character (i.e. r “ 1). We identify T
with the space of characters of T 1pQpq using the isomorphism pFˆv q

n » T 1pQpq sending
pa1,v, . . . , an,vq to the diagonal matrix of GLnpEwq with diagonal pa1,v, . . . , an,vq, via the
identification Ew » Fv where w | v and w P Φ. T pQpq (resp. T 1pQpq) can be identified
also with a subgroup of the L-points of the torus (resp. subtorus of r “ 1 elements) of
M » Gm ˆ

ś

v|p in F

ś

στPHompFv,QpqGLpστ ˆGLqστ , using,
¨

˚

˝

aw,1
. . .

aw,n

˛

‹

‚

w

ÞÝÑ

¨

˚

˝

r,

¨

˚

˝

¨

˚

˝

τpaw,pστ q
´1

. . .

τpaw,1q
´1

˛

‹

‚

,

¨

˚

˝

τpaw,qστ q
´1

. . .

τpaw,1q
´1

˛

‹

‚

˛

‹

‚

τ

˛

‹

‚

Definition 4.7. — Let κ “ pkσ,iq σPΣE
1ďiďpσ

P ZnrF :Qs. We say that a character χ P WpCpq

is algebraic of coherent weight κ if
(2)

@z “ pzv,iq P
ź

v|p

pOˆFv q
n, χpzq “

ź

v|p

pτ“pστ
ź

i“1

στ pzv,iq
kστ ,i

qτ“pστ
ź

i“1

στ pzn`1´iq
´kστ ,i .

We say that an algebraic character of coherent weight κ is M -dominant if kσ,i ě kσ,i`1

for σ P ΣE and 1 ď i ď pσ ´ 1.

This corresponds to the choice of the upper triangular Borel for M , in the sense that
if we have character κ of M which is dominant for the upper Borel of M , then its restric-
tion to T 1pQpq via the previous embedding gives a M-dominant χ in the previous sense.
Suppose χ is algebraic for some coherent weight κ. For h “ phτ,iqτPΣF ,1ďiďn P ZnrF :Qs,
ifp15q

χpzq “
ź

τPΣF

στ pziq
hτ,i ,

then we say that χ is of infinitesimal weight h. We say that such a χ is dominant (or
G-dominant) if hτ,1 ě hτ,2 ě ¨ ¨ ¨ ě hτ,n for all τ .

Proof. — Let E 1 together with a locally finite map w : E 1 ÝÑW the Eigenvariety for G of
tame level Kp constructed in [Her19]. It is an equidimensionnal rigid space of dimension
nrF : Qs.

Let S be a finite set of places of F containing the places dividing p and the places where
Kp is not hyperspecial. For v R S, let Hv be the spherical Hecke algebra ZrGpFvq{{Kp

v s of
G and let HS “

Â

vRS Hv . For v|p, let Av be the (commutative) Z-algebra generated by
T´n pFvq{TnpOFv q and their inverses with Tn the diagonal torus of GLn, and T´n pFvq the

p15qThis just means that kστ ,i “ hτ,i, i ď pτ and ´kστ ,i “ hτ,n`1´i for i ą pτ .
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subgroup of matrices Diagpa1, . . . , anq with vpaiq ě vpai`1q. Let Appq “
Â

v|pApvq be
the Atkin-Lehner algebra. It follows from [Her19, §7]p16q that there exists homomorphism
λ : HS Ñ ΓpE 1,O`E 1q and Appq Ñ ΓpE 1,OE 1q, sending Diagp1, . . . , 1

loomoon

i times

, p´1, . . . , p´1qv to

a Hecke operator Uv,i at v, such that, if z P E 1pCpq, the evaluation of these morphisms
at z induce a non-zero eigenspace in H0pStorK pvq, ωwpzq,:p´Dqq, with K “ KpI , and
I a Iwahori subgroup at p, (which is a space of overconvergent cuspidal forms, defined
in [Her19] Definition 6.12). Moreover if κ P WpCpq is an algebraic character of M -
dominant coherent weight, then the action of HS preserves the subspace of classical forms
H0pStorK , ωκp´Dqq and coincides with the “usual” action of HS on H0pStorK , ωκp´Dqq.

We remind now that E 1 contains an accumulation and Zariski dense subspace of auto-
morphic points that we will call very regular small slope classical points.

Let Z Ă E 1pCpq be the set of points z satisfying [Her19] Proposition 8.2, a slightly
stronger form of Theorem 8.3, namely

(3) maxpnτ ` vppατ q, 0q ă inf
τ
pkστ ,pτ ` kστ ,qτ q, @τ P ΣF

where wpzq is (thus) a G-dominant algebraic character of coherent weight pkσ,iq σPΣE
1ďiďpσ

and ατ is the eigenvalue for the operator Uv,minppτ ,qτ q and nτ is a normalisation constant
depending only on ppτ , qτ qτ , asking that wpzq is moreover far from the walls as in [Har90a]
Lemma 3.6.1. For C ą 0, we define ZC Ă Z adding the condition kσ,i´kσ,i`1 ą C for all
i. For C ąą 0, these points give rise to crystalline representations at p as we will see. Each
of the sets ZC is accumulation in Z , we can thus prove the claim with ZC replaced by Z .
By [Bij16] (see [Her19, Thm 9.4]), if z P Z , the system of eigenvalues corresponding to z
has an eigenvector in H0pStorK , ωκp´Dqq. This implies that actually z P E 1pQpq. It follows
from [SU02], or [Har90a], that there exists a cuspidal automorphic form π of GpAF q such
that πK

p

f ‰ 0, the Satake parameter of πv , v - p, corresponds to λ|Hv
b kpzq and π8 is

tempered of weight ppkστ ,pτ , ¨ ¨ ¨ , kστ ,1,´kστ ,1, ¨ ¨ ¨ ,´kστ ,qτ qqτPΣF ´ ρG´w0,MρG, with
ρG the half-sum of positive roots, as we will explain.

To be able to clearly label the weights, let Php17q be the parabolic corresponding to p,
and choose a Borel, equivalently a set Φ` of positive roots such that if Φ`c is the set of
positive roots contained in the Levi of p, then Φ`nc :“ Φ`zΦ`c is chosen to be included
in gC{p. Equivalently B Ă P opph “ Pµ, the parabolic opposite to Ph. This allows us to
label similarly (classical, dominant) weights of representations of K8 (with respect to Φ`c )
and of G (with respect to Φ`). Let us be more precise for these choices. Let GpQpq our
unitary group, thus given by the hermitian form J , and let T be its diagonal torus, and T 1

the subtorus of elements of similitude 1. We have an embedding

T 1pZpq ÝÑ
ś

τ PΦ GLpτ ,K ˆGLqτ ,K
¨

˚

˝

a1

. . .

an

˛

‹

‚

ÞÝÑ

¨

˚

˝

¨

˚

˝

στ papτ q
´1

. . .

στ pa1q
´1

˛

‹

‚

,

¨

˚

˝

στ paqτ q
´1

. . .

στ pa1q
´1

˛

‹

‚

˛

‹

‚

τ

p16qThere HS is denoted HKp . See also remark 7.12 of [Her19]
p17qalso called P stdµ in other references
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where ai P OE b Zp and aian`1´i “ 1. Writing ai “ pzi, tiq (using the choice of w|v for
all v and zi corresponding to w in Φ), we can rewrite the previous embedding

ι :

ppOF b Zpqˆqn ÝÑ
ś

τ PΦ GLpτ ,K ˆGLqτ ,K
¨

˚

˝

z1

. . .

zn

˛

‹

‚

ÞÝÑ

¨

˚

˝

¨

˚

˝

τpzpτ q
´1

. . .

τpz1q
´1

˛

‹

‚

,

¨

˚

˝

τpzpτ`1q

. . .

τpznq

˛

‹

‚

˛

‹

‚

τ

We choose the diagonal torus and upper Borel for M »
ś

τ GLpτ ˆGLqτ
p18q, which we

see as the Levi for Pµ Ă
ś

τPΦ GLpτ`qτ , the standard lower parabolic with blocs pτ , qτ .
Thus the choice of Φ` for G corresponds to the standard upper Borel. Denote ρG the
half-sum of positive roots in Φ`.

Thus if we choose κ :“ pkσ,iqσPΣE ,1ďiďpσ a dominant (integral) weight for M for
the previous upper triangular Borel, then the algebraic representation of highest weight
κ is constructed using ´w0,Mκ, which induces the weight χ of ppOF b Zpqˆqn which is
algebraic of coherent weight κ in the sense of equation (2). This weight χ is Φ`-dominant
if and only if kστ ,pτ ě ´kστ ,qτ .

Let z P Z , which corresponds to a classical automorphic form (itself giving an automor-
phic representation π) appearing in H0pStorK , ωκq for κ “ pkσ,iqσPΣE ,1ďiďpσ as before,
which is a classical (and M -dominant) weight. Then χ “ wpzq PW is the algebraic char-
acter of weight κ, i.e. is ´w0,Mκ ˝ ι. This sheaf ωκ coincides with the coherent sheaf Vs
over C defined by Harris ([Har90b]), associated to the highest weight s representation of
M “

ś

τPΦ GLpτ ˆGLqτ , with s “ p´kτ,pτ , . . . ,´kτ,1, kτ,1, . . . , kτ,qτ q with the previous
identifications. This calculation is the one done in [FP19] section 7.4, based on [Gol14].
Remark that if χ is algebraic of weight κ and dominant, then the dominant representative
of ´s is given by wtpχq “ pkστ ,1, . . . , kστ ,pτ ,´kστ ,qτ , . . . ,´kστ ,1q. In particular as the
Hecke eigensystem corresponding to z appears in H0pStorK , ωκq thus in H0pStorK pCq, Vsq
this means that

H0pp,K8, π8 b Vsq ‰ t0u,

i.e. that the infinitesimal character of π8 is ´s ´ ρG (up to reordering) by e.g. [Har90b]
Proposition 4.3.2 (see also [BP20] Proposition 5.37). But if z P Z and π an automorphic
representation corresponding to its system of eigenvalues λpzq of HS , then using that
wpzq is far from the walls, by Corollary A.8 there is a semisimple representation ρu “ ρuz :
GE Ñ GLnpQpq such that ρupFrobvq is associated to the semi-simple conjugacy class at
v determined by λ, for all v R S and satisfying moreover

pρuq_ » pρuqc b εn´1.

By for example [BGGT14], the previous calculation of the infinitesimal weight means that
ρu, associated to π, has Hodge-Tate weights given by ´s´ρG´n´1

2 i.e. the v, τ Hodge-Tate
weights of ρuz are (up to order)

pkv,τ,pτ ` 1´ n, kv,τ,pτ´1 ` 2´ n, . . . , kv,τ,1 ` pτ ´ n,´kv,τ,1 ` pτ ´ n` 1, . . . ,´kv,τ,qτ q

p18qThis is actually the subgroup of M of element with similitude factor 1, but in all this discussion we ignore
the similitude factor to simplify the notations.
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which we can reorder to be dominant for very regular z P Z ,
(4)
pkv,τ,1`ppτ´nq, kv,τ,2`ppτ´n´1q, . . . , kv,τ,pτ`1´n,´kv,τ,qτ , . . . ,´kv,τ,1`ppτ´n`1qq.

We first construct a union of connected components of E 1 and a map from this subspace
to X pol

ρ . As in [Che04], we construct a determinant

D : GE ÝÑ OE 1 .

Let z P Z and π an automorphic representation corresponding to its system of eigenvalues
λpzq of HS , as we have seen, by Corollary A.8 there is a semisimple representation ρu :
GE Ñ GLnpQpq associated to λpzq such that

pρuq_ » pρuqc b εn´1.

Let Dz the pseudo-representation of ρuz . The continuous map pDzqzPZ from GE to
ś

xPZ kpxq factors actually through ΓpE 1,O`E 1q and gives rise to a pseudo deformation D
on ΓpE 1,O`E 1q. By continuity, we have D_ » Dcεn´1.

As there is only a finite number of possible reductions modulo p of D, there is E 1pρq
an open and closed subset of E 1 of points whose reduction of D is ptrqρ. This is non
empty by Hypothesis 4.2. In particular the restriction of the previous D to E 1pρq induces
a morphism of rigid analytic spaces

E 1pρq ÝÑ X pol
ρ .

Now we construct a rigid analytic map E 1 Ñ T .
Denote w “ pwv,1, . . . , wv,nqv the universal character of ppOF b Zpqˆqn. In [Her19,

Section 7.2.2] we constructed Hecke operators which are inOpE 1qˆ, denoted by Uv,i for v|p
in F and i “ 0, . . . , n. The operator Uv,i coincides up to normalisation (this normalisation
is made in order to vary in family) with the double class,
ˆˆ

Ii
p´δv“v1 In´i

˙

w

,

ˆ

In´i
p´δv“v1 Ii

˙

w

,

˙

ww“v1| p

P GpQpq Ă
ź

ww“v1|p in F

GLnpEwqˆGLnpEwq.

If U classv,i denotes the action of the (classical, i.e. non normalised) Hecke operator corre-
sponding to the previous Iwahori double class acting on global sections of the classical
automorphic sheaf, for (fixed) algebraic weight w PW , then the normalisation is

Uv,i “ rwv

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
. . .

1
p´1

. . .

p´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

U classv,i ,

where rwv is the (unique) algebraic extension of wv as a character of pFˆv q
np19q, and there

is i times 1 (and n ´ i times p´1) appearing in the matrix (see before and remark 7.5,

p19qThis normalisation factor, which is a power of p, comes when trying to express a character of T , the maximal
torus of G, as one of F b Qˆp . It would be simpler here to explain this normalisation using T . The key point is
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together with remark 8.3 of [Her19]). For all i P t1, . . . , nu, we set

Fv,i :“ Uv,iU
´1
v,i´1.

It corresponds, up to normalisation, to the Hecke operator in Appqp20q

F clv,i :“

¨

˝

¨

˝

Ii´1

pδv“v1

In´i

˛

‚

w

,

¨

˝

In´i
p´δv“v1

Ii´1

˛

‚

w

,

˛

‚

ww“v1| p

P GpQpq,

and the normalisation is the following, for w algebraic of infinitesimal weight h “ phτ,iqτ,i

Fv,i “ rwv

¨

˚

˚

˚

˚

˚

˚

˝

1
. . .

p
. . .

1

˛

‹

‹

‹

‹

‹

‹

‚

F clv,i “ p
ř

τ hi,τF clv,i,

where p is in position i. The all point is that F clv,i R OpE 1q, i.e. they don’t interpo-
late, whereas Fv,i P OpE 1qˆ. We construct characters δ0

v,i : Fˆv ÝÑ OpE 1qˆ by setting
δ0
v,ippq :“ Fv,i and

pδ0
v,iq|OˆFv

“ wv,i,

and we finally set

(5) δv,i :“ δ0
v,i ˆ

ź

τ

xsτ piqτ ˆ |.|
1´n
2 ,

where for τ : Fv ãÑ Cp, xτ |OFv “ τOFv and xτ ppq “ 1, and sτ piq “ 1´n
2 ` pτ ´ i if

1 ď i ď pτ , and sτ piq “ n´1
2 ´ pi ´ pτ ´ 1q if i ą pτ

p21q. Thus the characters pδv,iqv,i
gives a map

E 1 ÝÑ T .
Still denote Z for Z X E 1pρq, which is Zariski dense and accumulation. Now we are

reduced to prove that the two constructed maps E 1pρq ÝÑ X pol
ρ and E 1pρq ÝÑ T are

compatible, in the sense that for z P Z the second map is the parameter of a triangulation
for the image of z via the first map. By local global compatibility at v for π and ρu, we
have that, using πIv ‰ t0u by construction of E 1, that πv is a subquotient of the Borel
induction of an unramified character χ of pFˆv q

n (e.g. [BC09] Proposition 6.4.3 and 6.4.4)
with χ related to the eigenvalues of F classv,i at z (χ “ pϕ1, . . . , ϕnq “ pF

cl
v,1, . . . , F

cl
v,iqδ

1{2
B ).

But Fv,i has a locally constant valuation (thus not F clv,i !), so up to choose another point
of Z close to z, we can assume that this induced representation is irreducible, and thus

that the double class corresponding to Uv,i has similitude factor p´1, thus is not in T 1. But remark that then
the Hecke operator Fv,i has similitude factor 1.
p20qBut not the the double class associated to the following matrix, as the Hecke algebra at Iwahori level is not
commutative! See e.g. [BC09] Proposition 6.4.1 and the remark that follows.
p21qRemark that actually in our quasi split situation we have pτ , qτ which doesn’t depend on τ P Φ. In any case
psτ p1q, . . . , sτ pnqqτ “ w0,M p0, . . . , n´ 1qτ `

1´n
2
“ ´w0,MρG, with ρG defined in the next paragraph.
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unramified. By local global compatibility this proves that there is an accumulation subset
of Z , which accumulates at any point of E with algebraic weight, consisting of points z with
representation ρz semi simple corresponding to Dz , crystalline at every v|p and such that
Dcrispρvq has all its refinement, one of which is given by pDcrispδv,iqq1ďiďn, i.e. pF clv,iqi.
Moreover, the calculation for z P Z we did in equation 4, together with the definition
of the weight of δ in equation 5 implies that the Hodge-Tate weights of ρz are given by
δ|pOFbZpqˆ , in the right order ! This means that the map

D ˆ δ : Epρq ÝÑ X pol
ρ ˆ T ,

sends a dense subset of Z (namely the previous one where points are crystalline) into Z 1Kp ,
but conversely by construction of E 1, all points of Z 1Kp are in the image of the previous
map.

MoreoverDˆδ is a closed immersion. Indeed, by construction E 1 is (locally) constructed
as the image of H b OW “ HS b OT where H “ HS b Appq acting on some space of
overconvergent, locally analytic modular forms (of finite slope). Let U Ă Xχ´pol

ρ ˆ T be
an affinoid, in particular it is quasi-compact thus the slopes of Appq on U are bounded
(say by α). Thus pD ˆ δ´1qpUq is included in Eďαv,w for some v, w (see [Her19]) and then,
by local-global compatibility, it is clear that pD ˆ δq´1pUq ÝÑ U is a closed immersion.
As explained, Z accumulates to any point with classical weight of E 1, thus to Z 1. If we
denote by h the composite of the map

E ÝÑ T ÝÑW,

it coincides with a map

E w
ÝÑW φ

ÝÑW,

where φ is the isomorphism of W given by the definition (5). The properties of the map
h thus comes from the analogous one for w, proven in [Her19] Theorem 9.5 (see also
[Che04] which was the first to prove those properties).

From now on, to lighten notations denote Epρq :“ EKppρq, Fpρq :“ FKppρq Z 1 :“ Z 1Kp

accordinglyp22q.

5. Automorphic forms, infinite fern and big image

Let K be finite extension of Qp and K an algebraic closure of K . Denote vp the p-
adic absolute value of K such that vpppq “ 1. Let K0 Ă K be the maximal unramified
extension of Qp with Frobenius operator σ and set f :“ rK0 : Qps. Let L be a finite
extension of Qp such that K bQp L » LrK:Qps. If pρ, V q is a crystalline representation
of GalpK{Kq, we denote pDcrispV q, ϕq its associated ϕ-module. It is a finite dimensional
free K0 bQp L-module of rank n “ dimL V with a σ b IdL-linear automorphism ϕ. Its
de Rham module DdRpV q is a filtered finite free K bQp L-module. The Hodge-Tate type of
V is the rK : Qps-uple pk1,τ ě ¨ ¨ ¨ ě kn,τ qτ :KãÑL where the ki,τ are the integers m such
that gr´mpDdRpV q bK,τ Lq ‰ 0 counted with multiplicity.

p22qEverything we will say is still dependant of this level Kp. At the end of the article, in corollary 8.11, we show
that there exists an optimal level Kp, but we can’t choose it right away. Compare [Che11] Lemma 2.4
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Definition 5.1. — We say that a crystalline Galois representation pρ, V q over L is Hodge-
Tate regular (or simply HT-regular ) if, for all τ : K ãÑ L, the integers ki,τ are pairwise
distinct. It is said to be ϕ-generic if the linear endomorphism ϕf of the finite freeK0bQpL-
module DcrispV q is split semisimple regular ie has dimL V pairwise distinct eigenvalues
ϕi in L such that ϕi{ϕj R t1, pfu (note that these eigenvalues are in L since ϕf commutes
to the semilinear action of GalpK0{Qpq on DcrispV q given by ϕ).

Remark 5.2. — In [Che11, §3] Chenevier introduced the notion of weakly generic crys-
talline pϕ,Γq-module, i.e. crystalline pϕ,Γq-modules for which all refinements are non-
critical, and weakly-generic crystalline pϕ,Γq-module for which n (the rank of the pϕ,Γq-
module) well-positioned refinements are non critical. It is possible to deduce from the
results of [Che11] that if the classical points of E or X pol

ρ which are weakly-generic at p

are Zariski-dense, then modular points are dense in X pol
ρ (or the closure has at least the

expected dimension). He moreover proves that if n “ 3, every ϕ-generic, HT regular ab-
solutely irreducible pϕ,Γq is automatically weakly generic. Unfortunately it does not seem
to be true anymore even for n “ 4 that absolutely irreducible points are weakly generic, as
shown in the following example, and thus it does not seem any easier to prove that weakly
generic points are dense in X pol

ρ when n ě 4 than proving the analogous result for generic
points.

Example 5.3. — Let pV, ϕ,Fil‚q be the filtered ϕ-module of an irreducible, ϕ-generic,
HT regular, crystalline 4 dimensional representation of GQp with L-coefficients. Choosing
L big enough, we can assume that there exists a basis pf1, f2, f3, f4q of V such that
ϕpfiq “ ϕifi. Refinements of V are thus given by a permutation σ of this basis. By
irreducibility and weak-admissibility, we check that it is impossible for Filk V ‰ t0u, V to
be ϕ-stable. For example, suppose that the HT weights are ´k4 ă ´k3 ă ´k2 ă ´k1 (i.e.
the jumps of the filtration on V are k1 ă k2 ă k3 ă k4) with

– Filk1 V “ă f2, f3, f1 ` f4 ą“ă f2, f2 ` f3, f1 ` f4 ą

– Filk2 V “ă f1 ` f4, f2 ` f3 ą

– Filk3 V “ă f1 ` f4 ą

– Filk4 V “ t0u.

We can check that the non critical refinements are given by σ “ id, p23q, p14q, p14qp23q,
and they don’t form a weakly-nested sequence. Moreover, for generic choices of ki and
vpϕiq, the associated p-adic representation V pDq will be irreducible. Indeed, if vpϕ1q “

vpϕ2q “ vpϕ3q “ 16, vpϕ4q “ 12, k1 “ 0, k2 “ 10, k3 “ 20, k4 “ 30, then we can check
that no non-trivial ϕ-stable submodule of D is weakly-admissible. In particular if we do
not already know that generic points are Zariski dense, it is not likely to prove that weakly
generic ones are.

Moreover we can check that locally the image of the tangeant space of those refined
points doesn’t cover all the tangent space for the corresponding point in the local de-
formation ring (i.e. at this point the analogous of proposition 7.5 only for non-critical
refinements isn’t true). In the following we will use a replacement of those generic points
by the so-called almost generic ones, which are Zariski dense in the fern and for which
we can apply proposition 7.5 and thus Chenevier’s stategy. Remark that some irreducible
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weakly-admissible filtered ϕ-modules of dimension 4 which admits a critical refinement are
weakly-generic, but we don’t know how to discriminate these from the previous example
on the deformation rings (or on the infinite fern).

Denote by Fpρq the Zariski-closure of the image Epρq Ñ Xχ´polρ , i.e. the Zariski closure
of the infinite fern Fpρq.

Definition 5.4. — We say that a Galois representation ρ : GE ÝÑ GLnpQpq has enor-
mous image, if ρpGEpζp8 qq is enormous, in the sense of [NT19] Definition 2.27. We say

that a point x of Epρq (resp. of Xχ´pol
ρ ) is almost generic if it is in Z (resp. in the image of

Z in Xχ´pol
ρ ), the associated Galois representation ρ has enormous image, and if ρ|GEv is

crystalline, ϕ-generic and HT-regular for all v|p.

Let v be a place of E dividing p. Let pρ, V q be a continuous finite dimensional repre-
sentation of GEv over L. It follows from the compactness of GEv that ρpGEv q is a closed
subgroup of GLLpV q. The p-adic analogue of Cartan’s Theorem shows that ρpGEv q is
a p-adic Lie subgroup of GLLpV q so that we can define gρ :“ LiepρpGEv qq (see [Ser89,
Rem. I.1.1]) and gρ,L the L-span of gρ in EndLpV q. Our goal is to prove that almost
generic points are Zariski-dense in the infinite fern Fpρq. Such a result was proven by Taïbi
([Tai16]) in a slightly different (and more difficult) context (improving results of [BC09]). As
the case we consider is easier, and for convenience of the reader, we repeat the argument
in our context.

Denote by Kn{Ev the compositum of extensions of degree dividing n, this is a finite
Galois extension.

Proposition 5.5. — Let pρ, V q be some continuous n-dimensional representation of GEv over
L and assume that pρ|GKn , V q is absolutely irreducible. Then V is a simple gρ,L-module, gρ,L
is a reductive Lie algebra and hρ,L, the semisimple part of gρ,L, is isomorphic to a sub Lie
algebra of slpV q of semisimple rank at most dimL V ´ 1.

Proof. — Let K be a finite extension of Ev , we claim that ρ|GK is absolutely irreducible.
We can assume that K{Ev is Galois. Suppose that ρ|GK is not absolutely irreducible, then
as

ρ : GEv ÝÑ GLLpV q » GLnpLq

is absolutely irreducible and GK is normal in GEv , we have, up to enlarge L, a decompo-
sition into absolutely irreducible GK-representations

ρ|GK “
r
à

k“1

Wk,

and GEv permutes these representations, in particular they have the same dimension. Let
H Ă GEv be the stabiliser of W1, then GEv{H acts transitively on the Wk and thus
rGEv : HsdimpW1q “ n. In particular H “ GK1 with K 1 a finite extension of Ev of
degree dividing n, thus K 1 Ă Kn, but ρ|GKn is irreducible, thus as is ρ|GK1 and thus
r “ 1 i.e. ρ|GK is irreducible.

For each open subgroup H Ă GEv , the representation pρ|H , V q is irreducible, so that
V is a simple gρ,L-module. Thus gρ,L has a simple faithful module, which implies that
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gρ,L is a reductive Lie algebra. Let gρ,L “ aρ,L ‘ hρ,L be the decomposition of gρ,L as
direct sum of an abelian and of a semisimple Lie algebras. As V is an absolutely simple
gρ,L-module, the Lie algebra aρ,L acts on V by scalars and V is an absolutely simple
hρ,L-module. Then aρ,L Ă L IdV and, as hρ,L is semisimple, hρ,L Ă gρ,L X slpV q. As a
consequence hρ,L “ gρ,LXslpV q is a semisimple Lie algebra and V is an absolutely simple
hρ,L-module. As slpV q has rank dimL V ´ 1, the rank of hρ,L is at most dimL V ´ 1.

Proposition 5.6. — There exist finitely many nonzero Q-linear forms Λ1, . . . ,Λr on Qn such
that the following is true: let pρ, V q be a crystalline n-dimensional representation of GFv
over L, with Hodge-Tate weights pk1,σ ď ¨ ¨ ¨ ď kn,σqσ such that pρ|GKn , V q is absolutely
irreducible and such that there exists at least one σ : Fv ãÑ L such that for all 1 ď i ď r,
Λipk1,σ, k2,σ, . . . , kn,σq ‰ 0, then ρpGFv q contains an open subgroup of SLpV q.

Proof. — Let C be some algebraically closed field of characteristic 0. The classification of
semisimple Lie algebras and their representations shows that all semisimple Lie algebras
and their finite dimensional simple modules are defined over Q, that there are finitely
many isomorphism classes of semisimple Lie algebras of bounded rank and that each
of them has finitely many semisimple modules of bounded rank. Consequently, for a
fixed n ě 2, there exist a finite number of pairs phi, θiq where hi is a semisimple Lie
algebra and θi an embedding of hi in sln,Q such that for each semisimple Lie subalgebra
h Ă sln,C , there exists i such that h » hi bQ C and the inclusion is GLnpCq-conjugated
to θi b IdC . As a consequence a Cartan subalgebra of h is conjugated to one of finitely
many Q-linear subspaces of the space of diagonal matrices in sln,C . Moreover it follows
from [Bou, VIII.§3 Prop.2.(ii)] and from Borel-de Siebenthal Theorem ([Kan01, Thm. 12.1])
that a semisimple Lie subalgebra of sln,C containing h is equal to sln,C or of rank strictly
less than n´ 1. Thus there exist finitely many nonzero Q-linear forms Λ11, . . . ,Λ

1
s on Qn

such that if h a semisimple subalgebra of sln,C of rank strictly less than n ´ 1 and x P h
is a semisimple element of eigenvalues λ1, . . . , λn (counted with multiplicities), then there
exists 1 ď i ď s and w P Sn such that wpΛ1iqpλ1, . . . , λnq :“ Λ1ipλwp1q, . . . , λwpnqq “ 0.
We set

tΛ1, . . . ,Λru “ twpΛ
1
iq | 1 ď i ď s, w P Snu.

Let Θ P EndCpbQpL
pCp bQp V q the Sen operator of V . As pρ, V q is Hodge-Tate, it

follows from [Sen73, Thm. 1] that Θ belongs to Cp bQp gρ,L Ă Cp bQp EndQp V .
Suppose L is big enough so that Fv bQp L » LrFv :Qps. Then

Cp bQp L “
ź

σ:Fv ãÑL

Cp bFv,σ L,

decomposes over all embeddings of Fv and let Θσ be the CpbFv,σL-linear endomorphism
of CpbFv,σ V induced by Θ. The eigenvalues of Θσ are the σ-Hodge-Tate weights pk1,σ ď

¨ ¨ ¨ ď kn,σq of pρ, V q (counted by multiplicities).
Assume that Λipk1,σ, . . . , kn,σq ‰ 0 for all 1 ď i ď r. Then by what preceeds, the

element Θσ can’t be contained in a strict semisimple Lie subalgebra of Cp bFv,σ slpV q so
that Cp bFv,σ hρ,L “ Cp bFv,σ slpV q. For dimension reasons, we have hρ,L “ slpV q. We
conclude that ρpGFv q contains an open subgroup of SLpV q.
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Proposition 5.7. — The set of points x P Fpρq such that Tr ρx|GKn is absolutely irreducible
is a Zariski-dense and Zariski-open subset of Fpρq.

Proof. — The fact that the absolutely irreducible locus is Zariski-open is a consequence
of [Che14, §4.2]. In order to prove that it is Zariski-dense, it is then sufficient to prove that
each Zariski-open subset U of Fpρq contains a point x such that Tr ρx|GKn is absolutely
irreducible.

Now we follow the strategy of [BC11] and [Tai16]. Let us fix some notation. If x “
pρx, δxq P Z 1 Ă Epρq and σ : Kn ãÑ Qp, we let pkσ,1pxq ď ¨ ¨ ¨ ď kσ,npxqq the Hodge-
Tate weights at σ of ρx|GKn and pφ1pxq, ¨ ¨ ¨ , φnpxqq P kpxqn the ordered eigenvalues
of the linearized Frobenius of Dcrispρx|GKn q corresponding to the refinement of ρx|GFv
defined by δx,v . We also set kipxq “

ř

σ kσ,ipxq. Let e be the ramification index of
Kn{Qp. The functions x ÞÑ vppφipxqq ` e´1kipxq are therefore locally constant on Z 1.
Now fix U a Zariski open non empty subset of Fpρq. We have U X Fpρq ‰ H so that the
inverse image V of U in Epρq is a non empty Zariski-open subset. Let x P V X Z 1. Let
c ě maxi|vppφipxqq ` e´1kipxq| and larger than n2 ` 1 and let Z2c be the subset of point
z P Z 1 such that ki`1pzq´kipzq ą cenpkipzq´ki´1pzqq 2 ď i ď n´1, 2 ď i ď n´1, and
k2pzq´k1pzq ą 3cen. If z P Z2c , then |

ř

iPI kipzq´
ř

iPJ kipzq| ą cen for all distinct non
empty proper subsets I and J of the same cardinal in t1, . . . , nu (by the same proof than
[BC09, Lem. 4.5.5]). Then Z2c is Zariski dense and accumulates at Z 1 in Epρq. Therefore
there exists a point y P Z2c X V such that moreover maxi|vppφipyqq ` e´1kipyq| ď c.
Then, for i ‰ j,

|vppφipyqq ´ vppφjpyqq| ě
1

e
|kipyq ´ kjpyq|´ |vppφipyq `

kipyq

e
|´ |vppφjpyqq `

kjpyq

e
|

ą 3cn´ c´ c ą 1.

In particular, φipyq{φjpyq ‰ p, so if Π is an automorphic representation correspond-
ing to y, we have that Πv is an irreducible principal series. In particular, all its refine-
ments are accessible. Now we choose a transitive permutation σ of t1, . . . , nu and, since
all the refinements of Πv are accessible, there exists z0 P Z 1 such that ρy » ρz0 and
pφ1pz0q, . . . , φnpz0qq “ pφσp1qpyq, . . . , φσpnqpyqq. As in the proof of [BC11, Lem. 3.3],
we deduce that

ř

iPI vppφipz0qq ` e´1kipz0qq ‰ 0 for any non empty proper subset I
of t1, . . . , nu. Let C “ maxi

∣∣vppφipz0qq ` e
´1kipz0q

∣∣. Let Z 1C be the subset of point
z P Z 1 such that kσ,j`1pzq ´ kσ,jpzq ą C for any σ P HompKn,Qpq and 1 ď i ď n ´ 1.
The set Z 1C is Zariski-dense and accumulates at Z 1 in Epρq so that there exists a point
z P V X Z 1C such that

ř

iPIpvppφipzqq ` e´1kipzqq ‰ 0 for any non empty proper subset
I of t1, . . . , nu. By [Tai16, Lem. 3.2.3], if D1 Ă Dcrispρz|GKn q is a nonzero proper weakly
admissible sub-ϕ-module, then there exists a non empty proper subset I Ă t1, . . . , nu
such that

ÿ

iPI

vppφipzqq ` e
´1

ÿ

iPI

kipzq “ 0

which is not possible. Therefore ρz|GKn is absolutely irreducible.

Theorem 5.8. — The set of points x in Fpρq which are in the image of the set Z , which
are crystalline ϕ-generic and HT-regular and such that ρxpGFv q contains an open subgroup of
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SLpVxq is a Zariski dense accumulation subset. As a consequence, the set Xmod,ag “ tx P

Fpρq|x is almost generic u Ă Fpρq is a Zariski dense accumulation subset.

Proof. — Let Λ1, . . . ,Λr be nonzero Q-linear forms on Qn as in Proposition 5.6. Let σ
be some fixed embedding of Fv into K . The set of classical points x P Epρq which are
crystalline and such that the σ-Hodge-Tate weights of the representation ρx are not zeros
of all the Λi form a Zariski dense accumulation subset in Epρq (this is a direct consequence
of the open image of Proposition 4.6 ; see [Tai16] Proposition 2.2.6). As a consequence
Fpρq is the Zariski-closure of the images of these points in Xχ´pol

ρ . By Proposition 5.7, the

subspace of Xχ´pol
ρ where ρx|GKn is absolutely irreducible is Zariski-open and Zariski-

dense in Fpρq. We conclude from Proposition 5.6 that the set of classical points x such
that ρx has an open image is Zariski-dense and an accumulation subset in Fpρq.

It is enough to prove that classical points such that ρxpGFv q contains an open sub-
group of SLpVxq have enormous image. At such a point x, the Zariski closure of ρxpGEq
contains SLpVxq. As Epζp8q{E is abelian, the derived subgroup ρxpGEq is included in
ρxpGEpζp8 qq. By [Bor91, I §2.1 (e)], the Zariski closure of ρxpGEpζp8 qq contain the derived
subgroup of the Zariski closure of ρxpGEq and then contains SLpVxq. It follows from
[NT19] Lemma 2.33, that ρxpGEpζp8 qq is enormous.

6. A lemma on Borel enveloppes

This section is independant of the rest of the text, thus its notations should be con-
sidered unrelated to the rest also. Fix n an integer, k a field, G “ GLn{k, B the upper
triangular Borel, T its diagonal torus, g, b, t their respective Lie algebras.

Lemma 6.1. — For every Borel algebra b1, we have

b1 “
ÿ

wPC1n

pb1 X bwq
gr“w0 ,

where w0 PW » Σn is the longuest element for the order given by b, bg “ g´1bg, C1n is, up to
translation by an element of Sn depending on b1, the set of “full” cycles :

Cn “ tci,j :“ pi, i´ 1, . . . , j ` 1, jq P Σn|i ě ju,

and for g, h P G,

pbg X bhq
gr“w0 “ tM P bg X bh|hMh´1 pmod uq “ Adpw0qpgMg´1 pmod uqq P tu.

Proof. — We can write b1 “ bg for g P G. Let g “ uls, u P b, l P bw0
lower triangular i.e.

l “ w0bw0 with b P B, and s PW . Thus bg “ pbw0
qbq , for q “ w0s PW . Up to conjugate

by bq, we check at once that it is enough to show

bw0 “
ÿ

wPCn

pbw0 X bwb´1qgr“w0 .

Thus we reduce to show the following lemma :
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Lemma 6.2. — For all i ě j, there exists x` P k such that

ai,j :“ δi,j `
i
ÿ

`“j`1

x`δ`,j P pbw0
X bci,jb´1qgr“w0 .

Proof. — We follow the proof of [HMS22]. For i ě j, let ai,j be the element constructed
at the beginning of the proof of Lemma 2.1 in loc. cit. For the convenience of the reader
we recall its construction. Let e1, . . . , en be the standard basis of kn and let V‚ be the
standard flag of kn. Let B be the basis

bpe1q, bpe2q, . . . , bpej´1q, ej , bpej`1q, . . . , bpeiq, ei`1, . . . , en

of kn. Then ai,j is the matrix, in the standard basis, of the endomorphism π of kn defined
by πpxq “ 0 if x P Bzteju and πpejq “ ei. As in loc. cit. we check that

(i) e` P kerpπq if ` ă j or ` ą i;
(ii) Impπq Ă kei and πpejq “ ei;
(iii) the endomorphism b´1πb stabilizes the flag c´1

i,j V‚.

The first two points are checked in loc. cit. The third point follows from the fact that

(6) b´1πbpc´1
i,j V`q “

#

0 if ` “ 1, . . . , i´ 1

kb´1peiq if ` ě i

and kb´1peiq P Vi “ c´1
i,j Vi. This shows that the matrix ai,j is an element of bw0

Xbci,jb´1

and has the form

(7) δi,j `
i
ÿ

`“j`1

x`δi,k

for some x` P k.
It remains to check that ai,j P pbw0 X bcj,ib´1qgr“w0 which is equivalent to check that

the diagonal elements of ai,j and Adpci,jb
´1qai,j are the same. It follows from (6) that

pAdpci,jb
´1qπqpe`q “

#

0 if k ă i

ci,jb
´1peiq if k “ i

and pAdpci,jb
´1πqqpe`q P Vi if ` ą i. Therefore the diagonal of Adpci,jb

´1qai,j is zero
except for the coefficient pi, iq. On the other hand, we see by (7) that the diagonal entries
of ai,j are all zero except pi, iq. As the matrices ai,j and Adpci,jb

´1qai,j are conjugated
they have the same trace and thus the same diagonal.

7. Local deformation rings

The aim of this section is to prove Proposition 7.5. We are now in a purely local
situation, and thus we freely use notations (in this section only) that were used before,
hoping it will not lead to any confusion.

Let k be a field of characteristic 0. Let G be a split reductive group over k, B Ă G
a Borel subgroup of G, T Ă B a maximal split torus of G, U the unipotent radical of
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B and U´ the unipotent radical of the opposite Borel subgroup to B with respect to T
(in particular U´ X B “ t1u). Let W :“ NGpT q{T be the Weyl group of pG,T q. Let
g, b, t, u, u´ be the respective Lie algebras of G, B, T , U , U´. Let g̃ Ă g ˆ G{B be
the Grothendieck simultaneous resolution of g and X :“ g̃ ˆg g̃. We recall that X has
irreducible components Xw which are indexed by the elements of the Weyl group W (see
[BHS19, Def. 2.2.3]). The map g̃ Ñ t sending pψ, gBq to the projection of Adpgq´1ψ on
t via b{u » t gives rise to two different maps κ1, κ2 : X Ñ t corresponding to the two
projections X Ñ g̃ and to a map κ :“ pκ1, κ2q : X Ñ t ˆt{W t. If w P W , we let tw Ă t
be the subspace of elements fixed by w and Tw Ă tˆt{W t be the irreducible component

Tw :“ tpx1, x2q P tˆ t | x1 “ Adpwqx2u.

The space X has a partition by locally closed subschemes Vw defined as inverse images
of the Bruhat strata Uw Ă G{B ˆG{B by the map π : X Ñ G{B ˆG{B and Xw “ Vw .
We have an inclusion κpXwq Ă Tw ([BHS19, Lem. 2.5.1]).

Proposition 7.1. — Let x “ pg1B, 0, g2Bq P Xw0pkq Ă Gpkq{Bpkq ˆ g ˆ Gpkq{Bpkq be
a k-point. Let w P W be such that x P Vw and assume that w0w

´1 is a product of distinct
simple reflexions. Then we have an equality of k-vector spaces

TxXw0
“ Txκ

´1pTw0
q.

Proof. — The inclusion Xw0 Ă κ´1pTw0q induces an inclusion TxXw0 Ă Txκ
´1pTw0q.

We will prove that these two k-vector spaces have the same dimension.
Let krεs :“ krXs{pX2q. The tangent space Txpκ´1ptw0

qq is the set of krεs-points
pg̃1B, εA, g̃2Bq of X specialising to x such that moreover

(8) Adpg̃1q
´1pεAq “ Adpw0qAdpg̃2q

´1pεAq

in t bk krεs. Let x̃ “ pg̃1B, εA, g̃2Bq be such a point. We can write g̃i “ gip1 ` εhiq,
where hi P u´. Using ε2 “ 0, the condition x̃ P Xpkrεsq is equivalent to Adpg´1

i qA P b

for i P t1, 2u. The condition (8) is then equivalent to Adpg´1
1 qA “ Adpw0qAdpg´1

2 qA
in t. Note that, up to changing x by a point of its Gpkq-orbit, we can assume, without
changing the dimensions of the tangent spaces, that g1 “ 1 and g2 “ w. The conditions
above are then equivalent to

A P tw0w
´1

` puXAdpwquq

which is a k-vector space of dimension dimk t
w0w

´1

` lgpw0w
´1q. As w0w

´1 is a product
of distinct simple reflexions, we have ([Car72, Lem. 2 & 3])

dimk t
w0w

´1

“ dimk t´ lgpw0w
´1q.

Namely, we have aW -equivariant isomorphism t » HompX˚pT q, kq, so that it is sufficient
to prove that

dimRpX
˚pT q b Rqw

1

“ dimRpX
˚pT q b Rq ´ lgpw1q

when w1 is a product of simple reflexions. Let V be the subspace of X˚pT qbR generated
by the roots of pG,T q. It is stable under W and has a direct summand on which W is
acting trivially. It is therefore sufficient to prove that

dimR V
w1 “ dimR V ´ lgpw1q.
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As W is a finite group, dimR V ´ dimR V
w1 is equal to the number of eigenvalues of

w1 acting on V which are different from 1. By [Car72, Lem. 2], this number is equal to
the number lpw1q of loc. cit. (which is a priori not lgpw1q). By [Car72, Lem. 3], we have
lpw1q “ lgpw1q since the set of simple roots is a set of linearly independent vectors of V .

Finally we deduce that

dimk Txpκ
´1pTw0

qq ď dimkpG{B ˆG{Bq ` dimk t “ dimG.

On the other hand, we know that Xw0 is irreducible of dimension G. Consequently we
have

dimG ď dimk TxXw0
ď dimk Txκ

´1pTw0
q ď dimG

so that TxXw0
“ dimk Txκ

´1pTw0
q.

Lemma 7.2. — Let w P W and b P B. Then the point wB is in the closure of the T -orbit of
bwB in G{B.

Proof. — Let ν be a cocharacter of T such that xν, αy ą 0 for all positive root α of
pG,B, T q. Then the map Gm Ñ G defined by νuν´1 for u in the unipotent radical of B
extends to a map A1 Ñ G sending 0 to 1, thus as does the map νbν´1. Consequently, as
w normalises T , wB is in the closure of the image of the map

t ÞÑ νptqbwB “ νptqbνptq´1wB.

Lemma 7.3. — Let pw1, w2q P W
2 and let b P B. If pw1B, bw2Bq P Uw Ă G{B ˆG{B,

we have w´1
1 w2 ď w in the Bruhat order.

Proof. — If t P T , we have tw1B “ w1B in G{B so that pw1B, tbw2Bq P Uw . It follows
from Lemma 7.2 that w2B is in the closure of the set ttbw2B | t P T u so that pw1B,w2Bq
is in the closure if Uw . As the closure of Uw is the union of the U 1w with w1 ď w and
pw1B,w2Bq P Uw´1

1 w2
we obtain the result.

From now on we consider K{Qp a finite extension, and denote Γ “ GalpKpζp8q{Kq.
We fix L a finite extension of Qp that splits K , i.e.

LbQp K » LrK:Qps.

We follow to the notation of [KPX14] concerning pϕ,Γq-modules over Robba rings. Let
RpπKq be the Robba ring for K (see [KPX14] definition 2.2.2). We define t P RpπKq by
t “ logp1` πKq. Let CL be the category local artinian OL-algebra A with maximal ideal
mA such that the natural map kL Ñ A{mA is an isomorphism. If A is an object of CL,
we denote RApπKq :“ A bQp RpπKq. We refer to [KPX14, Def. 2.2.12] for the notion of
pϕ,Γq-module over RApπKq. Let D be a pϕ,Γq-module over RLpπKq. We denote

XD : CL ÝÑ Sets

the deformation functor of D, i.e. for an object A of CL, XDpAq is the set of isomorphism
classes of pairs pDA, iAq whereDA is a pϕ,Γq-modules overRApπKq and iA : LbADA »

D is an isomorphism of pϕ,Γq-modules. If pρ, V q is a continuous representation of GK on
a finite dimensional L-vector space, the functor Drig of [Ber02] induces an isomorphism
of deformation functors (see [HMS22, §3.6] for details)

Drig : XV
„
ÝÑ XDrigpV q.
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Let F‚ “ pFiliDrt
´1sqiPZ be an increasing filtration of Drt´1s by sub-pϕ,Γq-modules

over RLpπKqrt
´1s which are direct factors as RpπKqrt´1s-modules, we define similarly

XD,F‚ : CL ÝÑ Sets

the deformation functor of the pair pD,F‚q, i.e. for A in CL, the set XD,F‚pAq is the set
of isomorphism classes of triples pDA, F‚,A, iAq where pDA, iAq P XDpAq and F‚,A is a
filtration of DArt

´1s by pϕ,Γq-stable RApπKqrt
´1s-submodules which are direct factors

of DArt
´1s in the category of RApπKqrt

´1s-modules and such that iApLbA F i‚,Aq “ Fi
for all i P Z.

We recall some notations of [BHS19] section 3 and we refer the reader to loc. cit. for
more precisions. LetW be an LbQp BdR-representation of GK which is almost de Rham.
LetW` be aGK-stable LbQpB

`
dR-lattice ofW . Let XW : CL ÝÑ Sets be the deformation

functor ofW , which means that XW pAq is the set of isomorphism classes of pairs pW`
A , iAq

such that W`
A is a finite free A bQp B

`
dR-module endowed with a continuous semilinear

action of GK and iA is a GK-equivariant isomorphism LbAW
`
A »W` of LbQp B

`
dR-

modules. If we fix an LbQpK-linear isomorphism α : pLbQpKq
n „
ÝÑ DpdRpW q we can

define Xl

W` : CL ÝÑ Sets the deformation functor of the pair pW`, αq. Let F‚ be a GK-
stable flag of LbQp BdR-submodules ofW , we define XW`,F‚ the deformation functor of
the pair pW`,F‚q and Xl

W`,F‚ the deformation functor of the triple pW`,F‚, αq.
Now we fix G “ GLn,K , B Ă G the Borel subgroup of upper triangular matrices

and T Ă B the maximal torus of diagonal matrices. We recall that g is the K-Lie
algebra of G and X “ rg ˆg rg. We also note XK{Qp and rgK{Qp their Weil restric-
tions from K to Qp. If A is an object of CL and pW`

A ,F‚,A, αAq is an element of
Xl

W`,F‚pAq, we can produce an element of XK{QppAq by sending pW`
A ,F‚,A, αAq to

xA :“ pα´1pDpdRpF‚qq, NWA
, α´1pFil‚

W`
A
qq. By [BHS19] Corollary 3.5.8, this map is a

bijection. This implies that the functor Xl

W`,F‚ is pro-represented by the complete local
ring of X at xL.

Let w P W » S
rK:Qps
n . Recall that XK{Qp,w is the irreducible component of

pXK{QpqL » pX ˆK LqrL:Ks associated to w. Let D be a crystalline pϕ,Γq-module over
RLpπKq, together with a filtration F‚ of Dr1{ts. Let W` “ W`

dRpDq, W “ W`rt´1s

and F‚ “ WdRpF‚q. As D is crystalline, the BdR-representation W is de Rham and
thus almost de Rham. The functors WdR and W`

dR induce a morphism of functors
XD,F‚ Ñ XW`,F‚ . If D is moreover assumed to be ϕ-regular, this morphism if formally
smooth by [BHS19, Cor. 3.5.4].

We define Xw,l
W`,F‚ as the subfunctor of Xl

W`,F‚ pro-represented by the quotient of
pOXL,xL corresponding to the complete local ring of XK{Qp,w at xL (with the convention
that it is empty if xL R Xw). We also define XwW`,F‚ Ă XW`,F‚ as the image of Xl,w

W`,F‚
via Xl

W`,F‚ ÝÑ XW`,F‚ and we define XwD,F‚ Ă XD,F‚ as the inverse image of XwW`,F‚
by XD,F‚ Ñ XW`,F‚ .

We assume from now that D is crystalline and ϕ-generic (see [HMS22, §3.3]). Let
Xcris
D Ă XD be the subfunctor of crystalline deformations of D. Let F‚ be a triangulation

of D, we use the same symbol for the filtration induced on Dr1{ts.
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Lemma 7.4. — We have a inclusion Xcris
D Ă Xw0

D,F‚
.

Proof. — It follows from [HMS22, §3.3] that Xcris
D Ă XD,F‚ . We fix an isomorphism of

L bQp K0-modules β : pL bQp K0q
n » DcrispDq such that β b IdK “ α. Let Xcris,l

D be
the functor of crystalline deformations of the pair pD,αq. Let’s consider the composite

Xcris,l
D ÝÑ Xl

D,F‚
ÝÑ Xl

W`
dRpDq,WdRpF‚q

.

Let A P CL and let pDA, αAq P Xcris,l
D pAq and let pDA, αA, F‚,Aq be its image in

Xl
D,F‚

pAq. As DA is crystalline, the operator νA on WdRpDAq is zero.
Now we remark that the schematic inverse image of t0u by the natural map

pXK{QpqL Ñ pgK{QpqL of L-schemes is contained in the irreducible component
XK{Qp,w0

. Namely it is sufficient to prove the inverse image Z of t0u by the natural map
of K-schemes X Ñ g is contained in Xw0

. But Z is G{B ˆ t0u ˆ G{B which is the
Zariski closure of Vw0

X pG{B ˆ t0u ˆG{Bq, so that Z Ă Xw0
.

This implies that the image of pDA, αA, F‚,Aq in XW`
dRpDq,WdRpF‚q

pAq is contained in

Xw0

W`
dRpDq,WdRpF‚q

pAq and finally that Xcris,l
D Ă Xw0,l

D,F‚
and Xcris

D Ă Xw0

D,F‚
.

We can now prove the main result of this section.

Proposition 7.5. — Let D be a φ-generic, regular, crystalline, pϕ,Γq-module over RLpπKq
and let TripDq be the set of triangulations of D. Then the following L-linear map is surjective:

à

FPTripDq

TXw0

D,Fr1{ts ÝÑ TXD.

Proof. — Let U be the kernel of the map TXD Ñ TXW`
dRpDq

. It follows from Lemma 7.4
as in [HMS22, Cor. 3.13] that the following sequence is exact

0 ÝÑ U ÝÑ TXw0

D,Fr 1t s
ÝÑ TXw0

W`
dRpDq,WdRpFr 1t sq

ÝÑ 0.

Therefore we have the following commutative diagram

0 0

À

FPTripDq U U 0

À

FPTripDq TX
w0

D,Fr 1t s
TXD

À

FPTripDq TX
w0

W`
dRpDq,WdRpFr 1t sq

TXW`
dRpDq

0

ř

W`
dR
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Thus to prove that the middle horizontal arrow is surjective, it is sufficient to prove that
the bottom horizontal arrow is surjective. As Xl

D Ñ XD is formally smooth, it is sufficient
to prove that the map

à

FPTripDq
TXw0,l

W`
dRpDq,WdRpFr 1t sq

ÝÑ TXl

W`
dRpDq

is surjective. Let F “ WdRpFr1{tsq and xL P XK{QppLq be the corresponding point. It
follows from [BHS19, Thm. 3.2.5 & Cor. 3.5.9] that the vertical arrows in the following
commutative diagram are isomorphisms

Xl

W`,F
Xl

W`

{pXK{Qp,LqxL
pprgK{Qp,Lqπ2pxLq

» »

π2

(π2 is induced by the second projection rgˆg rgÑ rg).
Recall that we have a decomposition XK{Qp,L »

ś

τPΣXτ where Xτ » L ˆK,τ X

and rgK{Qp,L »
ś

τPΣ rgτ and the map π2 is of the form pπ2,τ qτPΣ with π2,τ the base
change of the second projection X Ñ rg. Moreover the irreducible component of XK{Qp,L
corresponding to the longest element is isomorphic to

ś

τPΣXw0,τ with w0 the longest
element of Sn.

Therefore we have to prove that the map

à

τPΣ

à

FPTripDq

pXw0,τ,xL,τ ÝÑ
à

τPΣ

p

rgτ,π2,LpxL,τ q

is surjective at the level of tangent spaces. As the formation of tangent spaces commutes
with finite products, it is sufficient to prove that for a fixed τ P TripDq, the following map
is surjective

à

FPTripDq

pXw0,τ,xL,τ ÝÑ
p

rgτ,xL,τ .

Now up to change the basis α, we can assume that there is a non-critical triangulation
F such that, for all 1 ď i ď n, LbK,τ DpdRpFiq is generated by the first i vectors of the
canonical basis. Thus its stabilizer is the standard Borel. Now by non criticality we can
assume that the τ -part of the Hodge filtration is given by an element h “ bw0 P BpLqw0.
Thus the previous surjectivity is equivalent to the following equality

Imp
ÿ

wPSn

TpwBpLq,0,hBpLqqXw0,τ ÝÑ Tp0,hBpLqqrgτ q “ Tp0,hBpLqqrgτ .

Let σ P W » Sn be such that pwBpLq, 0, hBpLqq P Uσ . We claim that if w “ ci,j :“
pi, i´ 1, . . . , jq, with i ě j, then w0σ

´1 is a product of distinct simple reflections. Namely
it follows from Lemma 7.3 that w´1w0 ď σ so that w0σ

´1 ď w and, as w is a product of
simple reflections, so is w0σ

´1.
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By Proposition 7.1, we deduce that

Tpci,jBpLq,0,hBpLqqXw0,τ “ Tpci,jB,0,hBqκ
´1pTw0

q

“ Tci,jBpLqG{B ‘ pci,jbc
´1
i,j X hbh

´1qgr“w0 ‘ ThBG{B.

Now we can use Lemma 6.1, and conclude that

Imp
ÿ

wPSn

TpwB,0,hBqXw0,τ ÝÑ Tp0,hBqrgτ q

Ą Imp
ÿ

iěj

Tpci,jB,0,hBqXτ,w0 ÝÑ Tp0,hBqrgτ q

“

˜

ÿ

iěj

pci,jbc
´1
i,j X hbh

´1qgr“w0

¸

‘ ThBG{B “ hbh´1‘ ThBG{B “ Tp0,hBqrgτ .

8. Global and local settings

Let x P Xmod,ag . Then x correspond to a cuspidal automorphic representation π of G.
Let Π be the isobaric automorphic representation of GLn,E associated to π by Theorem
A.6.

Proposition 8.1. — The representation Π is actually cuspidal and thus generic.

Proof. — We have
Π “ Π1 ‘ Π2 ‘ ¨ ¨ ¨‘ Πk

and a character χπ where Πi is a regular algebraic cuspidal automorphic representation
of GLni such that Πi b χ´1

π is self-dual. Thus as ρx “ ρπ is up-to-twist by a character
given by ρΠ “ ρΠ1

‘ ¨ ¨ ¨ ‘ ρΠk but as x is in Xmod,ag , ρπ is irreducible, thus k “ 1 and
Π is cuspidal. In particular it is generic by Piatieski-Shapiro, Shalika ([CKM04] Theorem
8.5).

Corollary 8.2. — Let pρx, Vxq be the representation corresponding to a point x P Xmod,ag .
For all v P S, v - p, we have H0pGv, adpVxq

˚p1qq “ t0u, in particular H1pGv, adpVxqq “
H1
f pGv, adpVxqq.

Proof. — Let π be the automorphic representation associated to x. Since v is split
in E, the representation pρx|Gv , Vxq is a twist of the image of πv by the local
Langlands correspondence. By Proposition 8.1, the representation πv is generic thus
H0pGv, adpVxq

˚p1qq “ HomGv pVx, Vxp1qq “ t0u, thusH
1pGv, adpVxqq{H

1
f pGv, adpVxqq

vanishes too (for example [Bel09] Proposition 2.3 (i)).

Theorem 8.3 (Newton-Thorne). — Let x P Xmod,ag and let rx : GF,S Ñ GnpQpq be the
associated representation. Then H1

f pGF,S , adprxqq “ t0u.

Proof. — This is consequence of [NT19, Thm. A]. Namely as x P Xmod,ag , the representa-
tion rx is associated to an automorphic representation π whose base change to GLnpAEq
is cuspidal algebraic and regular by Proposition 8.1.
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Let x P Xmod,ag and let pρx, Vxq be the associated representation of GE,S over a
finite extension of kpxq. Our goal is to prove Theorem 8.7, which is invariant by scalar
extension, thus we freely extend scalars of Xχ´pol

ρ to assume ρx is defined over kpxq.
Let F be a refinement of pρx, Vxq, that is, a family pFvqvPSp where Fv is a refinement
of the crystalline representation pρx|Gv , Vxq. Let xF P E be the classical dominant point
corresponding to ρx and the refinement F . If what follows, if X is a rigid space and
x P X , we set pXx :“ SpecpzOX,xq. The projection map E Ñ Xρ induces a morphism

pExF Ñ
{

´

Xχ´pol
ρ

¯

x
» Xχ´polρx . For each v P Sp, let ρx,v “ ρx|Gv , which is irreducible,

and consider the composite map

yExF ÝÑ
{

´

Xχ´pol
ρ

¯

x
» Xχ´polρx ÝÑ Xρx,v .

In the previous section, and in terms of ϕ,Γ-modules, we have defined deformation spaces
Xqtri,wρv,F :“ XwDrigpρvq,Fr1{ts which we call quasi-trianguline. Denote also Xcrisρv :“ XcrisDrigpρvq

the crystalline deformation ring (see [Che11, page 24] or [HMS22, page 18]).

Lemma 8.4. — The map yExF Ñ Xρx,v factors through X
qtri,w0

ρx,v,Fv .

Proof. — Let ρv : GFv Ñ GLnpkq be the composite of ρ with GFv ãÑ GE,S and let Xl
ρv

be the framed deformation space of ρv . Let Xtripρvq Ă Xl,rig
ρv

ˆ
yFˆv

n

be the trianguline

variety. We choose y P Xl
ρv

:“ Xl,rig
ρv

be a point such that ρy is conjugated to ρx,v and let
yFv be the dominant point of Xtripρvq corresponding to y and to the refinement Fv . The
projection map Xtripρvq Ñ Xl,rig

ρv
induces a map {XtripρvqyFv

Ñ Xl
ρy and, by [BHS19,

Cor. 3.7.8], this morphism factors through Xl,w0

ρy,Fv . As X
l,w0

ρy,Fv is the pullback of Xw0

ρy,Fv by
the formally smooth map Xl

ρy Ñ Xρy , it is sufficient to prove that there exists, locally at
x, a factorization

E Xtripρvq Xl
ρv

Xρv
sending xF on yFv , where Xρv is the rigid fiber of the pseudo-deformation space, as in
Definition 3.2. As ρxF is irreducible, it follows that there exists some affinoïd neighbor-
hood U of xF in E and a continuous morphism ρV : GE,S Ñ GLnpOpUqq such that
TrpρU qpzq “ Trpρzq for all z P U . Indeed, by [Che14] Theorem 2.22 there is a repre-
sentation ρA : GE,S Ñ GLnpOE,xF q whose trace is D|OE,xF

. As OE,xF is a direct limit
over U , there exists such a U (see [BC09] Lemma 4.3.7 for a precise argument). This

gives us a map U Ñ Xl
ρv

and even U Ñ Xl
ρv
ˆ
yFˆv

n

. As the set Z 1 is Zariski-dense and
accumulation in E , we can choose U so that U X Z 1 is Zariski-dense in U . A point of

U XZ 1 is sent to a point of Xtripρq by U Ñ Xl
ρv
ˆ
yFˆv

n

(by definition of Xtripρq, [BHS19]
section 3.7) so that we obtain the desired section.
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For a global representation ρ of GF , or a polarised representation of GE , ρp “ pρvqv| p
where v| p in F . Then we write Xqtri,wρp,F :“

ś

v|p X
qtri,w
ρv,Fv and Xcrisρp :“

ś

v|p X
cris
ρv .

Definition 8.5. — Let x “ pρp,Fq be a local representation of GK , with F a (quasi-)
triangulation of ρp i.e. of Drigpρpqrt

´1s. We associate to x “ pρp,Fq a permutation

wx P S
rK:Qps
n measuring the relative position of F and the Hodge filtration of ρp (see

[BHS19] before Proposition 3.6.4). We say that x, or F , is associated to a product of
distinct transpositions if wx is a product of distinct simple transpositions.

The following corollary is very similar to [Ber20] and [BHS19].

Corollary 8.6. — For x P Xmod,ag as before, and a refinement F , which is associated to a
product of distinct transpositions. Then xF is a smooth point of E and we have an isomorphism

TxFE
„
ÝÑ TXqtri,w0

ρx,p,F {TX
cris
ρx,p .

Proof. — Denote by Xχ´polρx the (equicharacteristic) χ-polarised global deformation space

of tr ρx. It is the completion of Xχ´pol
ρ at ρx by [Che14, section 4.1]. Denote by Xtri

ρx,F the

fiber product Xχ´polρx ˆXρx,p
Xqtri,w0

ρx,p,F . We have a map

yExF ÝÑ Xtriρx,F ,

induced from the map yExF ÝÑ Xqtri,w0

ρx,v,Fv and zEx,F ÝÑ Xχ´polρx . But then the standard
argument that

f : OXtri
ρx,F

ÝÑ {OEx,F ,

is surjective comes from the fact that ExF is topologically generated by OXχ´polρx
and OT

by construction, but Xqtri,w0

ρx,p,F lies over T . Thus we have a closed immersion

zEx,F ãÑ Xtriρx,F .

But the genericity assumption (Corollary 8.2) implies that the tangent space of Xtriρx,F sits
inside

H1
f 1pGF , adpρxqq :“ ker

¨

˝H1pGF , adpρxqq ÝÑ
ź

v-p
H1pGFv , adpρxqq{H

1
f pGFv , adpρxqq

˛

‚,

thus we have an the exact sequence

0 ÝÑ H1
f pGF , adpρxqq ÝÑ TXtriρx,F ÝÑ

à

v|p

TXqtri,w0

ρx,v,Fv{TX
cris
ρx,v .

Moreover, because of the previous surjection, we have inequalities

dimTpx,FqE ď dimTXtriρx,F ď nrF : Qs,

where the last inequality is [BHS19] Proposition 4.1.5 (together with Remark 4.1.6 (ii) and
Corollary 3.7.8) as F is a product of distinct transpositions, and the Theorem 8.3 of
Newton-Thorne which assures that

H1
f pGF , adpρxqq “ t0u.
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But as E is equidimensional of dimension nrF : Qs, we have dimTxFE “ nrF : Qs and
thus xF is a smooth point of E and we have

yExF
„
ÝÑ Xtriρx,F ,

and thus

TxFE » TXtriρx,F »
à

v|p

TXqtri,w0

ρx,v,Fv{TX
cris
ρx,v .

Theorem 8.7. — For x P Xmod,ag , the image of the natural map
à

F
TxFE ÝÑ TxXχ´pol

ρ ,

has dimension at least npn`1q
2 rF : Qs, where F runs over the n!rF : Qs (classical) refinements

of x.

Proof. — Indeed, for each F of the form pcvi,j ¨ Fv,0qv as in the proof of Proposition 7.5,
we have,

TxFE » TXqtri,w0

ρx,p,F {TX
crys
ρx,p ,

and moreover, for all v|p, the map
à

i,j

TXqtri,w0

ρx,v,cvi,jFv,0
ÝÑ TXρv ,

is surjective by Proposition 7.5. In particular, the map
à

v,cvi,j

Tpx,cvi,j ¨Fv,0qE ÝÑ TxXχ´pol
ρ “ TXχ´polρx ÝÑ TXρp{TX

crys
ρp ,

which can also be factored,
à

v,cvi,j

Tpx,cvi,j ¨Fv,0qE ÝÑ
à

v|p

à

cvi,j

TXqtri,w0

ρx,v,cvi,jFv,0
{TXcrysρx,v

ř

F
ÝÑ TXρp{TX

crys
ρp ,

is surjective by Corollary 8.6 and Proposition 7.5, and thus has rank at least npn`1q
2 rF : Qs,

thus the same is true for the map,
à

F
Tpx,FqE ÝÑ TxXχ´pol

ρ .

Remark 8.8. — Note that we don’t actually need all the refinements (for a fixed v), only
the 1` npn´1q

2 refinements given by ci,j “ pi, i´ 1, . . . , jq P Sn with i ě j (starting from
a non-critical one). But this is still more than just the n well-positioned refinements for
weakly generic points of Chenevier [Che11], even for n “ 3.

Theorem 8.9. — Let Fpρq Ă Xχ´pol
ρ be the Zariski closure of the image of Epρq. Then Fpρq

is equidimensional of dimension npn`1q
2 rF : Qs, and is a union of irreducible components of

Xχ´pol
ρ .
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Proof. — We have already proven that almost generic point are Zariski dense in Fpρq (see
Theorem 5.8). It is enough to prove that these points are smooth points of Xρ whose local
ring are npn`1q

2 rF : Qs-dimensional. This is essentially Allen’s proof [All16]. Let x be such
a almost generic point in Fpρq, thus ρx is irreducible and we can consider the polarised
deformation space Xχ´polρx . Then by an argument of Kisin (see also [All16]),

Xχ´polρx »
{

pXχ´polρ qx.

Thus we need to show that Xχ´polρx is (formally) smooth of dimension npn`1q
2 rF : Qs.

But as ρx is absolutely irreducible we can choose a lift rx to Gn and by Proposition
3.6 reduce to Xχrx . Remark here that because of Proposition 8.1 and Theorem 2.3, we
can apply Proposition 3.4. Calculations on the dimension of deformation ring made in
Proposition 3.4 show that we are thus reduced to show that h2pGF,S , adprxqq “ 0, or what
is equivalent h1pGF,S , adprxqq “

npn`1q
2 rF : Qs. But as ρx is generic at p by Proposition

8.1, by remark 1.2.9 of [All16], we get H1
g pGF,S , ad1pρxqq “ H1

f pGF,S , ad1pρxqq which
vanishes by Newton-Thorne’s Theorem 8.3. Thus the following map is injective,

H1pGF,S , ad1pρxqq ÝÑ
ź

v|p

H1pFv, ad1pρxqq{H
1
g pad1pρxqq.

But then we prove exactly as in [All16], Lemma 1.3.5, as our x is HT-regular, that the
space Xχrx is formally smooth of dimension npn`1q

2 rF : Qs, thus by Proposition 3.4 Xχ´polρx

is formally smooth of dimension npn`1q
2 rF : Qs, but as it contains the local ring of the

closure of Fpρq at ρx, which is of dimension ě npn`1q
2 rF : Qs, both local rings are equal

(and Fpρq is smooth at these points).

Remark 8.10. — Recall that in the previous theorem Epρq and thus Fpρq depend on the
choice of an auxiliary level Kp outside p. We can ask how the closure of the infinite fern
depends on Kp. If we let Kp appear in the notations, we can at least have an optimal Kp.

Corollary 8.11. — There exists a level Kp outside p, such that for all level K
1,p outside p, the

Zariski closure of the infinite fern of tame level Kp, FKppρq, contains the infinite fern of level
K
1,p, FK1,ppρq.

Proof. — As Xχ´pol
ρ is the generic fiber of a noetherian excellent formal scheme, it has

a finite number of connected component (See [Con99, Theorem 2.3.1]) . Thus as the
number of components in the closure of the infinite fern (by Theorem 8.9) grows with Kp,
it eventually stabilizes.

We can now deduce the following corollary, which is due to Allen, [All19], for which
we need to take care that automorphic points given by [All19] main’s theorem are indeed
inside our infinite fern. So we assume the following,

Hypothesis 8.12. — 1. p ą 2, is unramified in E and every prime v|p in F splits in E.
Moreover, ζp R E.

2. ρpGEpζpqq is adequate, ρ is polarized by χ i.e. ρ_ » ρc b χεn´1.
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3. There exists a GLn-automorphic representation Π0, which is regular algebraic χ-
polarized cuspidal, such that ρπ lifts ρ and such that ρπ,v is potentially diagonalisable
for all v|p, and even ordinary for all v|p if p|n.

4. χ is crystalline at p, satisfies χ “ χc and satisfies a sign condition (see Hypothesis
3.7 and section 2)

5. H0pGv, adpρqp1qq “ 0 for all v|p.

We still hope that hypothesis 1. and 4. are technical and we hope to be able to
remove then, as for Theorem 8.9. It is unkown at the moment if all potentially crystalline
representations are potentially diagonalisable, i.e. if we could relax hypothesis 3. to
a classical modularity (for GLn, crystalline at p say). We hope that hypothesis 2. is
unnecessary, but at the moment the main result of [All19] relies on it, and also on 5. but
we imagine that it could be removed using new results on local deformations rings (e.g.
[BIP21]).

We have the following

Corollary 8.13 (Allen). — Assume the hypothesis 8.12. Then the generic fiber of the global
deformation ring, Xχ´pol

ρ , is equidimensional of dimension rF : Qsnpn`1q
2 and the infinite

fern Fpρq is Zariski dense in Xχ´pol
ρ thus in SpecpRχ´polρ q. In particular automorphic points

are dense in SpecpRχ´polρ q.

Proof. — As the set of Hypothesis 8.12 contains strictly the hypothesis of Theorem 8.9, we
have that the Zariski closure of Fpρq (if non-empty!) is a union of connected components
of Xχ´pol

ρ . Thus, it is enough to prove that each component of Xχ´pol
ρ contains a points

in the infinite fern, and by the reduction of Lemma 3.9 and considering Π0ψ
´1
0 where ψ0

given by [CHT08, Lem.4.1.5] , we can assume χ “ 1. By [All19], Corollary 5.3.3, we have
that Rpolρ is O-flat, reduced, and complete intersection of the expected dimension, but we
still need to check that the automorphic point in all components can be chosen to be in
the infinite fern (i.e. holomorphic at infinity automorphic representations for GU ). Let C
be an irreducible component of X pol

ρ , which is of the form C “ Crig for an irreducible

component C of SpecpRpolρ q ([All19, Lemma 1.2.3]). By [All19, Theorem 5.3.1,Theorem
5.3.2], there is a GLn-automorphic cuspidal point Π in C, which is moreover unramified
at places above p, very regular, self dual, and such that Π is a smooth point of Xpolρ

(see [All16] Theorem C). In particular, by [Mok15], there exists π0 a cuspidal, regular
algebraic, unramified above p, representation of the quasi-split unitary group U whose
base change is Π. By [Mok15] again, to Π which is conjugate self dual thus can be seen as
an Arthur parameter, is associated a global A-packet ΠU for U which contains π0. Let ψ8
be the associated archimedean Arthur parameter at any place v|8 of F . It is a tempered
parameter as ΠU is, and ψ8|Cˆ can be assumed of the form

z ÞÝÑ pza1zb1 , . . . , zanzbnq,

and for j P WRzCˆ such that jzj´1 “ z, we can check that this implies that this is
conjugate to pz´b1z´a1 , . . . , z´bnz´anq. In particular, as the weight is regular this implies
that there exists σ P Sn an involution such that aσpiq “ ´bi. But as Π is regular,
algebraic, cuspidal, by Clozel’s purity Lemma, we have ai ` bi “ 0 for all i (which in
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particular implies that ψ8 is bounded on WR). Thus, actually σ “ 1. We now check that
ψ8 is indeed discrete. As in [BC05] Lemme 4.3.1 we have, writing ψ8pjq “ h¸ c, we have
for z P Cˆ,

ψ8pzq “ ψ8pjzj
´1q “ hw0

tψ8pzq
´1w´1

0 h´1 ¸ 1.

Thus h normalizes the torus and by regularity and using ai “ ´bi we must have that h
is up to conjugacy w´1

0 , thus the parameter ψ8 is discrete. As ψ8 is tempered, discrete,
regular algebraic, it is equal to the L-packet of discrete series representations constructed
in [Lan89], and in particular contains the holomorphic discrete series. Thus we can change
π0 by π1 still in ΠU whose component at infinity is holomorphic. As Π is cuspidal, the
A-packet ΠU is stable and thus Sψ “ 1, so that π1 is also discrete and automorphic. In
other words we can assume that π0 “ π1 is holomorphic at infinity and unramified at p.

Choose an algebraic extension of its central character which is unramified at p, then
by [LS19] there exists an extension of π0 to a cuspidal, regular algebraic representation π
of GU . Moreover π8 is also the holomorphic discrete series thus contribute to coherent
cohomology in degree 0 and thus gives a point in the Eigenvariety E (for GU ), whose
Galois representation (given in Corollary A.8) is ρ. In particular, Fpρq intersect C, and the
corollary is proved !

Appendix A. Similitude Unitary groups, Tori, Base Change and Galois
representations

Denote by G “ GUpV q a similitude unitary group over Q (with similitude factor in
Qˆ) associated to the CM extension E{F , and by Z » GUpEq its center.

Let ` be a rational prime, unramified in E, which is also unramified for GUpV q (i.e.
GUpV qQp is quasi-split, and split over an unramified extension). Let π be a cuspidal
automorphic representation of G, assume π is unramified at `, and choose a maximal
compact K at ` for which π is unramified. Then πK` is a 1-dimensional representation of
HCpGpQ`q,Kq, the Hecke algebra of bi-K-invariant C-valued functions on GpQ`q with
compact support. The Satake isomorphism and the unramified local Langlands correspon-
dance ([Bor79]) associate to it an unramified representation with values in the L-group of
G (actually in the L-group of T ). Denote TU , T the maximal torus of U “ UpV q and G
respectively. The natural inclusion TU Ă T , which is compatible with the Galois action
and central, gives a map

(9) LT ÝÑL TU .

Proposition A.1. — To π` we can associate an unramified Langlands parameter

r : WQ` ÝÑ
LTU .

For all λ| ` in F and λ1| λ in E, we can restrict r to WE1λ
and then compose

r : WEλ1 ÝÑ
LTGLn “: yGnm ˆWEλ1 .

This induces a well-defined class (up to conjugacy), for all λ1|`,

rλ1 : WE1λ
ÝÑ GLnpCq.
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Proof. — As ` is unramified for E and G (thus U ), actually UQp is isomorphic to
UpnqE{F,Qp for any choice of (unramified) unitary group of rank n, so choose the one with
anti-diagonal matrix form. With this form, we check that actually the upper triangular
Borel is indeed a Borel over Qp, and its maximal torus is the diagonal one, given by

TU “ tDiagpa1, . . . , anq|ai P E
ˆ, cpaiqan`1´i “ 1u Ă TGLn,E ,

with c P GalpE{F q the complex conjugacy. Denote by ΣE the complex embeddings of E.
We then have that its characters are given byX˚pT q a quotient of pZnqΣE p“ X˚pTGLn,E qq

by the relation pλi,σqi,σ “ pλ´1
n`1´i,σcqi,σ . Its cocharacters are given by X˚pT q Ă

pZnqΣE “ X˚pTGLn,E q such that the collection pµi,σqi,σ satisfies µi,σ “ µ´1
n`1´i,σc. The

Galois action σ P GQ sends the character λτ,i to σ ¨ λτ,i :“ λτ,i ˝ σ
´1 “ λστ,i. It sends

the cocharacter µτ,i to σ ˝ µτ,i “ µστ,i. Then the dual torus is given by the subtorus of
ś

ΣE
Gnm, given by

xTU “ tpt
σ
1 , . . . , t

σ
nqσ| t

i
σt
n`1´i
σc “ 1u.

The action of WQ` on xTU is given by s ¨ phσqσ “ phs´1σqσ . A priori E is not Galois over
Q. An analogous computation for the maximal (diagonal) torus of ResE{Q GLn TGLn,E
gives

LTGLn,E “ Gn,ΣEm ¸WQ` , s ¨ pti,σq “ pti,s´1σq.

and we thus have a natural map LTU ÞÑ
LTGLn,E . As π` is unramified, by [Bor79] there

is a parameter rG : WQ` ÝÑ
LT , which we can compose to get

r : WQ` ÝÑ
LTU ,

and by the previous map we get and unramified Langlands parameter rGLn,E : WQ` ÝÑ
LTGLn,E . Restricting this last parameter to WEλ1 , where WEλ1 ÝÑ WQ` is induced
by some i : Eλ1 ÝÑ Q`, we get WEλ1 ÝÑ

LTGLn,E ¸ WEλ1 . Fix an isomorphism
φ : Q` ÝÑ C, so we can identify complex and `-adic embeddings of E. But the action
of WEλ1 preserves the σ P ΣE over λ1, and we can thus project to any such using prσ :
LTGLn,E ÝÑ GLn, so choose the one corresponding to the embedding WEλ1 ÝÑ WQ` ,
σλ1 ,

rλ1 : WEλ1 ÝÑ
LTGLn “: yGnm ˆWEλ1 , w ÞÑ rGLn,E pwq “ phσqσ ¸ π ÞÑ hσλ1 .

Let us show that this is well defined and independant of choices of i and φ. Let i, j :
Eλ1 ÝÑ Q` two choices. There exists s P WQ` such that s ˝ j “ i. These two maps

induces two maps WE1λ

i˚,j˚
ÝÑ WQ` , such that j˚ “ s´1 ˝ i˚ ˝ s.

Moreover using the canonical map E ÝÑ Eλ1 this induces two embeddings σiλ1 , σ
j
λ1 :

E ÝÑ Q` above λ1 such that σiλ1 “ s ˝ σjλ1 . So we compute,

rGLn,E pj‹wq “ rGLn,E ps
´1i˚wsq “ x¸s´1phσqσ¸wpx¸s

´1q´1 “ pxphsσqσs
´1wsx´1q¸w,

which is mapped under projection to the embedding σjλ1 to

xσj
λ1
hsσj

λ1
x´1

s´1w´1sσj
λ1

,
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but this is commutative, and w´1sσjλ1 “ sσjλ1 as w PWEλ1 thus we get

xσj
λ1
x´1

σj
λ1

hσi
λ1
,

i.e. πσi
λ1
˝ rGLn,E ˝ i˚ “ πσj

λ1
˝ rGLn,E ˝ j˚ is well defined and independant of the choice of

i. Now assume that φ, φ1 are different isomorphisms Q` ÝÑ C. So for each i : Eλ1 ÝÑ Q`
we get two embeddings of E, namely σiφ and σiφ1 “ s ˝ σiφ, with s “ φ1 ˝ φ P GQ` . Thus
we are reduced to the previous computation with two different embedding above λ1. Thus
rλ1 :“ πσi

λ1
˝ rGLn,E ˝ i˚ depends only on the choice of λ1| ` in E.

Using the previous proposition, to Π we can for all unramified ` associate to Π` a
semi-simple conjugacy class in LTU and for all λ1| ` in E a system of semi-simple
conjugacy classes Cλ1 “ rλ1pFrobλ1q in GLn. We denote SatpΠ`q “ pSatλpΠ`qqλ1 “:

pCλ1 |det|
1´n
2 qλ1 .

Definition A.2. — Fix an isomorphism ι : C » Qp. Let ρ : GE ÝÑ GLnpQpq. We say
that ρ is strongly (resp. weakly) essentially associated to Π if for all ` (resp. for almost all
`), unramified in E and for Π, for all λ1|`, ρ is unramified at λ1 and the semi simple class
of ρpFrobλ1q and ιSatλ1pΠ`q coincides. We say that ρ is modular if there exists a cuspidal
Π as before such that ρ is strongly essentially associated to Π.

Remark A.3. — 1. This is not the natural definition, it would be more adequate to say
essentially modular. The reason is that because we want to work at fixed polarisation
character, we have ignored the part of the similitude character for Π when looking
at SatpΠ`q. We could do an analogous definition keeping track of the similitude
character, but it would be more complicated to describe it, in particular at non split
primes when E{Q is not Galois.

2. It is enough to check the compatibility with the Satake parameter at ` totally
split in E, in which case the previous association is easier to describe. Indeed,
by Chebotarev density theorem the totally split primes in E have density 1, thus
ρ is completely determined by the conjugacy class of Frobenius at those primes.
Moreover, every λ “ λ1λ

1,c|` is split above F (with λ is a prime of F ). Thus
GUQ` » p

ś

λ| ` in F GLnq ˆ Gmp23q and the Satake parameter (for GU ) associated
to Π` has the form

pDiagptλ1 , . . . , t
λ
nqλ, xq.

Then SatpΠ`q is just the collection

pp|det|
p´1
2 Diagptλ1 , . . . , t

λ
nqqλ, p|det|

1´p
2 Diagptλ,´1

1 , . . . , tλ,´1
n qqλcq.

3. A modular ρ is automatically εn´1-polarized. Indeed, elements t P xTU satisfies
t´1 “ w0 ¨ t

c, where w0 is the longuest Weyl element of GLn, thus (because of the
twist) ιSatλ1pΠ`q

´1 “ ιSatcλ1pΠ`qp
n´1. By Chebotarev, this proves the claim.

p23qWe should choose a CM type to write this isomorphism properly.
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Definition A.4. — We say that a cuspidal automorphic representation π of G or UpV q
is sufficiently regular if it is a discrete series at infinity and satisfy property p‹q of [Lab11]
Section 5.1. This is automatic if the parameter at infinity is regular enough.

Remark A.5. — Because of [Har90a] Lemma 3.6.1 and Mirkovic, our almost generic
points, see Definition 5.4, are sufficiently regular in the previous sense.

Theorem A.6. — Let π be a cuspidal automorphic representation of G “ GUpV q which is
cohomological and sufficiently regular. There exists L a Levi subgroup of ResE{QGE , a cuspidal
automorphic representation ΠL of LpAq together with an automorphic character χL of LpAq
such that ΠLbχ

´1
L is θL-stable and π and ΠL corresponds to each other at all unramified (for

π and E) finite places. Moreover each factor of ΠL “ Π1 ‘ Π2 ‘ ¨ ¨ ¨‘ Πr is regular algebraic.

Proof. — If F “ Q this is [Mor10] Corollary 8.5.3, except the last part. But by Shin’s
appendix [Gol14]p24q Theorem 1.1 (iii), Π1‘Π2‘¨ ¨ ¨‘Πr is moreover regular algebraic as π
is. Remark that in this case we don’t need π to be sufficiently regular, just cohomological. If
rF : Qs ě 2, then we will use [Lab11], thus we need the following lemma. Let us introduce
some notation. Let Z “ tx P Eˆ|NE{F pxq P Qˆu and Z1 :“ KerpNE{F qZ Ă Z . Then
Z,Z1 are tori. Moreover we have a maps

(10) 0 ÝÑ Z1 ÝÑ Z ˆ U ÝÑ G ÝÑ 0,

and the last map is surjective on geometric points. Note that if ` is a prime of Q, splitting
in E, then the sequence (10) is exact on Q`-points.

Lemma A.7. — Let π be an irreducible discrete automorphic representation of G such that
π8 is cohomological for ξ. Then there exists an automorphic discrete representations ψ b π0 of
ZpAq ˆ UpAq such that

1. the restriction of ψ b π0 to the image of Z1pAq is trivial;
2. ψ “ ψπ , the restriction of π to Z ,
3. For all place ` of Q, splitting in E, we have pπ`q|ZpQ`qˆUpQ`q » ψ` b π0,`;
4. π0 is cohomological for ξ|U , thus regular;
5. ψ8 “ ξ´1

Eˆ8
.

6. If ` is a prime which is unramified in E, then π0 is unramified if π is.

Proof. — This is analogous to the proof of [HT01] Theorem VI.2.1. Choosing pgiq in GpAq
such that the νpgiq are representatives of the set νpGpAqq{pνpGpQqqNE{F pZpAqq we get
as in [HT01],

ApGpQqzGpAqq ÝÑ
À

iAppZ ˆ UqpQqzpZ ˆ UqpAqqZ
1
pAq

f ÞÝÑ ppgi ¨ fq|pZˆUqpAqqi

where the gi ¨ f is denotes the right translate of f . As a consequence we have an isomor-
phism of pZ ˆ UqpAq-representations

ApGpQqzGpAqq|pZˆUqpAq »
à

i

pAppZ ˆ UqpQqzpZ ˆ UqpAqqZ
1
pAqqgi

p24qThis more generally applies if E contains an imaginary quadratic field
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where the upper script gi denotes a conjugate action by gi. This shows that, if π is an
automorphic representation of GpAq and if π1 is an irreducible subquotient of π|pZˆUqpAq,
a conjugate of π1 by one of the gi is automorphic and trivial on Z1pAq. Let ψ b π0

be an automorphic representation ot pZ ˆ UqpAq whose conjugate by one of the gi is
isomorphic to a subquotient of π|pZˆUqpAq. Moreover, since π is cohomological for ξ,
there exists an integer i such that HippLieGpRqqbRC, U8, π8bξ1q ‰ 0 (for U8 Ă UpRq
a maximal compact subgroup of GpRq). So we can choose ψ b π0 such that HippLiepZ ˆ
UqpRqq bR C, U8, ψ8 b π0,8 b ξ1|pZˆUqpRqq ‰ 0. This proves that π0 satisfies property
4 of the statement. The property 1 has already been checked and 2 is clear since ZpAq is
in the center of GpAq. Property 3 is a direct consequence of the fact that if ` is a prime
that splits in E, the map pZ ˆ UqpQ`q Ñ GpQ`q is surjective of kernel Z1pQ`q. Now
assume that ` is unramified in E. If π is unramified at `, then π has non zero fixed vector
under an hyperspecial subgroup of GpQ`q. As the image of ZpQ`q ˆ UpQ`q has a finite
index in GpQ`q, the restriction of π` to UpQ`q is isomorphic to a finite direct sum of
irreducible representation of UpQ`q which are conjugated in GpQ`q. As the intersection of
an hyperspecial subgroup of GpQ`q with UpQ`q is an hyperspecial subgroup of UpQ`q, all
irreducible subquotients of π`|UpQ`q have nonzero fixed vectors under some hyperspecial
subgroup of UpQ`q. This proves property 6. Property 5 is a direct consequence of the
equality π|Eˆ8 “ ξ1

Eˆ8
following from the fact that π is cohomological for ξ1.

Thus by [Lab11] Cor. 5.3 applied to π0, which is sufficiently regular thus satisfies
property p‹q, there is a weak base change i.e. L a standard Levi of ResE{Q GLn,E that is
θ-stable, and a θL-stable discrete automorphic representation of L ΠL “ Π11 b ¨ ¨ ¨ b Π1s
such that Π11 ‘ Π12 ‘ ¨ ¨ ¨‘ Π1s is a weak base change for π0. As each Π1i is discrete, then by
the main theorem of [MW89] we can write Π1i as an automorphic induction of τibSpp`iq
for an integer `i and τi a cuspidal automorphic representation of GLni{`ipAEq. But the
proof of [Mor10] 8.5.6 shows that as each Π1i is θni-stable, each τi is θni{`i-stable. In
particular, up to reduce L, choosing pΠjqj“1,...,r to be the collection pτi|det |p`i´2k`1q{2q

for i “ 1, . . . , s and k “ 1, . . . , `i, we get that Πj is cuspidal, and Πj is θ-stable up to
twist (by an automorphic character of L). But by [Lab11, Cor. 5.3] again we know that the
infinitesimal characters of π0 and Π11 ‘ ¨ ¨ ¨ ‘ Π1s “ Π1 ‘ ¨ ¨ ¨ ‘ Πr coincides after base
change, in particular the latter representation is regular algebraic. Moreover at unramified
places this is compatible with the local base change.

Corollary A.8. — Let π be a cuspidal automorphic representation of G “ GUpV q which is
cohomological, sufficiently regular, and unramified outside S, which contains ramified places of
E. Then to π is (strongly) essentially associated a unique Galois representation,

ρu : GE,S ÝÑ GLnpQpq,

satisfying,

pρuq_ » pρuqcεn´1.

In particular, for all prime λ “ vv of F split in E, not in S, we have that the semi-simple
conjugacy class of ρupFrobvq is equal to the image of the Satake parameter of π0,λ|det |

1´n
2 ,

seen as a representation of UpFλq
ιv
» GLn,Ev .
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Proof. — The previous proof allow us to reduce to π0 an automorphic representation of U
whose weak base change is Π1 ‘ ¨ ¨ ¨‘ Πr ; θ-stable, each Πi being automorphic for GLni ,
cuspidal, conjugate self dual up to twist by a character. Thus to π0 we can associate by
[CH13] again

ρu “ ρΠ1
‘ ¨ ¨ ¨ ‘ ρΠr .

As Π1 ‘ ¨ ¨ ¨ ‘ Πr is θ-stable, ρu satisfies pρuq_ » pρuqc b εn´1. On the other hand,
we know the compatibility of the association of ρu with local Langlands : at all ramified
primes ρuv “ LLpπ0,v|.|

1´n
2 q, i.e. ρu is strongly associated to π.
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