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1. Introduction

A general question in the Langlands program is the relation between automorphic
representations and Galois representations. In such a generality the question is completely
open, but we can restrict to an apparently simpler question : can we relate deformations on
both sides ? In fact, there is a natural geometric interpretation of this question as follows.
Assume that F is a number field, and

7:Gal(E/E) — GL,(F,),

is a continuous (i.e. which factors through a finite extension) representation. The deforma-
tions of p, with minor technical conditions, with values in finite extensions of Q,, can be
arranged in a natural rigid space A%, by work of Mazur. Conjecturally, and now in many
known cases ((CHLNI1, CH13, Shil4, HLTT16, Schl5]) automorphic representations give
rise to Galois representations, some of which gives points in A7, that we call of automor-
phic nature, or just automorphic. It is then natural to wonder which structure have these
automorphic points in A7 : is it an algebraic subspace ? a closed one ? is it Zariski dense
2

The first example after the case of characters was studied by Gouvéa-Mazur. In this
situation ¥ = Q and n = 2, and p is irreducible, modular and unobstructed, so that A5 is a
3-dimensional open ball. In this situation automorphic points are related to modular forms.
In [GM98], Gouvéa and Mazur show that automorphic points are Zariski dense in X5
using the so called infinite fern. Let us explain this name : up to twisting by powers of the
cyclotomic character, we can replace X5 by a two dimensional open ball. Modular forms
(of finite slope) can be interpolated by a geometric object, the Coleman-Mazur Eigencurve
& ([CM98]), which is a rigid-analytic curve, whose points are refined p-adic modular forms
of finite slope. Generically, a classical modular forms has two refinements, thus gives rise
to two distinct points in the Eigencurve. Moreover the points corresponding to refined
classical modular form are Zariski dense in the Eigencurve. By p-adic interpolation, it is
possible to associate a 2-dimensional p-adic representation of Gal(Q/Q) to a point of £.
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The points giving rise to deformations of p form a union & of connected components of
& and the universal property of A% implies the existence of a map

Generically, each modular point f in X5 has two preimage in &, giving rise to two distincts
small curves around those preimages, whose image in A meet only at f. By density, each

of these two small curves has a Zariski dense set of modular points, and for each of these
points there is another small curve passing through, and so on, giving a fractal-like object

which we picture as follows :
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giving a justification for the name of the infinite fern.

This article deals with a generalization of this result to more general number fields
and greater values of n. First, we need to assume that the number field £ is a CM
field, with totally real field F', in order to be able to associate Galois representations to
automorphic representations. Second, it is expected that for general n the automorphic
points are not Zariski dense in A%, thus we reduce to the case of x-polarized Galois
representations, for a character x : Gg — @X, i.e. continuous group homomorphisms
p: Gal(E/E) — GL,(Q,) such that

p¥ =~ p°®@xe" !, where p¢:= p(c-ch),
where ¢ is the cyclotomic character, and ¢ € Gal(E/F) is a lift of the unique non triv-
ial element of Gal(E/F). Fix S a finite set of primes of E containing all primes above
p. In this situation, assume that p is y-polarized, absolutely irreducible (for simplic-
ity) and unramified away from S. Let be the complete noetherian local algebra R%_p ol
parametrizing deformations of p which are y-polarized and unramified away from S.

Its rigid fiber Xﬁxfp()l is a rigid space of dimension at least [F : Q]W A natu-

ral source of automorphic points in Xﬁxfp oL is given by the regular, algebraic, essentially

polarized, cuspidal automorphic representations of GL,,(Ag), by work of many authors
(HTO01, CHT08, CHLNII1, CHI13, Shil4| for example). In this paper, we make the follow-
ing hypothesis,

Hypothesis 1.1. — 1. p is conveniently modular (see Definition 4.1),
2. All primes above p in F' are unramified, and split in E,
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3. x is crystalline at p, satisfies Y = x© and satisfies a sign condition (see Hypothesis
3.7 and section 2)

Under the previous hypothesis, we have the following result,

Theorem 1.2. — The Zariski closure of automorphic points contains a (non empty) union of
n(n+1)

irreducible components ofXﬁX_pOl, each of which are of dimension [F : Q] ==
We say that our deformation problem is unobstructed if H*(G s, ad(F)) = {0} where
T is some extension of p to G s the Galois group of the maximal unramified extension

of F' (see section 3). In this situation, we know that Xﬁx—p ol s a rigid open unit ball in
[F: Q]@—variables.

Corollary 1.3. — Under the previous hypothesis, if moreover p is unobstructed, then automor-
phic points are Zariski dense in XﬁX*pOl,

Remark 14. — In [Gui20] Giraud proved that if 7 is an extremely regular automorphic
representation of GL,,(Ag) (see [BLGGT14] section 2.1), then there exists a density 1 set
of primes A of E such that p. ) is unobstructed. As we have assumed p to be conveniently
modular, we can actually find some extremely regular 7, so that p = p, , for Alp, and
thus using [Gui20], up to change X in a density 1 set, we can assume unobstructedness. In
particular, under our assumption, p is part of a compatible system for which in a density 1
set of primes, we have Zariski density of automorphic points in the associated deformation
spaces.

Before explaining the strategy of proof, let us say what was known. The first case was
the case non-polarised, n = 2 and £ = F' = Q, when unobstructed, which was proven
by Gouvéa-Mazur [GM98], and generalised by Boeckle [BO1]. The non-polarised case
for n = 2 and totally real fields £ = F|, and the polarised case of n = 3 (and general
CM fields E/F) was proved by Chenevier ([Chell]). A generalisation for greater n; but
under more restrictive hypothesis (of Taylor-Wiles type) on E and p, was proven recently
by Hellman-Margerin-Schraen ((HMS22]). All of these proofs uses the analogue (in higher
dimensions) of the infinite fern. We know try to explain our strategy together with the
relation to the previous works.

The Galois representations that we study can be viewed as p-adic (L— or C'—) pa-
rameters of reductive group: GLy /Q in the situation of Gouvéa-Mazur and Ug/p(n),
or GUE/ r(n), or one of its inner forms, a (similitude) unitary group in n-variables, for
polarized deformation problems. A natural source of automorphic points is given by au-
tomorphic representations of these groups. It turns out that these groups give rise to
Shimura data, that we can use to construct p-adic refined families of automorphic forms,
that is p-adic automophic eigenforms together with the extra data of a refinement. These
families generalize the Eigencurve of Gouvéa-Mazur and are called Eigenvarieties (see
[CM98, Che04, Urbll, Eme06, AIP15, Herl9]| for example). It turns out that working
with F' instead of QQ plays little role in what follows, so let us assume for simplicity F' = Q
in this introduction, and also xy = 1 for the same reason.

For general n, a given automorphic form f has at most n! refinements f;, and gener-
ically exactly n! refinements. Moreover the Eigenvariety £ has equidimension n, Xﬁx—p ol
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n(n+1)
2

has dimension at least (but conjecturally exactly) and there is a map £(p)V) —

Xg()l which forgets the refinement.

Definition 1.5. — The image of the map £(p) — X%ml is called the infinite fern and is
denoted by F(p).

Actually we can make our main theorem more precise :

Theorem 1.6. — Under the previous hypothesis, the Zariski closure of the infinite fern F(p)
in Xﬁxfp‘)l is a non-empty union of irreducible components, each of which are of dimension

[F . Q] n(n2+1) )

Let us comment the various hypothesis we made. Contrary to [HMS22], we don’t need
to assume p absolutely irreducible if we use Chenevier’s determinants, which we do (see
section 3). The hypothesis of being conveniently modular is necessary to expect infinite
fern to be non-empty, and is in practice very close to the usual modularity hypothesis
which is anyway necessary. The hypothesis on the splitting of primes above p is technical,
and we hope to come back on this question soon. The last hypothesis on x is also technical
and should be possible to relax in parts.

Following the strategy of Chenevier, the main goal is to prove that for a Zariski dense
set of points p in the infinite fern, the part of the tangent space at p in Xgoz coming

from £ has dimension at least @ This will imply that the closure of the infinite fern

F(p), has dimension at least "(ni;l) As, by construction, automorphic points are Zariski
dense in &, thus in F(p), this will prove that the Zariski closure of automorphic points has

n(n+1)
2

dimension at least . Thus to prove the assertion on the tangent space, we need to

show that the sum of the images of the tangent spaces T},& in T}, Xg()l, for well chosen
automorphic forms f, has large enough dimension. But, clearly, as soon as n > 3 it is not
sufficient that these tangent spaces are pairwise transversal, and this is the main difficulty
to extend the proof of Gouvéa and Mazur. To overcome this problem, Chenevier suggested
a strategy which he applied successfully when n = 3 and which can be sketched as follows:

1. find a good Zariski dense subset D of the infinite fern 7 (p), the image of £ in A5 ;

2. show that the analog of the question on the tangent spaces of points in D but for
local deformation rings is valid ;

3. show that the Global situation “embeds well” in the local situation, and thus gives
the result.

For the first part, Chenevier suggested to look at automorphic points p which he calls
generic: they are crystalline at p and all their refinements are non-critical. More precisely,
if p is crystalline at a place v | p, its restriction p, to a decomposition group at v is char-
acterized by a n-dimensional vector space V' = Deris(p|ga s, m,)) With its Hodge-Tate
filtration g7 (a complete flag) and Frobenius operator . The refinements of p corre-
sponds to the complete flags of V' stable by . We say that a refinement of p is non critical
it is opposite to Fg7. Actually, Chenevier proved that the second step works for crystalline

(1an open-closed subvariety of £
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points which have n well-positioned non-critical flags and call those points weakly-generic.
He moreover proved that weakly generic points (with some extra but harmless conditions)
are Zariski dense in the infinite fern when 7 = 3 and uses those as the subset D.

Concerning the second point, the weakly generic condition is used to carry an induction
in the local situation and prove that tangent spaces of local, refined, deformations problem
spawn the tangent space of the full local deformation ring. This is where the definition of
well positioned refinements comes from.

For the last point, actually it is enough to embed the situation at the level of tangent
spaces. Chenevier proves that for all preimages of points in D, the map £ — W is
etale, and deduces that some Selmer group vanishes at those points, allowing to embed
infinitesimally the global situation into the local one, transversally to the cristalline locus,
and thus deduce the result. This last argument is classical in the Taylor-Wiles method.

The main issue to generalise Chenevier’s strategy in higher dimensions is that it is
completely unclear that weakly generic points satisfies some density assumptions when
n > 4 (see remark 5.2).

The strategy of [HMS22] is different but shares some similarities : for the first point
they choose points which are crystalline with some genericity assumption(?) which are less
restrictive than being generic or weakly-generic. Their set D is then automatically Zariski
dense. For the second point, they use a local model for the local deformations spaces,
which is of purely geometric nature, and a rather evolved but completely elementary
argument allows to conclude in the second point, using not only all refinements but also
companion points, which are extra-points appearing when the refinement is critical (whose
existence is proved in [BHSI19]).

Then the third point is the most delicate one and is proved by Talylor-Wiles-Kisin
method via “patched eigenvarieties” (see [BHS19]) under restrictive Taylor-Wiles condi-
tions.

In this article we use a strategy closer to Chenevier’s, but using the local model of
[BHS19] as in [HMS22]. Namely, using the local model and a careful study of its geometry,
we first prove the second point without using companion points but rather generalizing
Chenevier’s transversality result at critical refinements (see section 7). For the first point,
we show that setting for D the set crystalline points satisfying genericity conditions as
in [HMS22] and which have moreover enormous image are actually Zariski dense in the
infinite fern ; we call those points almost-generic (see Definition 5.4) because they will
replace Chenevier’s generic points in our argument. The density of these points is far
from being automatic and the argument is originally due to Bellaiche-Chenevier and Taibi
(see section 5). Then, for the third point, we show that using the enormous image, and a
result of Newton-Thorne, we have the vanishing of the expected Selmer group at points of
D. We then show that this can be used to relate the global situation to the local one. As
a byproduct, we obtain that our Eigenvariety is smooth at those points, as it was the case
in other situations (see [BHS19, Ber20]) (see section 8). Then, a local calculation which
was previously carried out in [All16], we show that our almost generic points are smooth
points of X%ml of the expected dimension.

(@ precisely on the Frobenius eigenvalues and Hodge-Tate weights
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The results of Chenevier were combined with those by Allen ([All19]) (who proved that
under some hypothesis every component contains an automorphic point) to prove full
density of the infinite fern when n < 3, without assuming unobstructedness. We can adapt
this generalisation also here,

Corollary 1.7 (Allen). — Assume hypothesis 8.12, then the infinite fern is Zariski dense in
xx—pel,
P

The only thing we need to care about for this corollary is that we use classical points
which are automorphic representations for a similitude unitary group, which moreover
contributes to the coherent H°, whereas Allen’s proof a priori only construct an (essen-
tially) polarised autormorphic representation of GLy,.

Remerciements : We would like to warmly thank Gaetan Chenevier for very helpful
suggestions concerning this work. We would also like to thank George Boxer, Laurent
Clozel and Olivier Schiffmann for many interresting discussions. Finally, we would like to
thank Anne vaugon and Marc Mezzarobba for their help for using SAGE to compute the
local tangent spaces.

2. A remark on signs

By a theorem of Artin, all elements of order 2 are conjugate in Gg. Let C, < Gg be
their conjugacy class and let H < Gg be the closed subgroup generated by Cy,. There is
a unique continuous morphism ¢ : H — {£1} such that ¢(¢) = —1 for all ¢ € C,. Let K
be a number field. Then K is totally real if and only if H < Gk. Let E be a CM field
with totally real subfield F', we have H; := kere € G and Gr = GgH. Let ¢ € Cy,.
We can consider the action of ¢ on G by conjugacy, and we have Gp = Gg x {1,¢}. If
p is a morphism of Gz in some group and ¢ € Cy, we set p° = p(c™! - ¢) = p(c- c). The
c-conjugacy induces an automorphism ¢ of G5°. As H; < G, this automorphism does
not depend on the choice of ¢ € Cy. Let G be a finite abelian group.

Lemma 2.1. — Let x : Gp — G be a continuous character. Then x|c, = (X|cy )¢ Moreover
there exists a character ) : Gy — G such that V° = x|c, if and only if the elements x(c)
for c € Cy, does not depend on the choice of c € Cop.

Proof. — Assume that the elements x/(c) for ¢ € Cy, does not depend on the choice of ¢ €
Cy. After composition with the Artin map Ay /F* — G%b, we can view Y as a morphism
A} /F* — G which is trivial on F*(F)°. We have to prove that there exists a character
Y : A /E* — G which is trivial on E* E and such that ¢ o Np/p = x © Ng/p. But the
same proof that in [CHTO08, Lem. 4.1.4] shows that x is trivial on Ng/p(Af) N EXEX.

Conversely assume that x|g, = ¥¢° for some ¢ and let ¢; and ¢y be two elements of

Cy. Then

x(erez') = x(ciea) = ¥(crc®ea)ip(cereae)
= Y(cre)ip(cea)ip(cer)v(cac) = P~ (cer)p(cer)p(eea)p™ (eeg) = 1. O
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Note that a continuous morphism x : Gg — G extends to a morphism Gy — G if and
only if x = x°. The fact that the extension of x to G satisfies the assumptions of Lemma
2.1 depends only on the restriction of x to Gg and is equivalent to the fact that x|g, is
trivial. Lemma 2.1 can be reformulated as follows :

Corollary 2.2. — Let x : Gg — G be a continuous morphism from Gg to a finite abelian
group such that x = x©. There exists a continuous morphism 1 : Gg — G such that pp° = x
if and only if x|, is trivial. Note that this condition is automatically satisfied if the cardinal
of G is odd.

In this article we will be interested in the density of modular point in deformation
rings. We will say that p : Gg —> GL,(Q,), a (semi-simple) Galois representation, is
G L,,-modular® if there exists a cuspidal, essentially conjugate self-dual (regular algebraic)
automorphic representation II of GL,,(Ag) such that p ~ pry,; where pry, is associated
in the sense of [BGGT14].

Let x : Gg — @X be a continuous character and p : Gg — GL,(Q,) a continuous
representation such that p is polarised by X, which means

n—1

(1 p¥ =~ p°® xe
If p is irreducible then we can define its sign, with respect to xe" !, A € {£-1} as in [BC1]]
L1. This is the sign of the pairing appearing in (1).

Theorem 2.3 (Bellaiche-Chenevier). — Let I be a cuspidal automorphic representation of
GL,(E) that is conjugate self-dual, and regular algebraic. Let p}, be the associated Galois
representation as in Corollary A.8, and p = p¥1) for some character v : Ggp —> Q,. Then
every irreducible constituent r of p satisfying (1) has sign \ = +1 with respect to (1)1p¢) 1™~ L,

Proof. — If ) = 1 this is [BC11] Theorem 1.2. In general p = pit) and x := (1¢¢)~! and
p% has sign +1 for e”~! thus p (and all its irreducible factors) have sign +1 with respect
to xe"~! by [BC11] Lemma 2.1. O

3. Deformation spaces

Denote by k a topological field and O a complete noetherian local Z,-algebra with
residue field k.

Fix £/Q a totally imaginary CM-extension of number fields with maximal totally real
subfield F', and fix S a finite set of finite places of I/ containing the places above p, and
the ramified places of E, and denote

GE,S = Gal(ES/E),

the Galois group of the maximal unramified outside .S extension of E.
Suppose given
P GE,S — GLn(k),

(3)We say GLy,-modular to distinguish from the rest of the text where we will get modular points using (simili-
tude) unitary groups so in Definition 4.1 we give a slightly different notion, which we call just modular. Of course
by base change (see Appendix) modular is a particular case of GLy,-modular.
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a continuous semi-simple Galois representation. From now on we choose ¢ € Gr\Gg such
that ¢2 = 1 a complex conjugation, denoting similarly its image in Gal(E/F). As O is a
Z,-algebra, we have a map Z, — k, thus we can see € as the cyclotomic character with
values in k. We also assume that p is polarized by Y, i.e.

P =P ®EX),
for some character y : Gg g — k™ satisfying x¥° = . Following [CHTO08] we introduce
Gn = (GL, x GL;y) x Gal(E/F),
where ¢ € Gal(E/F) acts on (g,7) € GL, x GLy via (v'¢g~!,7). We denote v the

homomorphism G,, —> GL; sending (g, ) to = and ¢ to —1. Finally we denote Co, or C
if the context is clear, the category of artinian local O-algebras with residue field .

Hypothesis 3.1. — From now on in this section, we suppose that we are in either one of
the two situations : k < I, with discrete topology, O a finite totally ramified extension of
W (k), or k = Q, a finite extension of Q, with its p-adic topology and in this case we set
O = k. In the second case £ = ¢ is just the Z, -valued cyclotomic character.

Denote by trp the Determinant (in the sense of Chenevier [Chel4, Définition 1.5]) of p.
As p is semi-simple it is completely determined by tr p (by [Chel4, Cor. 2.13]). We fix once
and for all a continuous character x : Gg g — O a lifting ’x and such that x = x.

Definition 3.2. — We denote by }%‘7’]01 the functor that associate to any object A of C
the set of continuous determinants D lifting trp such that DV = D¢ ® ye" L. It is pro-
representable by a ring R%_p ol (IChel4, Prop. 3.3]")). We denote the associated formal

scheme X%~° b — Spf (R%_p(’l). When £ is a finite field of characteristic p, we denote the
generic fibre of R%_p ol by
x—pol ._ x—polyri
X 1= Spf(RZ")"™9.
If p is absolutely irreducible, this coincides with the rigid fiber of the polarized-by-yx
deformation space of p.

Our goal is to understand the geometry of modular points in Xﬁxfpd when k < F,,
O = Ok, K/Q, finite. Keep the slightly greater generality for now and assume that p
is Schur.®) Denote its sign A. Then we can extend X, which satisfies x¢ = x to Gp ~
Gg x Gal(E/F) by setting x(c) = £1. We set x(c) := (—=1)"X and X(c¢) := (—=1)"), so
that i := ye" ! satisfies 1(c) = —\. By [CHT08] Lemma 2.1.1 we can thus extend p to a
continuous

T G(F,S - gn(k)>

such that ¢ € G is sent to ¢ € Gal(E/F) via T and projection and v o7 = Y 27" (as
extended before to G ).

Wfor R, and then P%*POZ = R,/I with [ = (D""¥ (g) — D""":¢(g)xe™ 1 (g), 9 € G)

(5)We define it the following way : choose 7 : G —> Gn (k) extending 7 by [CHTO08] Lemma 2.1.1. Then we
say that p is Schur if 7 is. By [CHTO08] Lemma 2.1.7 this is independant of 7. In particular it is satisfied if p is
absolutely irreducible
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Definition 3.3. — Let DefX be the functor that associates to any object R of C the set
DefX(R) of lifts 7 : Grs — Gn(R) of T such that v or = Y '&'7" considered up to
1 +mgM, (R)-conjugation. As in [CHTO08, Prop. 2.2.9]%), this functor is pro-represented
by a local complete noetherian O-algebra RX. When £ is a finite field of characteristic p,
we denote by XX the generic fiber of the formal scheme XX = Spf(RY).

In the following, all cohomology groups are continuous cohomology groups.

Proposition 3.4. — Assume that 7 is Schur, chark # 2, x(¢') = (—=1)" for all complex
conjugacy ¢ and, if k is of characteristic p, RX[1/p] # 0. Then
n(n +1)

dim(RX[1/p]) > dimy H*(GF.s,ad(7)) — dimy H*(Gr.s,ad(7)) = T[F : Q).

Moreover the topological O[1/p|-algebra RX[1/p| is formally smooth of relative dimension
HRF Q) i B (Grs,ad(7)) = 0.

Proof. — This appeared already in [CHTO08, Alll6], let us give the argument. As 7 is
Schur, ad(7)“F = H(GF,ad(7)) = 0 by [CHT08, Lem. 2.1.7(3)]. For each place v|o0, we
have ((CHTO08, Lem. 2.1.3))

n(n+xe""(c,)) _ n(n—1)

dimy H°(GF,,ad(7)) = 5 -

Now the equality

n(n;— 1) [ Q]
follows from [CHTO08, Lem. 2.3.3]") when k is a finite field and from [AIll6, Lem. 1.3.4]
when k is a finite extension of Q.

When k is a finite extension of Q,, the result follows from using the analogue of
[CHTO08, Cor. 2.2.12] (but without the +1 since here O = k). When k is a finite field, it
follows from [CHTO08, Cor. 2.2.12] that

dimy, H' (G s,ad(7)) — dimy, H*(GFps,ad(F)) =

1
dim(RY) > 1+ @[F . Q).
Let © € Spec(RX[1/p]) be a closed point, p, the corresponding prime ideal and 7, :
GF — Gn(k(x)) the corresponding representation. It follows from [Alll6, Prop. 1.3.11(1)]
that the localization-completion of R} at p, is isomorphic to RY . It follows that

dim(Rx[1/p]) = dim(RY,) > n(nTH)

[F: Q]
using the case where k has characteristic 0.
The assertion concerning the formal smoothness follows from [CHT08, Cor. 2.2.12] and

[All16, Prop. 1.3.11] O

(6)There the field k is finite, but we can check that everything carries over in our setting, as already remarked in
[Kis09]

(")Note that in [CHTO08, 2.3], it is supposed that the places of S are split in £ but this is not used in their
Lemma 2.3.3.
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Remark 3.5. — The hypothesis on the sign of x will be satisfied in the rest of the text
where we choose x = 0§, actually because of the sign theorem 2.3. Indeed, by [CHT08]
Lemma 2.1.1 we need to extend 1 = ye" ! to G F.5, for an absolutely irreducible p, by
sending ¢ to —A. Thus the previous hypothesis is equivalent to A = 1. Here we use
crucially that y is of the form 11§ as p will be of the form p¥tg. Actually, if we keep
track of the L-parameter of the similitude character of 7, an automorphic representation
of GU, we have in most case a natural x of this form which depends on 7. In this article
we forget this similitude parameter and force polarisation by xe" ! using 1)y. We will use
the previous proposition in the case of k = Q, and O = Z, at specific rigid points of
x%‘f"’l in Theorem 8.9.

Proposition 3.6. — Denote p as before. Suppose it is absolutely irreducible, and denote T the
chosen G, -extension as before. Suppose Char(k) # 2. Then the natural map

X x—pol
Rz R
is an isomorphism.

Proof. — This is also [Alll9, Prop. 2.2.3]. Denote p, p’ resp. R, R’ valued points of
]-%(_pOl, with R — R, and p’ ® R = p. Suppose we have a fixed pairing <,>: p ®
p¢ —> x 'e!™" inducing r : Gg s —> G,(R) by [CHT08] Lemma 2.1.1. Choose any
pairing fixing <, >(, for p/. Then reducing to R this gives a pairing for p, but as 7 is
absolutely irreducible, p is also and thus there is only one pairing up to scalar for p, i.e.
<,>0 ®R = a <,> for some «in R*. Choose a lift 3 of « !, then set <,>":= 3 <, >{,
then <, >’ reduces to <,> and to (p’, x, <,>’) is associated by [CHT08] Lemma 2.1.1
an ' : Ggs — Gup(R'), reducing to r. Let r” another point over R’, inducing p’ and
reducing to r , then it corresponds to v < .,. >’ with ¥ = 1 (mod mp), thus writing
v = 1+ m with m € mp we have v = (1 4+ im)? (mod m%,) and as R’ is artinian, a
direct induction shows that  is a square in R/, thus 7/ = r”.(®)

The same argument with 7 for 7 and r for 7’ shows that we can actually choose r inside
XX (and thus automatically for any r’ above) and thus proves etaleness, and surjectivity.
As the map is an isomorphism in special fiber, this is an isomorphism. O]

We will need to assume the following technical hypothesis in this article.

Hypothesis 3.7. — Assume x : Gg g — @px is a continuous character crystalline at p.
We assume also that ¥ = x© and that x|, is trivial.

From now on we fix an isomorphism ¢ : Q, — C. Let ¢ : A% /F* — C* be the unique
character such that v, = 1o, 0 Artp, for all v { p, where Artp, : F)¢ — G%}i is the local
reciprocity map. We say that an automorphic representation IT of GL,,(Ag) is polarized by
v if it is regular algebraic cuspidal and such that I1¢ ~ I1V ® (Ng/p o 7). We recall that
if IT is a polarized by 1) automorphic representation of GL,,(Ag), there exists a unique

continuous semisimple Galois representation

pi. : Gal(F/F) — GL,(Q,)

(8)[CHTO8] is written over a field, but their proof applies here
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satisfying the conditions of [BGGT14, Thm. 2.1].

Definition 3.8. — A point of z € Xﬁx_p‘)l (Q,) is GL,-modular® if there exists a polar-
ized by 1) automorphic representation II of GL,,(Ag) such that pr, ~ p,.

Our goal is to prove a density result for automorphic points in the previous (polarized)
deformation rings. It follows from [CHTO08, Lem.4.1.5] that there exists a continuous
character ¢y : Gg,g — @X which is crystalline at p and such that x = ¥y§. We fix
such a character .

We start with the following reduction to lighten slightly the notations in the rest of the
text.

Lemma 3.9. — Assume x is as before (in particular crystalline at p), and p satisfies p¥ ~
¢ ® "L, Then there is an isomorphism, which identifies modular points,
1—pol ~ x—pol
X5 — Xﬁ ol

In particular it is enough to prove theorem 1.6 for x = 1.

Proof. — Indeed let ¢9 : Gp g — @ the crystalline character given by [CHTO8]
Lemma 4.1.5. Then 1) is automorphic. Moreover, the isomorphism is given by

p— pty .
This is obviously an isomorphism, and because 1y is automorphic it identifies (GL,,-
Jmodular points on both sides. O

4. Eigenvarieties and the infinite fern

The are at least two ways to define Eigenvarieties as explained in [BCO09], which -
at least - in our case of interest end up to be the same. We will need to assume some
technical hypothesis, see Hypothesis 4.2, on top of the assumption on x (see Hypothesis
3.7). By the previous lemma, we can assume x = 1.

Let p be a semi-simple, polarised-by-¢"~! as before and :{%ol = ff%_pd its polarised
pseudodeformation space. Let G be the quasi-split similitude unitary group of dimension
n over Q whose R-points, for R a Q-algebra, are:

G(R) = {(9,v) € GL,(R®q E) x R* | c(g)Jg = vJ}
01
where J is the n X n matrix ( .- : |. Moreover let G be the kernel of the morphism

v:G -Gy Aspis unramiﬁec% in lo?, we also fix a reductive model Gz, of G defined by
the similar formula (replacing R ®g E by R ®z Og).

We fix embeddings Q— Cand Q — @ that we use to identify the embeddings of EX
(resp. F) in @p with the set Y (resp. £r) of embeddings of E (resp. F)) in C. We fix a
CM type @ for E. For 0 € X, we use the notation o = coc. If 7 € ¥, let 0, € ¥ be

the unique element such that 7 = o, |r and o, € ®.

<9)Compare with Definition 4.1.
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We fix a PEL datum (E, ¢, V,{-,-), h) for the previous group G and denote its signature
(Po. , 4o )resp at infinity*®). In particular we have that p,_ + ¢,. = n doesn’t depend on
7. We define more generally (p,)ses; by Po = Do, if 0 =07 and p, = ¢o, =1 — p,. if
o = ;. We also sometimes abuse notation and write p,, ¢, for p,_,q,.. Let (G, h) be a
Shimura datum associated to G. We let S = (S )k be the tower of Shimura varieties for
(G, h) ([Lanl3] or [Herl9] which we will use later). Let i : G,, — G¢ be the cocharacter
associated to h and let P be the parabolic subgroup fixing the Hodge filtration associated
to p. Let M be the Levi subgroup of P fixing the Hodge decomposition of V¢ (defined
over some extension L of the reflex field). Let p be the Lie algebra of P and let K, be
the centralizer of h (i) in G1(R).

Definition 4.1. — We say that a polarised-by-c"~! representation

is modular if p is (strongly essentially) associated to a cuspidal algebraic automorphic
representation 7 for G as in Definition A.2. We say that p is holomorphically modular if its
Hecke eigensystem appears in the space of cuspidal sections of some coherent automorphic
sheaf on some Shimura variety of S. This is equivalent to the fact that 7 is cuspidal and
holomorphic at infinity; i.e. HO(p, Ko, Teo ® o) # 0 for some algebraic representation o
of K, ') by [Har90b] Proposition 5.4.2.

We say that p is modular if it admits a lift p which is modular. We say that p is
conveniently modular if it has a lift p associated to a cuspidal automorphic representation
7 which can be chosen unramified at p and outside S and its Hecke eigensystem appears
in ¢-th interior coherent cohomology group on some Shimura variety of S, with values in
some coherent automorphic sheaf, for some ¢ > 0.

If K? is a compact open open subgroup of G(AP*®), we say that p is conveniently
modular of tame level KP if 7 can be moreover chosen such that 75" # 0.

Hypothesis 4.2. — For the rest of the article, we assume that every v|p in F' is unramified,
and splits in E. Moreover we assume that p is conveniently modular.

In particular, if v is a place of F' dividing p, among the two places w,w of E above
v only one, say w, corresponds to an element of ®. We fix this choice, which allows us
to identify E,, with F;. Choose a sufficiently large p-adic field L such that M and P are
defined over L and L splits E, i.e. E ®q, L = Hw‘peE L. Let T be the rigid space over
L given by [, , Hom((#,)", Gp), and W =[], Hom((OF, )", Gy,) the weight space.
There is thus a restriction map

vlp

T — W.
We fix a tame level outside of p, K?, which is hyperspecial outside S and deep enough
so that p is conveniently modular of tame level KP.

(10)Because G is quasi-split these integers are explicit, but we keep the slightly general notation as we think it is
a bit clearer.

(11) These hypothesis are here to assure a concrete (= computable) way to verify if our m "appears” in an
Eigenvariety. We could introduce the notion of p-adically modular for which we ask for a Hecke eigensystem
appearing in the considered Eigenvariety £ whose associated trace is trp. It is enough to assume p-adic
modularity for p to get Theorem 1.6
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Let Z, < %%ﬂml (Qp) x T(Q,) the set of pairs (D,d) where D is the determinant
associated to (the Galois representation of) a cuspidal, regular, algebraic, unramified at p
automorphic form II for G appearing in degree 0 coherent cohomology (12) by Corollary
A.8, of level K? outside p, of Hodge-Tate weights ky -1 > kyr2 > -+ > k:vmn(l?’) for
each v|p in F,7, and ¢ such that for all v,3, §, ,; coincides on O}va with []_ 7hvri and
sends p to ¢, ;, where ¢, 1,..., ¢, is an admissible refinement for II, (and obviously
such that D lifts p).(*%)

Remark 4.3. — By [Box15] Theorem D, [PS16] or [GK15] Theorem 1.3.1, we have that,
under the hypothesis 4.2, Z/., is non empty, i.e. we can choose a lift of 5 that is holomor-
phically modular.

Definition 4.4. — The Eigenvariety for G, p, x = 1 and K? is the Zariski closure
Exr(p) < X7 T,

of Z}.,. The infinite fern Fx»(p) is the image of Ex»(p) by the first projection.

As G is a unitary similitude group with similitude in Q, thus giving rise to a PEL
Shimura datum, and p is unramified in E, we also constructed in [Herl9] an Eigenvariety
for G, for any type K? outside p. Actually these two constructions compare, and allow us
to deduce the following proposition.

Remark 4.5. — Actually we could take G any similitude unitary group with similitude
factor in Q instead of the quasi-split one. Indeed, as long as p is unramified for G the
construction of [Herl9] applies and we get the following proposition. In particular, if we
have a result analogous to [Herl9] for ramified primes (i.e. for primes v|p in F' which are
ramified, but still assuming v = w® in E) then all the methods of this article applies (see
[BP20]). For the moment, we still need our p-adic group to be (a product of) GL,, to use
results on the trianguline variety, but we hope to come back on this question in the future.

Proposition 4.6. — The rigid space Exv (p) is equidimensional of dimension n[F : Q]. The
map

h: g}(p(ﬁ) I W7

is locally, on the goal and the source, finite. In particular the image of any irreducible component
of Exr (D) is open in W. Moreover there exists, for allC > 0, Zc < 2}, consisting of classical
points, crystalline at p, which are moreover C-very regular (i.e. its Hodge-Tate weights satisfies
kyri > kyriv1 +C forallv, 1,i) which is Zariski dense and accumulation at every point of
Ziep-

(12) this means that HO(p, Koo, moo ® V) # 0 for a finite dimensionnal representation of K. In particular D
is holomorphically modular.

(13)We choose the convention for which the cyclotomic character has Hodge-Tate weight +1

(1) for these local data at p we have used the implicit choice of w|v
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We need to introduce a few notations. Let 7' be the diagonal torus of Gz,. Its group of
Qp-points has the following description,

al,w

T(@p) = . € H GLn(Ew); dre Q; s A wln—i+1w = T, Vi, w

- w|p inE

Denote by T the subtorus with trivial similitude character (i.e. r = 1). We identify 7
with the space of characters of 7" (Q,) using the isomorphism (F})" ~ T"(Q,) sending
(@1,v,-..,an,v) to the diagonal matrix of GL,,(E,,) with diagonal (a1 v, ..., as ), via the
identification E,, ~ F, where w | v and w € ®. T(Q,,) (resp. T*(Q,)) can be identified
also with a subgroup of the L-points of the torus (resp. subtorus of 7 = 1 elements) of

M ~ Gm X Hv|p in F HO’TEHOI’H(FU ,@) GLPa-,— X GLQUT’ uSing’

—1 -1

Aoy, 1 T(aw,pgT ) ?(amqﬁ )

aw,n w T(aw,l)_l

Definition 4.7. — Let k = (ko) vexp € Z"FQ. We say that a character y € W(C,,)

1<i<p,
is algebraic of coherent weight k if
(2)
Pr=Dor qdr =DPzr
Vz = (Zv,i) € H(O;‘v)nv X(Z) = H n UT(Zv,i)kUT’i U‘F(znﬁ-l—i)_kﬁ’i'
v|p vlp =1 i=1

We say that an algebraic character of coherent weight & is M -dominant if ks ; > ko 11
forceXpand 1 <i<p,—1.

This corresponds to the choice of the upper triangular Borel for M, in the sense that
if we have character x of M which is dominant for the upper Borel of M, then its restric-
tion to 7" (Q,) via the previous embedding gives a M-dominant  in the previous sense.
Suppose x is algebraic for some coherent weight x. For h = (h;;)rex, 1<i<n € Z”[F:Q],

if(1%)
x(z) =[] or(z0)",
TEEF

then we say that x is of infinitesimal weight h. We say that such a x is dominant (or
G-dominant)if hy 1 = hr9 > -+ = h;p, forall 7.

Proof.: — Let £ together with a locally finite map w : £ — W the Eigenvariety for G of
tame level K? constructed in [Herl9]. It is an equidimensionnal rigid space of dimension
n[F : Q.

Let S be a finite set of places of I containing the places dividing p and the places where
K? is not hyperspecial. For v ¢ S, let H,, be the spherical Hecke algebra Z[G(F),)//K?] of
G and let H° = ®v¢s H®. For v|p, let A, be the (commutative) Z-algebra generated by
T, (F,)/Tn(OF,) and their inverses with 7T}, the diagonal torus of GL,,, and T, (F),) the

(15)This just means that ks ; = hr;,1 < pr and —ks—; = hr p41-; for i > pr.

7(aw1) !



THE INFINITE FERN IN HIGHER DIMENSIONS 15

subgroup of matrices Diag(a1, ..., a,) with v(a;) > v(ait1). Let A(p) = ), A(v) be
the Atkin-Lehner algebra. It follows from [Her19, §7](16) that there exists homomorphism
A HY - (&, 0L) and A(p) — T'(€,Og), sending Diag(&. . ,_}7p_1, .o, p ), to
% times

a Hecke operator U, ; at v, such that, if z € £'(C,), the evaluation of these morphisms
at z induce a non-zero eigenspace in H°(S%"(v),w®*):T(~D)), with K = K?I, and
I a Iwahori subgroup at p, (which is a space of overconvergent cuspidal forms, defined
in [Herl9] Definition 6.12). Moreover if k € W(C,) is an algebraic character of M-
dominant coherent weight, then the action of H° preserves the subspace of classical forms
HO(S%r,w"(—D)) and coincides with the “usual” action of % on H(S%", w"(—D)).

We remind now that £’ contains an accumulation and Zariski dense subspace of auto-
morphic points that we will call very regular small slope classical points.

Let Z < £'(C,) be the set of points z satisfying [Herl9] Proposition 8.2, a slightly
stronger form of Theorem 8.3, namely

(3) max(n, + vp(ar),0) <inf(k,, p, +ksrq.), VT EZp

where w(z) is (thus) a G-dominant algebraic character of coherent weight (ks ;) sexy
1<i<po
and o is the eigenvalue for the operator U, iin(p, q,) and 1, is a normalisation constant

depending only on (p;, ¢- ), asking that w(z) is moreover far from the walls as in [Har90a)
Lemma 3.6.1. For C' > 0, we define Z¢ < Z adding the condition k; ; — ks 41 > C for all
i. For C' >> 0, these points give rise to crystalline representations at p as we will see. Each
of the sets Z¢ is accumulation in Z, we can thus prove the claim with Z¢ replaced by Z.
By [Bij16] (see [Herl9, Thm 9.4]), if z € Z, the system of eigenvalues corresponding to z
has an eigenvector in H(S552",w"(—D)). This implies that actually z € £'(Q,). It follows
from [SU02], or [Har90a], that there exists a cuspidal automorphic form 7 of G(Ar) such
that ﬂj{-(p # 0, the Satake parameter of m,, v { p, corresponds to Ay, ® k(z) and 7o, is
tempered of weight (ko p., -+ koo 1, —kez 1, , —k&rq.))resr — PG — Wo,M PG, With
pa the half-sum of positive roots, as we will explain.

To be able to clearly label the weights, let P,(17) be the parabolic corresponding to p,
and choose a Borel, equivalently a set ®* of positive roots such that if @ is the set of
positive roots contained in the Levi of p, then @, := ®T\®F is chosen to be included
in gc/p. Equivalently B < P;p P = P,, the parabolic opposite to Pj,. This allows us to
label similarly (classical, dominant) weights of representations of K, (with respect to @)
and of G (with respect to ®*). Let us be more precise for these choices. Let G(Q)) our
unitary group, thus given by the hermitian form J, and let T be its diagonal torus, and 7'
the subtorus of elements of similitude 1. We have an embedding

T(Zy) - [L co GLp, .k x GLq, K
ai O'T(apT)_l a(aq7)_l

-1

an or(a1) ar(ar)”

T

(16) There #° is denoted H gcp. See also remark 7.12 of [Herl9]
(17 also called Pjtd in other references
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where a; € Og ® Z,, and a;a,11—; = 1. Writing a; = (2;,t;) (using the choice of w|v for
all v and z; corresponding to w in ®), we can rewrite the previous embedding

(Or®@Zp)* )" — [L; co GLp, .k X GLg, K
2 7(zp, )7t 7(2p, +1)

1

Zn 7(z1)” T(2n)

T

We choose the diagonal torus and upper Borel for M ~ [[_GL,_ x GLqT(ls), which we
see as the Levi for P, < [[ .y GLp, 4q,, the standard lower parabolic with blocs p;, ¢-.
Thus the choice of @t for G corresponds to the standard upper Borel. Denote pg the
half-sum of positive roots in ®7.

Thus if we choose k := (koi)sesp 1<i<p, @ dominant (integral) weight for M for
the previous upper triangular Borel, then the algebraic representation of highest weight
K is constructed using —wg, psk, which induces the weight x of ((Op ® Z,)*)™ which is
algebraic of coherent weight « in the sense of equation (2). This weight x is ®-dominant
ifand only if ks p. > —k&7 4, .

Let z € Z, which corresponds to a classical automorphic form (itself giving an automor-
phic representation ) appearing in H?(S%", w") for £ = (ks ;)oesp1<i<p, as before,
which is a classical (and M -dominant) weight. Then y = w(z) € W is the algebraic char-
acter of weight &, i.e. is —wg ask o . This sheaf w” coincides with the coherent sheaf Vj
over C defined by Harris ([Har90b]), associated to the highest weight s representation of
M =11,c GL,, xGLy ,withs = (=k;p, ,...,—kr1,kz1,..., k=g, ) with the previous
identifications. This calculation is the one done in [FP19] section 7.4, based on [Goll4].
Remark that if x is algebraic of weight x and dominant, then the dominant representative
of —s is given by wt(x) = (ko, 1, -+ k0. p.» —kz=g.s---, —kz=1). In particular as the
Hecke eigensystem corresponding to z appears in H°(S%", w") thus in H°(S%"(C), Vy)
this means that

Ho(pv KOO) oo ® ‘/S) # {O}a
i.e. that the infinitesimal character of 7, is —s — pg (up to reordering) by e.g. [Har90b]
Proposition 4.3.2 (see also [BP20] Proposition 5.37). But if z € Z and 7 an automorphic
representation corresponding to its system of eigenvalues A\(z) of H°, then using that
w(z) is far from the walls, by Corollary A.8 there is a semisimple representation p* = p¥ :
Gp — GLy(Q,) such that p*(Frob,) is associated to the semi-simple conjugacy class at
v determined by A, for all v ¢ S and satisfying moreover

()" =~ (p") ®e" .
By for example [BGGT14|, the previous calculation of the infinitesimal weight means that

p“, associated to 7, has Hodge-Tate weights given by —s—pg— 25" i.e. the v, 7 Hodge-Tate
weights of p% are (up to order)

(kv,T,pT +1—n, kv’.,.yprl +2—-n,..., ]ﬂy’ﬂl +pr—n, _kv,?,l +pr—n+l1,..., _kv,?,%—)

(18)This is actually the subgroup of M of element with similitude factor 1, but in all this discussion we ignore
the similitude factor to simplify the notations.
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which we can reorder to be dominant for very regular z € Z,

(4)

(kyra+(Dr—n), ky ro+(pr—n—1),. .. ky rp +1=n, —kp 74,5y —ko71+(pr—n+1)).
We first construct a union of connected components of £’ and a map from this subspace

to /’\%ml. As in [Che04], we construct a determinant

D:Gp—> Og.

Let z € Z and 7 an automorphic representation corresponding to its system of eigenvalues
A(z) of H®, as we have seen, by Corollary A.8 there is a semisimple representation p* :

Gr — GL,(Q,) associated to A(z) such that
(p")" = (p") ®e"
Let D, the pseudo-representation of p%. The continuous map (D.),cz from Gg to
[ 1,z k() factors actually through I'(£’, Of,) and gives rise to a pseudo deformation D
on I'(£', OF,). By continuity, we have DV ~ D"~ 1,
As there is only a finite number of possible reductions modulo p of D, there is £'(p)
an open and closed subset of £ of points whose reduction of D is (tr)p. This is non

empty by Hypothesis 4.2. In particular the restriction of the previous D to £'(p) induces
a morphism of rigid analytic spaces

! (— ol
&'(p) — 7%

Now we construct a rigid analytic map £ — 7.

Denote w = (Wy1,...,Wy,n)y the universal character of ((Op ® Zp)*)". In [Herl9,
Section 7.2.2] we constructed Hecke operators which are in O(E’)*, denoted by U, ; for v|p
in FFand i = 0,...,n. The operator U, ; coincides up to normalisation (this normalisation

is made in order to vary in family) with the double class,

Ii Infi

w ww=2v'|pinF

If Ugffss denotes the action of the (classical, i.e. non normalised) Hecke operator corre-
sponding to the previous Iwahori double class acting on global sections of the classical
automorphic sheaf, for (fixed) algebraic weight w € W, then the normalisation is

1

1 class
U’U»i 1 P Uv,i )

Il
=2
<
|

pfl

where @, is the (unique) algebraic extension of w, as a character of (F.*)"(19) and there
is i times 1 (and n — i times p~!) appearing in the matrix (see before and remark 7.5,

(19)This normalisation factor, which is a power of p, comes when trying to express a character of 7', the maximal
torus of G, as one of ' ® @; It would be simpler here to explain this normalisation using 7". The key point is
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together with remark 8.3 of [Herl9]). For all i € {1,...,n}, we set

—1
Fv»i = U’Uai v,aa—1°
It corresponds, up to normalisation, to the Hecke operator in A(p) %)
l .[1;1 Infi
qu,i = pévzvl ) piév:w ) € G(Qp)7
I w lig w / ww=v'| p

and the normalisation is the following, for w algebraic of infinitesimal weight A = (h; ;)7

F,; =, P Fflz = pZr hir el

v,1

1
where p is in position 7. The all point is that F; ¢ O(&’), ie. they don’t interpo-
late, whereas F,; € O(E’)*. We construct characters &7 ; : F, — O(E’)* by setting
5871»(;0) :=F,; and
0 - .
(6v,i)|(9;v = Wy,i,
and we finally set

(5) Sui o= 0p; x [ [ar™ x ||

1—n
2
)

where for 7 : Fy, < Cp, 7110, = Top, and z,(p) = 1, and s.(i) = 177” +p, — 1 if
1<i<p,and s:(i) = "Tfl — (i —py — 1) if i > p, Y. Thus the characters (0v,i)v
gives a map

32

& —T.

Still denote Z for Z n &'(p), which is Zariski dense and accumulation. Now we are
reduced to prove that the two constructed maps £'(p) — Xﬁml and &'(p) — T are
compatible, in the sense that for z € Z the second map is the parameter of a triangulation
for the image of z via the first map. By local global compatibility at v for m and p“, we
have that, using 7! # {0} by construction of &', that 7, is a subquotient of the Borel
induction of an unramified character x of ()" (e.g. [BC09] Proposition 6.4.3 and 6.4.4)
with x related to the eigenvalues of F{'** at z (x = (¢1,...,¢n) = (F&4,... ,Flili)(ﬁf).
But F, ; has a locally constant valuation (thus not Fg,ll '), so up to choose another point
of Z close to 2z, we can assume that this induced representation is irreducible, and thus

that the double class corresponding to U, ; has similitude factor p~1, thus is not in 71, But remark that then
the Hecke operator F), ; has similitude factor 1.

(20)But not the the double class associated to the following matrix, as the Hecke algebra at Iwahori level is not
commutative! See e.g. [BC09] Proposition 6.4.1 and the remark that follows.

(21)Remark that actually in our quasi split situation we have p,, ¢- which doesn’t depend on 7 € ®. In any case
(sr(1),...,57(n))r = wo,pm(0,...,n—1)7 + % = —wo, M PG, with pg defined in the next paragraph.
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unramified. By local global compatibility this proves that there is an accumulation subset
of Z, which accumulates at any point of £ with algebraic weight, consisting of points z with
representation p, semi simple corresponding to D,, crystalline at every v|p and such that
D¢ris(py) has all its refinement, one of which is given by (Dcyis(0y.:))1<i<n, i€ (Flfll)z
Moreover, the calculation for z € Z we did in equation 4, together with the definition
of the weight of § in equation 5 implies that the Hodge-Tate weights of p, are given by
d|(0r@z,)*> in the right order ! This means that the map

D><5:("f(ﬁ)—>2‘c'§ol><7'7

sends a dense subset of Z (namely the previous one where points are crystalline) into Z7,,
but conversely by construction of &', all points of ZJ., are in the image of the previous
map.

Moreover D x§ is a closed immersion. Indeed, by construction £’ is (locally) constructed
as the image of H ® Oyy = H® ® O7 where H = H° ® A(p) acting on some space of
overconvergent, locally analytic modular forms (of finite slope). Let U < Xﬁx—p °l T be
an affinoid, in particular it is quasi-compact thus the slopes of A(p) on U are bounded
(say by a). Thus (D x §=1)(U) is included in €5 for some v, w (see [Herl9]) and then,
by local-global compatibility, it is clear that (D x 6)~!(U) — U is a closed immersion.
As explained, Z accumulates to any point with classical weight of £, thus to Z’. If we
denote by h the composite of the map

E—T —W,
it coincides with a map
-5 w-Lw,
where ¢ is the isomorphism of W given by the definition (5). The properties of the map

h thus comes from the analogous one for w, proven in [Herl9] Theorem 9.5 (see also
[Che04] which was the first to prove those properties). O

From now on, to lighten notations denote £(p) := Ex» (p), F(p) := Frr(p) 2" := 2y
accordingly(??).

5. Automorphic forms, infinite fern and big image

Let K be finite extension of Q, and K an algebraic closure of K. Denote v, the p-
adic absolute value of K such that v,(p) = 1. Let Ky = K be the maximal unramified
extension of @, with Frobenius operator ¢ and set f := [K(y : Qp]. Let L be a finite
extension of QQ, such that K ®q, L ~ L] 1f (p, V) is a crystalline representation
of Gal(K/K), we denote (Deis(V), ¢) its associated ¢-module. It is a finite dimensional
free K ®q, L-module of rank n = dimy, V with a ¢ ® Id-linear automorphism ¢. Its
de Rham module Dgg (V) is a filtered finite free K ®q, L-module. The Hodge-Tate type of
V is the [K : Q,]-uple (k1 = -+ = kn r)r: k1 where the k; . are the integers m such
that gr—™(Dgr(V) ®k,- L) # 0 counted with multiplicity.

(22) Everything we will say is still dependant of this level K. At the end of the article, in corollary 8.11, we show
that there exists an optimal level K7, but we can’t choose it right away. Compare [Chell] Lemma 2.4
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Definition 5.1. — We say that a crystalline Galois representation (p, V') over L is Hodge-
Tate regular (or simply HT-regular) if, for all 7 : K — L, the integers k; . are pairwise
distinct. It is said to be @-generic if the linear endomorphism @7 of the finite free Ko®q, L-
module Deis(V) is split semisimple regular ie has dimy, V' pairwise distinct eigenvalues
¢; in L such that ¢;/p; ¢ {1,p/} (note that these eigenvalues are in L since ¢/ commutes
to the semilinear action of Gal(Ky/Q,) on Dgis(V') given by ¢).

Remark 5.2. — In [Chell, §3] Chenevier introduced the notion of weakly generic crys-
talline (p,T")-module, ie. crystalline (¢,I")-modules for which all refinements are non-
critical, and weakly-generic crystalline (p,I")-module for which n (the rank of the (¢, T')-
module) well-positioned refinements are non critical. It is possible to deduce from the
results of [Chell] that if the classical points of £ or XgOl which are weakly-generic at p

are Zariski-dense, then modular points are dense in Xgoz (or the closure has at least the
expected dimension). He moreover proves that if n = 3, every ¢-generic, HT regular ab-
solutely irreducible (¢,T") is automatically weakly generic. Unfortunately it does not seem
to be true anymore even for n = 4 that absolutely irreducible points are weakly generic, as
shown in the following example, and thus it does not seem any easier to prove that weakly
generic points are dense in X%)Ol when n > 4 than proving the analogous result for generic
points.

Example 5.3. — Let (V,,Fil®) be the filtered ¢-module of an irreducible, y-generic,
HT regular, crystalline 4 dimensional representation of GG, with L-coefficients. Choosing
L big enough, we can assume that there exists a basis (f1, f2, f3, f4) of V such that
©(fi) = pifi. Refinements of V are thus given by a permutation ¢ of this basis. By
irreducibility and weak-admissibility, we check that it is impossible for Filk v = {0},V to
be ¢-stable. For example, suppose that the HT weights are —ky < —ks < —ka < —k; (i.e.
the jumps of the filtration on V are k1 < ky < k3 < k4) with

- FilMV =< fo, fa, f1 + fa >=< fo, fo + f3. f1 + f1 >

- Fil"V =< fi + fu, fo + f3 >

- Fﬂk3 V=< f1 + f4 >

- Fil* v = {0}

We can check that the non critical refinements are given by ¢ = id, (23), (14), (14)(23),
and they don’t form a weakly-nested sequence. Moreover, for generic choices of k; and
v(p;), the associated p-adic representation V(D) will be irreducible. Indeed, if v(p1) =
v(pa) = v(p3) = 16,v(p4) = 12, k1 = 0,ke = 10, k3 = 20, k4 = 30, then we can check
that no non-trivial ¢-stable submodule of D is weakly-admissible. In particular if we do
not already know that generic points are Zariski dense, it is not likely to prove that weakly
generic ones are.

Moreover we can check that locally the image of the tangeant space of those refined
points doesn’t cover all the tangent space for the corresponding point in the local de-
formation ring (i.e. at this point the analogous of proposition 7.5 only for non-critical
refinements isn’t true). In the following we will use a replacement of those generic points
by the so-called almost generic ones, which are Zariski dense in the fern and for which
we can apply proposition 7.5 and thus Chenevier’s stategy. Remark that some irreducible



THE INFINITE FERN IN HIGHER DIMENSIONS 21

weakly-admissible filtered ¢-modules of dimension 4 which admits a critical refinement are
weakly-generic, but we don’t know how to discriminate these from the previous example
on the deformation rings (or on the infinite fern).

Denote by F(p) the Zariski-closure of the image £(p) — X5 %! i.e. the Zariski closure
of the infinite fern F(p).

Definition 5.4. — We say that a Galois representation p : Gg —> GL,(Q,) has enor-
mous image, if P(GE((poc)) is enormous, in the sense of [NT19] Definition 2.27. We say

that a point = of £(p) (resp. of X" °!Y is almost generic if it is in Z (resp. in the image of

Zin X)7° °l), the associated Galois representation p has enormous image, and if P\Gp, 18
crystalline, p-generic and HT-regular for all v|p.

Let v be a place of E dividing p. Let (p, V') be a continuous finite dimensional repre-
sentation of G, over L. It follows from the compactness of G, that p(Gp,) is a closed
subgroup of GLL (V). The p-adic analogue of Cartan’s Theorem shows that p(Gg,) is
a p-adic Lie subgroup of GLz (V') so that we can define g, := Lie(p(Gg,)) (see [Ser89,
Rem. LLI]) and g, 1 the L-span of g, in End; (V). Our goal is to prove that almost
generic points are Zariski-dense in the infinite fern (). Such a result was proven by Taibi
([Tail6]) in a slightly different (and more difficult) context (improving results of [BC09]). As
the case we consider is easier, and for convenience of the reader, we repeat the argument
in our context.

Denote by K,,/E, the compositum of extensions of degree dividing n, this is a finite
Galois extension.

Proposition 5.5. — Let (p, V') be some continuous n-dimensional representation of G, over
L and assume that (p|a,, ,V') is absolutely irreducible. Then 'V is a simple g, 1,-module, g, 1,
is a reductive Lie algebra and b, 1, the semisimple part of 9, 1, is isomorphic to a sub Lie
algebra of sI(V') of semisimple rank at most dimy, V' — 1.

Proof. — Let K be a finite extension of E,,, we claim that p|¢g, is absolutely irreducible.
We can assume that K/F, is Galois. Suppose that p|g, is not absolutely irreducible, then
as

p:Gg, — GLL(V) ~ GL, (L)
is absolutely irreducible and G i is normal in G'g,, we have, up to enlarge L, a decompo-
sition into absolutely irreducible G g -representations

plax = P Wy,
k=1

and G, permutes these representations, in particular they have the same dimension. Let
H < Gg, be the stabiliser of W1, then Gg,/H acts transitively on the W and thus
[Gg, : H]dim(W;) = n. In particular H = Gk with K’ a finite extension of E, of
degree dividing n, thus K’ < K,, but p|g,, is irreducible, thus as is p|g,, and thus
r = 11ie. p|g, is irreducible.

For each open subgroup H — Gf,, the representation (p|g, V) is irreducible, so that
V' is a simple g, r-module. Thus g, ; has a simple faithful module, which implies that
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0, is a reductive Lie algebra. Let g, 1 = a, 1 @ b, 1 be the decomposition of g, 1 as
direct sum of an abelian and of a semisimple Lie algebras. As V' is an absolutely simple
gp,r-module, the Lie algebra a,; acts on V by scalars and V is an absolutely simple
b,,z-module. Then a,; < LIdy and, as b, 1, is semisimple, h, 1 < g, 1 N s[(V). As a
consequence f), 1. = g, 1. Nsl(V) is a semisimple Lie algebra and V' is an absolutely simple
h,,r-module. As sI(V') has rank dimy, V' — 1, the rank of b, 7, is at most dim;, V —1. O

Proposition 5.6. — There exist finitely many nonzero Q-linear forms Ay, ..., A, on Q" such
that the following is true: let (p,V') be a crystalline n-dimensional representation of G,
over L, with Hodge-Tate weights (k1o < - < kno)o such that (p|g,, ,V) is absolutely
irreducible and such that there exists at least one o : F,, — L such that forall1 < i < r,
Ni(k1 o, koo, . kno) #0, then p(Gp,) contains an open subgroup of SL(V').

Proof — Let C be some algebraically closed field of characteristic 0. The classification of
semisimple Lie algebras and their representations shows that all semisimple Lie algebras
and their finite dimensional simple modules are defined over QQ, that there are finitely
many isomorphism classes of semisimple Lie algebras of bounded rank and that each
of them has finitely many semisimple modules of bounded rank. Consequently, for a
fixed n > 2, there exist a finite number of pairs (h;,6;) where bj; is a semisimple Lie
algebra and 6; an embedding of b; in sl,, g such that for each semisimple Lie subalgebra
h < sl ¢, there exists 4 such that h ~ b; ®gp C and the inclusion is GL,,(C')-conjugated
to ; ® Idc. As a consequence a Cartan subalgebra of ) is conjugated to one of finitely
many Q-linear subspaces of the space of diagonal matrices in sl,, ¢. Moreover it follows
from [Bou, VIIL.§3 Prop.2.(ii)] and from Borel-de Siebenthal Theorem ([Kan01, Thm. 12.1])
that a semisimple Lie subalgebra of sl,, ¢ containing b is equal to sl,, ¢ or of rank strictly

less than n — 1. Thus there exist finitely many nonzero Q-linear forms A, ..., A, on Q"
such that if h a semisimple subalgebra of sl,, ¢ of rank strictly less thann — 1 and z €
is a semisimple element of eigenvalues Aj, ..., A\, (counted with multiplicities), then there

exists 1 < i < s and w € &, such that w(A})(A1,..., ) = Aj(Awa), -5 Awm)) = 0.
We set

{A, .. A} ={w(A) |1<i<s, we&,}.

Let © € Endc,g,,1(Cp ®g, V) the Sen operator of V. As (p,V) is Hodge Tate, it
follows from [Sen73, Thm. 1] that © belongs to C, ®q, 9p,L © C, ®q, End@p V.
Suppose L is big enough so that I, ®q, L ~ L @] Then

Cp ®Qp L = n (Cp ®F1,,G' L7

o:Fy—L

decomposes over all embeddings of F;, and let O, be the C,®p, , L-linear endomorphism
of C,®p, » V induced by ©. The eigenvalues of ©, are the o-Hodge-Tate weights (k1 » <
-+ < kpo) of (p,V) (counted by multiplicities).

Assume that A;(k1,...,kne) # 0 for all 1 < ¢ < r. Then by what preceeds, the
element ©, can’t be contained in a strict semisimple Lie subalgebra of C, ®p, » sI(V') so
that C, ®F, o 0y, = Cp, ®F, - sI(V'). For dimension reasons, we have h, ;, = sl(V'). We
conclude that p(GF,) contains an open subgroup of SL(V). O
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Proposition 5.7. — The set of points x € F(p) such that Tr p, |G, is absolutely irreducible
is a Zariski-dense and Zariski-open subset of F(p).

Proof — The fact that the absolutely irreducible locus is Zariski-open is a consequence
of [Chel4, §4.2]. In order to prove that it is Zariski-dense, it is then sufficient to prove that
each Zariski-open subset U of F(p) contains a point = such that Tr p, |, is absolutely
irreducible.

Now we follow the strategy of [BC1l] and [Tail6]. Let us fix some notation. If x =
(pz,02) € Z2' < E(p) and 0 : K,, — Qp, we let (ky1(z) < -+ < kyn(x)) the Hodge-
Tate weights at o of p|q,, and (¢1(x), -+, dn(x)) € k(x)" the ordered eigenvalues
of the linearized Frobenius of Deis(pz|cy, ) corresponding to the refinement of p.|c,,
defined by 6, ,. We also set k;j(x) = > ko i(x). Let e be the ramification index of
K,,/Q,. The functions x — v,(¢;(x)) + e 'k;(x) are therefore locally constant on Z’.
Now fix U a Zariski open non empty subset of (). We have U n F(p) # J so that the
inverse image V of U in £(p) is a non empty Zariski-open subset. Let z € V n Z’. Let
¢ = max;|vy(¢;(z)) + e k;(x)| and larger than n? + 1 and let Z” be the subset of point
z € Z' such that k;11(2) —ki(2) > cen(ki(2) —ki—1(2))2<i<n—-1,2<i<n—1,and
ka(z) —ki(z) > 3cen. If z € Z, then Y, ki(2) — ., ; ki(2)| > cen for all distinct non
empty proper subsets I and J of the same cardinal in {1,...,n} (by the same proof than
[BCO9, Lem. 4.5.5]). Then Z! is Zariski dense and accumulates at Z’ in £(). Therefore
there exists a point y € Z” N V such that moreover max;|v,(¢;(y)) + e 1k;i(y)| < e
Then, for ¢ # j,

[0p(0i(y)) — vp(25(y))| = %Iki(y) — ki)l = lop(i(y) +

|~ Iyl ) + M)

>3cn—c—c>1.

In particular, ¢;(y)/¢;(y) # p, so if II is an automorphic representation correspond-
ing to y, we have that II, is an irreducible principal series. In particular, all its refine-
ments are accessible. Now we choose a transitive permutation o of {1,...,n} and, since
all the refinements of II, are accessible, there exists zp € Z’ such that p, ~ p,, and
(#1(20); -+ Pn(20)) = (Po1)(¥)s- -+ Po(n)(y)). As in the proof of [BCIL, Lem. 3.3],
we deduce that >),; v,(¢i(20)) + e 'k;(z9)) # O for any non empty proper subset I
of {1,...,n}. Let C = max;|vy(¢i(20)) + ¢ 'ki(20)|. Let Z(, be the subset of point
z € Z' such that ko j+1(2) — ko j(2) > C for any o € Hom(K,,,Q,) and 1 <i <n — 1.
The set Z{, is Zariski-dense and accumulates at Z’ in £(p) so that there exists a point
z €V n Z( such that Y, (vy(¢i(2)) + e 'k;(2)) # 0 for any non empty proper subset
I of {1,...,n}. By [Tail6, Lem. 3.2.3], if D’ © Deis(p-|cy, ) is a nonzero proper weakly

admissible sub-p-module, then there exists a non empty proper subset I < {1,...,n}
such that

va(qﬁi(z)) +et ZkZ(Z) =0

iel iel
which is not possible. Therefore p.|g, is absolutely irreducible. O

Theorem 5.8. — The set of points x in F(p) which are in the image of the set Z, which
are crystalline o-generic and HIregular and such that p,(Gr,) contains an open subgroup of
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SL(V,) is a Zariski dense accumulation subset. As a consequence, the set X™°%%9 = {zx e
F(p)|z is almost generic } = F(p) is a Zariski dense accumulation subset.

Proof. — Let Aq,..., A, be nonzero Q-linear forms on Q™ as in Proposition 5.6. Let o
be some fixed embedding of F), into K. The set of classical points € £(p) which are
crystalline and such that the o-Hodge-Tate weights of the representation p, are not zeros
of all the A; form a Zariski dense accumulation subset in £(7) (this is a direct consequence
of the open image of Proposition 4.6 ; see [Tail6] Proposition 2.2.6). As a consequence
F(p) is the Zariski-closure of the images of these points in XﬁX*pOl. By Proposition 5.7, the

subspace of X/%(_p °l where pzla x,, is absolutely irreducible is Zariski-open and Zariski-

dense in F(p). We conclude from Proposition 5.6 that the set of classical points z such

that p, has an open image is Zariski-dense and an accumulation subset in F(p).

It is enough to prove that classical points such that p, (G, ) contains an open sub-
group of SL(V,) have enormous image. At such a point z, the Zariski closure of p,(Gg)
contains SL(V,). As E((y~)/E is abelian, the derived subgroup p,(Gg) is included in
Pz(GE(C,x))- By [Bor91, 1§21 (e)], the Zariski closure of p,(Gg(,.)) contain the derived
subgroup of the Zariski closure of p,(Gg) and then contains SL(V;). It follows from
[NT19] Lemma 2.33, that p,(Gg(c,.)) is enormous. O

6. A lemma on Borel enveloppes

This section is independant of the rest of the text, thus its notations should be con-
sidered unrelated to the rest also. Fix n an integer, k a field, G = GL,,, B the upper
triangular Borel, T its diagonal torus, g, b, t their respective Lie algebras.

Lemma 6.1. — For every Borel algebra b', we have
b= > (b by)7 T,
wed’,

where wy € W ~ X, is the longuest element for the order given by b, b, = g~ 1bg, €/, is, up to
translation by an element of S, depending on b, the set of “full” cycles :

¢, ={cj:=(0i—1,...,5+1,j) e L,i = j},
and for g, h € G,
(by N by)9" =" = {M € b, nbyhMh™" (mod u) = Ad(wp)(gMg~" (mod u)) € t}.
Proof — We can write b’ = b, for g € G. Let g = uls, u € b, € b,,, lower triangular i.e.

I = wobwy with b€ B, and s € W. Thus by = (b, )sg, for ¢ = wos € W. Up to conjugate
by bq, we check at once that it is enough to show

bug = D (Buy N bypm1)9 =00,

weC,

Thus we reduce to show the following lemma :
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Lemma 6.2. — For all i > j, there exists xy € k such that

atl = 5i,j + 2 (L‘g(sg’j € (wa N bCi)jbil)gr=wo.
e=j+1
Proof: — We follow the proof of [HMS22|. For i > j, let a*/ be the element constructed
at the beginning of the proof of Lemma 2.1 in loc. ¢it. For the convenience of the reader

we recall its construction. Let eq,..., e, be the standard basis of k™ and let V, be the

standard flag of k™. Let B be the basis
b(el), b(eg), ey b(@j_1), ej, b(€j+1), ceey b(ei), €it1s--:5,€En

of k™. Then a’ is the matrix, in the standard basis, of the endomorphism 7 of k™ defined
by m(z) = 0if € B\{e;} and w(e;) = e;. As in loc. cit. we check that

(i) e € ker(m) if £ < jor £ > i;

(ii) Im(7) < ke; and 7(e;) = €5

(iii) the endomorphism b~ !7b stabilizes the flag o j1V..
The first two points are checked in loc. cit. The third point follows from the fact that

0 if0=1,...,i—1

6 b lrb(e V) =
() ™ (czﬁj Z) {kbl(el) ifl>1

and kb~ 1(e;) e V; = ¢ }V;. This shows that the matrix a’ is an element of b, N b, -1
(2% o ¢i,jb
and has the form

(7) 6@’,]’ + Z $55i7k
t=j+1
for some xy € k.
It remains to check that a®/ € (by, N be, 5-1)9"~"° which is equivalent to check that
the diagonal elements of a*’ and Ad(c; jb~1)a™’ are the same. It follows from (6) that

0 if k<
Ci,jbil(ei) ifk=1
and (Ad(c; jb='m))(es) € V; if £ > i. Therefore the diagonal of Ad(c; jb~')a’’ is zero
except for the coefficient (i,7). On the other hand, we see by (7) that the diagonal entries

of a® are all zero except (i,7). As the matrices a’/ and Ad(c; ;b~')a"/ are conjugated
they have the same trace and thus the same diagonal. O

O

(Ad(c; ;b)) (er) = {

7. Local deformation rings

The aim of this section is to prove Proposition 7.5. We are now in a purely local
situation, and thus we freely use notations (in this section only) that were used before,
hoping it will not lead to any confusion.

Let k be a field of characteristic 0. Let G be a split reductive group over k, B < G
a Borel subgroup of G, T' < B a maximal split torus of G, U the unipotent radical of
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B and U™ the unipotent radical of the opposite Borel subgroup to B with respect to T’
(in particular U~ n B = {1}). Let W = Ng(T)/T be the Weyl group of (G,T). Let
g, b, t, u, u~ be the respective Lie algebras of G, B, T, U, U~. Let g < g x G/B be
the Grothendieck simultaneous resolution of g and X := g x4 g. We recall that X has
irreducible components X,, which are indexed by the elements of the Weyl group W (see
[BHS19, Def. 2.2.3]). The map g — t sending (1, gB) to the projection of Ad(g)~'% on
t via b/u ~ t gives rise to two different maps k1, k2 : X — t corresponding to the two
projections X — g and to a map & = (k1,k2) : X = txypw t. fwe W, welet t¥  t
be the subspace of elements fixed by w and T}, < t x 1 t be the irreducible component

Ty = {(z1,72) €t x t | 31 = Ad(w)z2}.

The space X has a partition by locally closed subschemes V,, defined as inverse images
of the Bruhat strata U,, € G/B x G/B by the map 7 : X — G/B x G/B and X,, = V,,.
We have an inclusion x(X,,) < T, ((BHS19, Lem. 2.5.1]).

Proposition 7.1. — Let x = (¢1B,0,92B) € Xy, (k) < G(k)/B(k) x g x G(k)/B(k) be
a k-point. Let w € W be such that v € V,, and assume that wow ™ is a product of distinct
simple reflexions. Then we have an equality of k-vector spaces

To Xy = Tot™H (Ty,).

Proof — The inclusion X,,, = k 1(Ty,) induces an inclusion T, X,,, < Tpr ™ (T, )-
We will prove that these two k-vector spaces have the same dimension.

Let k[e] := k[X]/(X?). The tangent space T} (rk !(ty,)) is the set of k[¢]-points
(g1B, €A, §g2B) of X specialising to = such that moreover

(8) Ad(g1) 7" (eA) = Ad(wo) Ad(g2) " (e4)

in t®y k[e]. Let & = (§1B,eA, §g2B) be such a point. We can write §; = g;(1 + €h;),
where h; € u~. Using €2 = 0, the condition # € X (k[¢]) is equivalent to Ad(g; ')A € b
for i € {1,2}. The condition (8) is then equivalent to Ad(g; ')A = Ad(wp)Ad(g; ')A
in t. Note that, up to changing x by a point of its G(k)-orbit, we can assume, without
changing the dimensions of the tangent spaces, that g; = 1 and go» = w. The conditions
above are then equivalent to
Aetwor 4 (un Ad(w)u)

which is a k-vector space of dimension dimy, fwow ™" 4. lg(wow™1). As wow ™!
of distinct simple reflexions, we have ([Car72, Lem. 2 & 3])

is a product

dimy, 0% = dimy, t — lg(wow ™).
Namely, we have a W -equivariant isomorphism t ~ Hom(X*(T), k), so that it is sufficient
to prove that
dimg (X*(T) @ R)* = dimg(X*(T) @ R) — lg(w’)
when w' is a product of simple reflexions. Let V' be the subspace of X*(7T') ® R generated

by the roots of (G,T). It is stable under W and has a direct summand on which W is
acting trivially. It is therefore sufficient to prove that

dimg V¥ = dimg V — Ig(w’).
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As W is a finite group, dimg V' — dimp v s equal to the number of eigenvalues of

w’ acting on V' which are different from 1. By [Car72, Lem. 2], this number is equal to

the number [(w’) of loc. cit. (which is a priori not lg(w’)). By [Car72, Lem. 3], we have

I(w") = lg(w’) since the set of simple roots is a set of linearly independent vectors of V.
Finally we deduce that

dimy T, (k™ (T, )) < dimy(G/B x G/B) 4 dimy, t = dim G.

On the other hand, we know that X,,, is irreducible of dimension G. Consequently we
have

dim G < dimy, T, X, < dimy, T~ (Ty,) < dim G
so that T, X, = dimy, Tk~ (T, ). O

Lemma 7.2. — Letw € W and b € B. Then the point wB is in the closure of the T -orbit of
bwB in G/B.

Proof. — Let v be a cocharacter of T such that (v,«) > 0 for all positive root o of
(G, B,T). Then the map G,,, — G defined by vur~—! for v in the unipotent radical of B
extends to a map A' — G sending 0 to 1, thus as does the map vbr~!. Consequently, as
w normalises T', wB is in the closure of the image of the map

t — v(t)bwB = v(t)bv(t) 'wB. O

Lemma 7.3. — Let (w1, w2) € W? and let b € B. If (w1 B,bwyB) € U, € G/B x G/B,
we have wi 'wy < w in the Bruhat order.

Proof — Ift € T, we have twy B = w1 B in G/B so that (wy B, tbwyB) € U,,. It follows
from Lemma 7.2 that w2 B is in the closure of the set {tbwyB | t € T'} so that (w1 B, wsB)
is in the closure if U,. As the closure of U, is the union of the U], with w’ < w and
(w1 B,wyB) € Uyy14, We obtain the result. O

w2

From now on we consider X /Q, a finite extension, and denote I' = Gal(K ((p=)/K).
We fix L a finite extension of QQ,, that splits K, i.e.

L®q, K ~ L&l

We follow to the notation of [KPX14] concerning (¢, I')-modules over Robba rings. Let
R(7k) be the Robba ring for K (see [KPX14] definition 2.2.2). We define t € R(7k) by
t = log(1 + 7). Let Cr, be the category local artinian Oy -algebra A with maximal ideal
my such that the natural map k;, — A/m4 is an isomorphism. If A is an object of Cy,
we denote R4 (7 ) = A®q, R(7k). We refer to [KPX14, Def. 2.2.12] for the notion of
(p,I')-module over R 4(7mk). Let D be a (¢,I")-module over R (mx). We denote

:{D : CL — Sets
the deformation functor of D, i.e. for an object A of Cr,, Xp(A) is the set of isomorphism
classes of pairs (D4,94) where Dy isa (¢, I')-modules over R 4(mx) andig : LQa D4 ~
D is an isomorphism of (¢, I')-modules. If (p, V) is a continuous representation of Gk on

a finite dimensional L-vector space, the functor D,j; of [Ber02] induces an isomorphism
of deformation functors (see [HMS22, §3.6] for details)

Diig : Xy — Xp,,(v)-
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Let F, = (Fil; D[t71])icz be an increasing filtration of D[t~!] by sub-(¢, I')-modules
over Ry (7 )[t~!] which are direct factors as R (7 )[t~!]-modules, we define similarly

Xp,r, : C, — Sets

the deformation functor of the pair (D, F,), i.e. for A in Cr, the set Xp p, (A) is the set
of isomorphism classes of triples (D4, F, 4,94) where (Da,i4) € Xp(A) and F, 4 is a
filtration of D[t~ !] by (p,T')-stable R a(7x )[t~']-submodules which are direct factors
of D4[t™!] in the category of R (7 )[t~!]-modules and such that i4(L ®4 F! ,) = F;
for all ¢ € Z. ’

We recall some notations of [BHS19] section 3 and we refer the reader to loc. cit. for
more precisions. Let W be an L ®gq, Bgr-representation of G i which is almost de Rham.
Let W™ be a G i -stable L®q, BJR—lattice of W. Let Xy : C;, — Sets be the deformation
functor of W, which means that Xy (A) is the set of isomorphism classes of pairs (W1, i4)
such that WX is a finite free A ®q, BIR—module endowed with a continuous semilinear
action of Gk and i4 is a G k-equivariant isomorphism L ® 4 W;{ ~W+of L ®q, B:{R—
modules. If we fix an L®g, K-linear isomorphism « : (L®gq, K)" — Dpar(W) we can
define %E‘H : Cr, — Sets the deformation functor of the pair (W™, «). Let F, be a G-
stable flag of L ®q, Bqr-submodules of W, we define Xy + 7, the deformation functor of
the pair (W™, F,) and I{EH 7. the deformation functor of the triple (W™, F,, a).

Now we fix G = GL,, K, B © G the Borel subgroup of upper triangular matrices
and T' < B the maximal torus of diagonal matrices. We recall that g is the K-Lie
algebra of G and X = g x4 g. We also note Xg/g, and g/, their Weil restric-
tions from K to Q,. If A is an object of C;, and (W}, F, 4,c4) is an element of
x%ﬂf. (A), we can produce an element of Xy g, (A) by sending (W3, Fo a,4) to
T = (a‘l(Dde(}".)),NWA,a_l(Fil;VX)). By [BHSI19] Corollary 3.5.8, this map is a

bijection. This implies that the functor XEV 7, i pro-represented by the complete local
ring of X at z.

Let w e W ~ G%K:Qp 1 Recall that X K/Q,w is the irreducible component of
(Xx/g,)r ~ (X xx L)FK associated to w. Let D be a crystalline (o, I')-module over
Ri(mk), together with a filtration F, of D[1/t]. Let W = W (D), W = WH[t™1]
and Fo = Wyr(F.). As D is crystalline, the Bgg-representation W is de Rham and
thus almost de Rham. The functors Wyr and W;R induce a morphism of functors
Xp,Fr, = Xw+ g,. If D is moreover assumed to be ¢-regular, this morphism if formally
smooth by [BHS19, Cor. 3.5.4].

We define X;{,’E" 7, as the subfunctor of :{‘%\Vﬂ 7, Ppro-represented by the quotient of

@XL@L corresponding to the complete local ring of X g, ., at 2 (with the convention
[w
xW*J".

via x%\[/t}'. — X+ 7, and we define X7, p < Xp r, as the inverse image of %%t}-‘

that it is empty if 21, ¢ X,). We also define Xy}, » < X+ 7, as the image of

by xDJT‘. e %Wt]:_.

We assume from now that D is crystalline and ¢-generic (see [HMS22, §3.3]). Let
X% = Xp be the subfunctor of crystalline deformations of D. Let F, be a triangulation
of D, we use the same symbol for the filtration induced on D[1/t].
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Lemma 7.4. — We have a inclusion X3 = Xpr,-

Proof — 1t follows from [HMS22, §3.3] that f{%is c Xp,r,. We fix an isomorphism of
L ®q, Ko-modules 3 : (L ®q, Ko)" ~ Deis(D) such that 3 ® Idg = a. Let f{CD“S’D be
the functor of crystalline deformations of the pair (D, «). Let’s consider the composite

— ., x0

xcris,[l x\j )
D D,r, W:R(D)vwdR(Fo)

Let A € Cp, and let (Da,aa) € X5%5(A) and let (D4, aa, F. 4) be its image in
X%)F. (A). As D4 is crystalline, the operator v4 on Wyr(D4) is zero.

Now we remark that the schematic inverse image of {0} by the natural map
(Xk,)z — (8x/Q,)r of L-schemes is contained in the irreducible component
XK /q,w,- Namely it is sufficient to prove the inverse image Z of {0} by the natural map
of K-schemes X — g is contained in X,,. But Z is G/B x {0} x G/B which is the
Zariski closure of V,,, N (G/B x {0} x G/B), so that Z < X,,,.

This implies that the image of (D4, a4, F, 4) in xW(TR(D),WdR.(F.)(A) is contained in

cris,[] wo,[] i
xlvﬂv(')jR(D),WdR(F.)(A) and finally that X,™- < X}’ and X3 < X1’ . O
We can now prove the main result of this section.

Proposition 7.5. — Let D be a ¢-generic, regular, crystalline, (p,T")-module over Ry, (7x)
and let Tri(D) be the set of triangulations of D. Then the following L-linear map is surjective:

D TXp ppym — Tp-
FeTri(D)

Proof- — Let U be the kernel of the map TXp — TXy;+ ). It follows from Lemma 7.4
dR
as in [HMS22, Cor. 3.13] that the following sequence is exact

— — wo — wo -
0—U—TXpry — TX b wanry 0

Therefore we have the following commutative diagram

0 0
l 2
@feTri(D) U U 0

|

@D rervi(p) ngjf[%] — TXp

l Wi

w
Oreniv) T () wan(F12) TXw o)

+
dR

|

0
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Thus to prove that the middle horizontal arrow is surjective, it is sufficient to prove that
the bottom horizontal arrow is surjective. As %% — Xp is formally smooth, it is sufficient
to prove that the map

wo,[] N O
Fe@i(p) TchTR(D))WdR (FI+D) T:{WIR(D)

is surjective. Let ' = Wyr(F[1/t]) and 21, € Xg/q,(L) be the corresponding point. It
follows from [BHS19, Thm. 3.2.5 & Cor. 3.5.9] that the vertical arrows in the following
commutative diagram are isomorphisms

| |
—_—
xWJr’F %W‘F

] -

—

(XK/Qp,L)mL = (ﬁK/Qp,L)Trg(xL)

(2 is induced by the second projection § x4 g — g).

Recall that we have a decomposition XK/QINL ~ HTEZ X, where X, ~ L xg . X
and gk g,z =~ |l ex 8- and the map 7o is of the form (72 ;)sex with 72, the base
change of the second projection X — g§. Moreover the irreducible component of X /g, 1,
corresponding to the longest element is isomorphic to [ [ .5 Xuw,,r with wo the longest
element of G,,.

Therefore we have to prove that the map

TEX

~

C—D C—D Xwo,T,iL’L,T - @ET,W;L(mLT)

TEX .FETri(D) TEX

is surjective at the level of tangent spaces. As the formation of tangent spaces commutes
with finite products, it is sufficient to prove that for a fixed 7 € Tri(D), the following map
is surjective

@ 'X'LUOstzL,T gT,IL,T'
FeTri(D)

Now up to change the basis o, we can assume that there is a non-critical triangulation
F such that, for all 1 < i < n, L @k » Dpar(F;) is generated by the first ¢ vectors of the
canonical basis. Thus its stabilizer is the standard Borel. Now by non criticality we can
assume that the 7-part of the Hodge filtration is given by an element h = bw € B(L)wy.
Thus the previous surjectivity is equivalent to the following equality

Im( Z TwB(L),0.0B(L) Xwo,r — T(0,nB(L)87) = T(0,hB(L))8r-

wes,

Let 0 € W ~ &,, be such that (wB(L),0,hB(L)) € U,. We claim that if w = ¢; ; ==
(i,i—1,...,7), with i > j, then woo ! is a product of distinct simple reflections. Namely
it follows from Lemma 7.3 that w™lwg < ¢ so that wgo ™! < w and, as w is a product of

simple reflections, so is woo L.
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By Proposition 7.1, we deduce that

Tes;B(L),0.0B(L) Xworr = TieiyBonByE " (Tuw,)
=T,,,5(0)G/B® (cijbe;; n hbh™ )= @ T, pG/B.

Now we can use Lemma 6.1, and conclude that

Im( Z T(wB,O,hB)XwO,-r I T(O,hB)ET)

wes,,

> Im(Z Tie,,B,0,nB) Xrwo — T(0,n8)87)

i>j

= <Z(cl»,jbci,; N hbh_l)grw”> ®T,pG/B = hbh ' ®T,pG/B = T\o pyd-. O

i=j

8. Global and local settings

Let z € X™°%9 Then x correspond to a cuspidal automorphic representation 7 of G.
Let II be the isobaric automorphic representation of GL,, g associated to 7 by Theorem
A.6.

Proposition 8.1. — The representation 11 is actually cuspidal and thus generic.

Proof — We have
=1L HILH-- HI

and a character x, where II; is a regular algebraic cuspidal automorphic representation
of GL,,, such that IT; ® x;! is self-dual. Thus as p, = p, is up-to-twist by a character
given by pr = p, @ - @ pm, but as x is in X™°%%9, p_ s irreducible, thus k¥ = 1 and
IT is cuspidal. In particular it is generic by Piatieski-Shapiro, Shalika ((CKMO04] Theorem
8.5). O

Corollary 8.2. — Let (p.,V..) be the representation corresponding to a point x € X9,
Forallve S, vtp, we have H(G,,ad(V,)*(1)) = {0}, in particular H' (G,,,ad(V},)) =
Hi(Gy,ad(Vz)).

Proof. — Let m be the automorphic representation associated to z. Since v is split
in F, the representation (p.|g,,Vs) is a twist of the image of m, by the local
Langlands correspondence. By Proposition 8.1, the representation 7, is generic thus
H°(Gy,ad(V,)*(1)) = Homg, (Vi, V(1)) = {0}, thus Hl(Gv,ad(Vz))/H}(Gv,ad(Vm))
vanishes too (for example [Bel09] Proposition 2.3 (i)). O

Theorem 8.3 (Newton-Thorne). — Let x € X™°4% and let 1, : Grs — Gn(Q,) be the
associated representation. Then H(Gr s,ad(r;)) = {0}.

Proof — This is consequence of [NT19, Thm. A]. Namely as 2 € X°%%9 the representa-
tion 7, is associated to an automorphic representation © whose base change to GL,,(Ag)
is cuspidal algebraic and regular by Proposition 8.1. O
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Let x € X™°%a9 and let (pz, V) be the associated representation of Gp g over a
finite extension of k(x). Our goal is to prove Theorem 8.7, which is invariant by scalar
extension, thus we freely extend scalars of /’\%_p()l to assume p, is defined over k(x).
Let F be a refinement of (p,,V,), that is, a family (F,).es, where F, is a refinement
of the crystalline representation (p;|g,, Vz). Let zx € & be the classical dominant point

corresponding to p, and the refinement F. If what follows, if X is a rigid space and

z e X, we set X, = Spec(@). The projection map £ — A% induces a morphism
éwf — (Xﬁx—pol> ~ x;g;POl. For each v € S, let p; ., = pz|c,, which is irreducible,
x

and consider the composite map

—

v — (07) =z x
xT

Pz,v*

In the previous section, and in terms of ¢, I"-modules, we have defined deformation spaces

qtri,w | A . P foed ; cris . cris
X, 7 =Xp oo (00) F1/4] which we call guasi-trianguline. Denote also X77** := X7J Drea(po)

the crystalline deformation ring (see [Chell, page 24] or [HMS22, page 18]).
Lemma 8.4. — The map E;; — X, , factors through Z{Zirzl}}_-i

Proof. — Letp, : Gp, — GL,, (k) be the composite of p with Gp, < Gg ¢ and let %E

be the framed deformation space of p,. Let Xi;(p,) < Z{D’rig X ;_'?n be the trianguline
variety. We choose y € XD = .’{D M€ he a point such that p, is conjugated to p, ,, and let
yr, be the dominant pomt of Xm (p,,) corresponding to y and to the refinement F,,. The
projection map Xii(p,) — Z{D’ induces a map XM) vy .’{%‘y and, by [BHSI19,
Cor. 3.7.8], this morphism factors through %D’wo As %D’w” is the pullback of %;fy‘” 7, by

the formally smooth map .’{EL — X,,, itis sufﬁc1ent to prove that there exists, locally at
x, a factorization

& » Xi(,) —— XU

|

A5,
sending zx on yr,, where A5 is the rigid fiber of the pseudo-deformation space, as in
Definition 3.2. As p, . is irreducible, it follows that there exists some affinoid neighbor-
hood U of zx in € and a continuous morphism py : Ggs — GL,(O(U)) such that
Tr(py)(z) = Tr(p,) for all z € U. Indeed, by [Chel4] Theorem 2.22 there is a repre-
sentation p4 : Gg,s — GL,(O¢ 5, ) whose trace is Do, op As O¢ ., is a direct limit
over U, there exists such a U (see [BC09] Lemma 4.3.7 for a precise argument). This
gives us a map U — XD and even U — XD X FX As the set Z’ is Zariski-dense and
accumulation in &, we can choose U so that Un Z 1s Zariski-dense in U. A point of
U n Z’ is sent to a point of Xi,;(p) by U — Xﬁmu X E, (by definition of Xy,;(p), [BHS19]
section 3.7) so that we obtain the desired section. O
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For a global representation p of Gr, or a polarised representation of G, pp = (pv)y| p

qtm w, qtri,w cris . cris
where v| p in F. Then we write X/ =11, X5, 7 and X770 := [T, X7

Definition 8.5. — Let © = (pp,f) be a local representation of G, with F a (quasi-)
triangulation of pp ie. of Dyig(pp)[t~']. We associate to z = (p,, F) a permutation

Wy € 6 bl measuring the relative position of F and the Hodge filtration of p, (see
[BHS19] before Proposition 3.6.4). We say that x, or F, is associated to a product of
distinct transpositions if w, is a product of distinct simple transpositions.

The following corollary is very similar to [Ber20] and [BHS19].

Corollary 8.6. — For v € X™°%%9 g5 before, and a refinement F, which is associated to a
product of distinct transpositions. Then v is a smooth point of € and we have an isomorphism

T, T%Zt””}“ JTEE
xT,py

Pzx,p
Proof. — Denote by ff:,(:p"l the (equicharacteristic) x-polarised global deformation space
of tr pg. It is the completion of Xxfp(ﬂ at p, by [Chel4, section 4.1]. Denote by %ff;}- the
fiber product %;,C:pd X x th” 2. We have a map

Px,p Px,p>s
i
5 N xp’rz}_,
induced from the map 5 — f{qt” "% and Eor F— XX pol But then the standard
argument that

f : Ox;ri o OS‘E F
is surjective comes from the fact that £, is topologically generated by O,x—re: and O7
Px

. tri,wo 1. : .
by construction, but X% lies over 7. Thus we have a closed immersion
Y ’ P F
x,p

51 F xtm

But the genericity assumption (Corollary 8.2) implies that the tangent space of .’fff: £ sits
inside

H}/(Gp,ad(p,)) :=ker | H (G, ad(p;)) — [ [ H' (G, ad(p.))/H} (G, ad(p.)) |,

vip
thus we have an the exact sequence
0 — H{(Gp,ad(p,)) — TX' » — (—PT%?:Z O JTX.
vlp
Moreover, because of the previous surjection, we have inequalities
dim T, 7€ < dim TXY" » < n[F : Q]

where the last inequality is [BHS19] Proposition 4.1.5 (together with Remark 4.1.6 (ii) and
Corollary 3.7.8) as F is a product of distinct transpositions, and the Theorem 8.3 of
Newton-Thorne which assures that

H}(Grad(p)) = (0},
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But as £ is equidimensional of dimension n[F : Q], we have dim 7, . = n[F : Q] and
thus x r is a smooth point of £ and we have

c o~ tri
51? :{pz WF
and thus

TQJFE ~ T%tpzi)]__ ~ @Txgﬁz’,%/Txcms' -

Paw
vlp
Theorem 8.7. — For x € X™°%9, the image of the natural map

(—B T,,& — Tg,g‘)(%(—ﬁllol7
F

has dimension at least """ [F : Q|, where F runs over the n\[F : Q| (classical) refinements

2
of x.

Proof. — Indeed, for each F of the form (¢}

P .7:1}70)1, as in the proof of Proposition 7.5,

we have,
~ qtri,wo crys
To;&=TX, "7 JTXY,
and moreover, for all v|p, the map
qtri,wo
DX £, —TX,,,
,J ’
is surjective by Proposition 7.5. In particular, the map

—pol —pol T Y $
D Tiower, 70 0)E — Tud) 7 = TR — TX,, /T,

v
UiCig

which can also be factored,

77, crys 2 crys
D Ty, 7)€ — DDTXVE 5, JTX =5 TX,, /TX],

v
,'uvci j]:v,[)
v v ’
ViCig vlp €3

is surjective by Corollary 8.6 and Proposition 7.5, and thus has rank at least "(nTH) [F:Q],
thus the same is true for the map,

D Tor)E — ToXXP O
.F
Remark 8.8. — Note that we don’t actually need all the refinements (for a fixed v), only
the 1 + @ refinements given by ¢; ; = (¢,5—1,...,j) € 6,, with ¢ > j (starting from

a non-critical one). But this is still more than just the n well-positioned refinements for
weakly generic points of Chenevier [Chell], even for n = 3.

Theorem 8.9. — Let F(p) = X7 °! be the Zariski closure of the image of € (p). Then F(p)
is equidimensional of dimension @[F : Q], and is a union of irreducible components of

x—pol
Xﬁ .
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Proof — We have already proven that almost generic point are Zariski dense in F(p) (see

Theorem 5.8). It is enough to prove that these points are smooth points of X; whose local
ring are W[F’ : Q]-dimensional. This is essentially Allen’s proof [All16]. Let z be such

a almost generic point in F(p), thus p, is irreducible and we can consider the polarised
deformation space f{%‘;p"l. Then by an argument of Kisin (see also [All16]),

— —pol
X (XX

Thus we need to show that f{g:p‘)l is (formally) smooth of dimension @[P : Q.
But as p, is absolutely irreducible we can choose a lift r, to G, and by Proposition
3.6 reduce to XX . Remark here that because of Proposition 8.1 and Theorem 2.3, we
can apply Proposition 3.4. Calculations on the dimension of deformation ring made in
Proposition 3.4 show that we are thus reduced to show that h?(Gr g, ad(r,)) = 0, or what
is equivalent h!(Gp,s,ad(r;)) = @[F : Q]. But as p, is generic at p by Proposition
8.1, by remark 1.2.9 of [Alll6], we get H,(Grs,ad (p;)) = H;(Grs,ad (p.)) which
vanishes by Newton-Thorne’s Theorem 8.3. Thus the following map is injective,

H'(Grs,ad (p2)) — [ [ H'(Fyyad(p,))/HL (ad (p,)),
olp
But then we prove exactly as in [Alll6], Lemma 1.3.5, as our = is HT-regular, that the
space XX is formally smooth of dimension @[F : Q], thus by Proposition 3.4 %;5:1’0[
is formally smooth of dimension @[F : Q], but as it contains the local ring of the
closure of F(p) at p,, which is of dimension > @[F : @], both local rings are equal
(and F(p) is smooth at these points). O

Remark 8.70. — Recall that in the previous theorem £(p) and thus F(p) depend on the
choice of an auxiliary level K? outside p. We can ask how the closure of the infinite fern
depends on KP. If we let K? appear in the notations, we can at least have an optimal K.

Corollary 8.11. — There exists a level KP outside p, such that for all level K7 outside p, the
Zariski closure of the infinite fern of tame level K, Fro (p), contains the infinite fern of level
KP, Frr o (P)-

Proof. — As Xﬁx—p °l is the generic fiber of a noetherian excellent formal scheme, it has
a finite number of connected component (See [Con99, Theorem 2.3.1]) . Thus as the
number of components in the closure of the infinite fern (by Theorem 8.9) grows with K7,
it eventually stabilizes. O

We can now deduce the following corollary, which is due to Allen, [All19], for which
we need to take care that automorphic points given by [Alll9] main’s theorem are indeed
inside our infinite fern. So we assume the following,

Hypothesis 8.12. — 1. p > 2, is unramified in F and every prime v|p in F' splits in E.
Moreover, ¢, ¢ E.
2. p(GEg(c,)) is adequate, p is polarized by x ie. p¥ ~ p°® xe

n—1
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3. There exists a GL,-automorphic representation Ily, which is regular algebraic x-
polarized cuspidal, such that p, lifts p and such that p, , is potentially diagonalisable
for all v|p, and even ordinary for all v|p if p|n.

4. x is crystalline at p, satisfies y = x° and satisfies a sign condition (see Hypothesis
3.7 and section 2)

5. H°(G,,ad(p)(1)) = 0 for all v|p.

We still hope that hypothesis 1. and 4. are technical and we hope to be able to
remove then, as for Theorem 8.9. It is unkown at the moment if all potentially crystalline
representations are potentially diagonalisable, i.e. if we could relax hypothesis 3. to
a classical modularity (for GL,, crystalline at p say). We hope that hypothesis 2. is
unnecessary, but at the moment the main result of [All19] relies on it, and also on 5. but
we imagine that it could be removed using new results on local deformations rings (e.g.
[BIP21)).

We have the following

Corollary 8.13 (Allen). — Assume the hypothesis 8.12. Then the generic fiber of the global
deformation ring, X%_p"l, is equidimensional of dimension [F : Q]w and the infinite
fern F(p) is Zariski dense in Xﬁx—pol thus in Spec(R%_pOI). In particular automorphic points

are dense in Spec(R%_pOl).

Proof — As the set of Hypothesis 8.12 contains strictly the hypothesis of Theorem 8.9, we
have that the Zariski closure of 7 (p) (if non-empty!) is a union of connected components

of Xﬁxfpd. Thus, it is enough to prove that each component of Xﬁxfpd contains a points

in the infinite fern, and by the reduction of Lemma 3.9 and considering IIpty L where 1
given by [CHTO08, Lem.4.1.5] , we can assume x = 1. By [All19], Corollary 5.3.3, we have
that RP is O-flat, reduced, and complete intersection of the expected dimension, but we
still need to check that the automorphic point in all components can be chosen to be in
the infinite fern (i.e. holomorphic at infinity automorphic representations for GU). Let C
be an irreducible component of X%ml, which is of the form C = C™ for an irreducible

component C' of SpeC(R%Ol) ([All19, Lemma 1.2.3]). By [Alll19, Theorem 5.3.1,Theorem
5.3.2), there is a GL,-automorphic cuspidal point II in C, which is moreover unramified
at places above p, very regular, self dual, and such that I is a smooth point of .’{%Ol
(see [Alll6] Theorem C). In particular, by [Mokl5], there exists my a cuspidal, regular
algebraic, unramified above p, representation of the quasi-split unitary group U whose
base change is II. By [Mok15] again, to II which is conjugate self dual thus can be seen as
an Arthur parameter, is associated a global A-packet II;; for U which contains mg. Let
be the associated archimedean Arthur parameter at any place v|co of F. It is a tempered
parameter as [Iy is, and ¢, cx can be assumed of the form

z2— (293", .., 29%0n),

and for j € Wr\C* such that jzj~! = Z, we can check that this implies that this is
conjugate to (2 7?1z ... z7bnz=a) 1In particular, as the weight is regular this implies
that there exists 0 € &, an involution such that a,;) = —b;. But as II is regular,

algebraic, cuspidal, by Clozel’s purity Lemma, we have a; + b; = 0 for all 7 (which in
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particular implies that 1y, is bounded on Wg). Thus, actually o = 1. We now check that
t is indeed discrete. As in [BC05] Lemme 4.3.1 we have, writing 14 (j) = h x ¢, we have
for z € C*,
Voo (Z) = Yoo (25 ™1) = hwo' oo (2) Ly th™t x 1.

Thus h normalizes the torus and by regularity and using a; = —b; we must have that h
is up to conjugacy w; ', thus the parameter 1o, is discrete. As 1)y, is tempered, discrete,
regular algebraic, it is equal to the L-packet of discrete series representations constructed
in [Lan89], and in particular contains the holomorphic discrete series. Thus we can change
mo by my still in Iy whose component at infinity is holomorphic. As II is cuspidal, the
A-packet Il is stable and thus Sy, = 1, so that 7 is also discrete and automorphic. In
other words we can assume that myp = 7 is holomorphic at infinity and unramified at p.

Choose an algebraic extension of its central character which is unramified at p, then
by [LS19] there exists an extension of 7y to a cuspidal, regular algebraic representation 7
of GU. Moreover T, is also the holomorphic discrete series thus contribute to coherent
cohomology in degree 0 and thus gives a point in the Eigenvariety £ (for GU), whose
Galois representation (given in Corollary A.8) is p. In particular, F(p) intersect C, and the
corollary is proved ! O

Appendix A. Similitude Unitary groups, Tori, Base Change and Galois
representations

Denote by G = GU(V') a similitude unitary group over Q (with similitude factor in
Q) associated to the CM extension E/F, and by Z ~ GU(E) its center.

Let ¢ be a rational prime, unramified in F, which is also unramified for GU (V) (i.e.
GU(V)q, is quasi-split, and split over an unramified extension). Let 7 be a cuspidal
automorphic representation of G, assume 7 is unramified at ¢, and choose a maximal
compact K at ¢ for which 7 is unramified. Then 7/ is a 1-dimensional representation of
Hc(G(Qy), K), the Hecke algebra of bi-K -invariant C-valued functions on G(Qy) with
compact support. The Satake isomorphism and the unramified local Langlands correspon-
dance ([Bor79]) associate to it an unramified representation with values in the L-group of
G (actually in the L-group of T)). Denote Ty, T the maximal torus of U = U(V) and G
respectively. The natural inclusion Ty < 7', which is compatible with the Galois action
and central, gives a map

9) L L1y,
Proposition A.1. — To m; we can associate an unramified Langlands parameter
r:Wo, — LTy
For all A £ in I and X'| X in E, we can restrict v to Wy, and then compose
r:Wg,, — LTGLn =: @ x Wg,,-
This induces a well-defined class (up to conjugacy), for all X'|¢,
rx : We, — GL,(C).
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Proof. — As ( is unramified for £ and G (thus U), actually Ug, is isomorphic to
U(n)g/r,q, for any choice of (unramified) unitary group of rank n, so choose the one with
anti-diagonal matrix form. With this form, we check that actually the upper triangular
Borel is indeed a Borel over @), and its maximal torus is the diagonal one, given by

Ty = {Diag(as, ..., an)|a; € E*, c(a;)ant1—i = 1} < Tgr, »,

with ¢ € Gal(E/F) the complex conjugacy. Denote by X the complex embeddings of F.
We then have that its characters are given by X *(7T') a quotient of (Z")*# (= X*(Tg1, )
by the relation (\;;)io = ()\;il_iﬁc)iyg. Its cocharacters are given by X,(T) <
(z™)*r = X4(TgL, ) such that the collection (11 )i, satisfies f1; 5 = u;}_l_iyac. The
Galois action 0 € Gg sends the character A\, ; to o - A ; := A\ ; 0 ol = Aor,i- It sends
the cocharacter i ; to 0 © fi;; = liyr4. Then the dual torus is given by the subtorus of
[Is, G, given by

—~

Ty = {(t],...,t9)s| tLtn =" = 1}.

g oc

The action of Wy, on Ty is given by s (hy)s = (hs-14)o. A priori F is not Galois over
Q. An analogous computation for the maximal (diagonal) torus of Resg,q GLn 1oL,
gives
L _ n,Xg _
TGLn,E = Gm el WQ£7 S (ti,a) = (ti,s*10)~

and we thus have a natural map LTy — ETqL, . As m; is unramified, by [Bor79] there
is a parameter r¢ : W, — “T, which we can compose to get

T W@Z — Lij7

and by the previous map we get and unramified Langlands parameter rqr,, ,, : Wo, —
LTGL,I,E- Restricting this last parameter to Wg,,, where Wg,, — Wy, is induced
by some i By — @g, we get Wg, — LTGLn,E x WEg,,. Fix an isomorphism
¢ : Q, — C, so we can identify complex and /-adic embeddings of E. But the action
of Wg,, preserves the 0 € ¥ over )\, and we can thus project to any such using pr,, :
LTGLH,E — GL,, so choose the one corresponding to the embedding Wg,, — W@l,
P
)\ - WEA/ — LTGLn = an X WEA”U) — TGLn,E(w) = (hg)g X T hgx,.

Let us show that this is well defined and independant of choices of ¢ and ¢. Let 7,75 :
Ey — Qg two choices. There exists s € W@’Z such that s o j = 4. These two maps
induces two maps WE& iy Ty such that j, = s 1 044 0s.

Moreover using the canonical map E —> E) this induces two embeddings o%,, Ji, :
E — Qy above X such that Ué\, = 50 0%,. So we compute,

TGL, 5 (Jsw) = rGLn,E(s_li*ws) = xxs‘l(hg)gxw(xxs_l)_l = (x(hsg)gs_lwsa:_l)xw,

which is mapped under projection to the embedding ai, to

-1
h_;z i
SO s_lw_lso'f\,7

T

J
T\
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but this is commutative, and wilsai, = soi\, as w € Wg,, thus we get

X i z ) h
PV

i
O')\/7

Le myi, OTGL, p Olx = Ty, OTGLn,p 0 jx is well defined and independant of the choice of

i. Now assume that ¢, ¢’ are different isomorphisms Q, — C. So for each i : Ex» —> Q,
we get two embeddings of E, namely O’é) and O'(ib, =50 O’é), with s = ¢’ og € G@Z. Thus
we are reduced to the previous computation with two different embedding above \'. Thus
X = Tgi OTGL, p © ix depends only on the choice of N|¢in E. O

Using the previous proposition, to II we can for all unramified ¢ associate to Il, a
semi-simple conjugacy class in L7y and for all M| £ in E a system of semi-simple
conjugacy classes Cy/ = ry (Froby/) in GL,. We denote Sat(Ily) = (Saty(Ily))y =:

1—n
(C)\/|d6t|T))\/.

Definition A.2. — Fix an isomorphism ¢ : C ~ Q,. Let p : Gg —> GL,,(Q,). We say
that p is strongly (resp. weakly) essentially associated to II if for all £ (resp. for almost all
£), unramified in E and for II, for all \'|¢, p is unramified at \’ and the semi simple class
of p(Froby/) and tSaty (I1y) coincides. We say that p is modular if there exists a cuspidal
IT as before such that p is strongly essentially associated to II.

Remark A.3. — L. This is not the natural definition, it would be more adequate to say
essentially modular. The reason is that because we want to work at fixed polarisation
character, we have ignored the part of the similitude character for II when looking
at Sat(Il;). We could do an analogous definition keeping track of the similitude
character, but it would be more complicated to describe it, in particular at non split
primes when E/Q is not Galois.

2. It is enough to check the compatibility with the Satake parameter at ¢ totally
split in F, in which case the previous association is easier to describe. Indeed,
by Chebotarev density theorem the totally split primes in E have density 1, thus
p is completely determined by the conjugacy class of Frobenius at those primes.
Moreover, every A = XN\ ¢|¢ is split above F (with ) is a prime of F). Thus
GUg, ~ (I1y ¢in r GLn) x G,,®*) and the Satake parameter (for GU) associated
to II, has the form

(Diag(ti‘, e ,tf‘L),\7 x).
Then Sat(Ily) is just the collection
((|det|1%1 Diag(t},...,t2)x, (|det|1%p Diag(t) ", ..., 607 1))ae).

3. A modular p is automatically "~ !-polarized. Indeed, elements t € f; satisfies
t=1 = wy - t¢, where wy is the longuest Weyl element of GL,,, thus (because of the
twist) tSaty (II,) ™! = tSat.x (I1,)p™ L. By Chebotarev, this proves the claim.

(23)We should choose a CM type to write this isomorphism properly.
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Definition A.4. — We say that a cuspidal automorphic representation = of G or U (V)
is sufficiently regular if it is a discrete series at infinity and satisfy property () of [Labll]
Section 5.1. This is automatic if the parameter at infinity is regular enough.

Remark A.5. — Because of [Har90a] Lemma 3.6.1 and Mirkovic, our almost generic
points, see Definition 5.4, are sufficiently regular in the previous sense.

Theorem A.6. — Let m be a cuspidal automorphic representation of G = GU (V') which is
cohomological and sufficiently regular. There exists L a Levi subgroup of Resg g Gk, a cuspidal
automorphic representation 11, of L(A) together with an automorphic character x 1, of L(A)
such that I, ® x7* is 01, -stable and 7w and 11, corresponds to each other at all unramified (for
m and E) finite places. Moreover each factor of 111, = 11y HIloH - - - HIL, is regular algebraic.

Proof. — If F' = Q this is [Morl0] Corollary 8.5.3, except the last part. But by Shin’s
appendix [Gol14]**) Theorem 1.1 (iii), IT; [AIoF0- - -FII1, is moreover regular algebraic as
is. Remark that in this case we don’t need 7 to be sufficiently regular, just cohomological. If
[F: Q] = 2, then we will use [Labll], thus we need the following lemma. Let us introduce
some notation. Let Z = {z € EX|Ng/p(z) € Q*} and Z' := Ker(Ng/p)z < Z. Then
Z,Z' are tori. Moreover we have a maps

(10) 0—2Z'—ZxU—G—0,

and the last map is surjective on geometric points. Note that if £ is a prime of Q, splitting
in E, then the sequence (10) is exact on Qg-points.

Lemma A.7. — Let m be an irreducible discrete automorphic representation of G such that
T 5 cohomological for . Then there exists an automorphic discrete representations v @ mo of
Z(A) x U(A) such that

1. the restriction of \) @ 7o to the image of Z*(A) is trivial;

2. ) = r, the restriction of T to Z,

3. For all place { of Q, splitting in E, we have (;)| z(q,)xv(Q,) = Ve ® To,es
4. g is cohomological for &|y, thus regular;

5 Yo = é;;o
6. If{ is a prime which is unramified in E, then 7y is unramified if 7 is.
Proof. — This is analogous to the proof of [HT01] Theorem V1.2.1. Choosing (g;) in G(A)
such that the v(g;) are representatives of the set v(G(A))/(v(G(Q))Ng/r(Z(A)) we get
as in [HTOL],
AGQN\GA)) — @, A(Z x U)(Q\Z x U)(A4)Z®
f —_ ((9i 'f)|(Z><U)(A))i

where the g; - f is denotes the right translate of f. As a consequence we have an isomor-
phism of (Z x U)(A)-representations

AGQ\G(A))zxv)a) = DANZ x D)Q\(Z x U)(4)7 ®)er

%

(29 This more generally applies if F contains an imaginary quadratic field
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where the upper script g; denotes a conjugate action by g;. This shows that, if 7 is an
automorphic representation of G(A) and if 7" is an irreducible subquotient of 7|z /y(a)»
a conjugate of 7’ by one of the g; is automorphic and trivial on Z'(A). Let ¥ ® o
be an automorphic representation ot (Z x U)(A) whose conjugate by one of the g; is
isomorphic to a subquotient of 7|(z.)(a). Moreover, since 7 is cohomological for &,
there exists an integer i such that H*((Lie G(R)) ®g C, Uy, oo ®€’) # 0 (for Uy, = U(R)
a maximal compact subgroup of G(R)). So we can choose ¥ ® o such that H*((Lie(Z x
U)(R)) ®r C,Us, Yoo ® mo,00 @ &'|(zxvy(r)) # 0. This proves that g satisfies property
4 of the statement. The property 1 has already been checked and 2 is clear since Z(A) is
in the center of G(A). Property 3 is a direct consequence of the fact that if £ is a prime
that splits in F, the map (Z x U)(Q;) — G(Qy) is surjective of kernel Z'(Q,). Now
assume that £ is unramified in F. If 7 is unramified at /, then 7 has non zero fixed vector
under an hyperspecial subgroup of G(Q¢). As the image of Z(Qy) x U(Qy) has a finite
index in G(Qy), the restriction of 7y to U(Qy) is isomorphic to a finite direct sum of
irreducible representation of U(Qy) which are conjugated in G(Qy). As the intersection of
an hyperspecial subgroup of G(Qy) with U(Qy) is an hyperspecial subgroup of U (Qy), all
irreducible subquotients of 7¢|i(g,) have nonzero fixed vectors under some hyperspecial
subgroup of U(Qy). This proves property 6. Property 5 is a direct consequence of the
equality 7| Bx = §;E§ following from the fact that 7 is cohomological for &’ O

Thus by [Labll] Cor. 5.3 applied to mp, which is sufficiently regular thus satisfies
property (x), there is a weak base change i.e. L a standard Levi of Resp/q GLy, g that is
f-stable, and a 0, -stable discrete automorphic representation of L I, = II1 ® - - - Q I/,
such that ITf I, A - -FHII, is a weak base change for mg. As each II is discrete, then by
the main theorem of [MW89] we can write II; as an automorphic induction of 7; ® Sp(¢;)
for an integer /; and 7; a cuspidal automorphic representation of GL,,, /s, (Ag). But the
proof of [Morl0] 8.5.6 shows that as each II; is 0,,,-stable, each 7; is 0, ,-stable. In
particular, up to reduce L, choosing (IT;);—1 ., to be the collection (7;| det |(¢=2k+1)/2)
fori =1,...,sand k = 1,...,¢;, we get that II; is cuspidal, and II; is §-stable up to
twist (by an automorphic character of L). But by [Labll, Cor. 5.3] again we know that the
infinitesimal characters of my and I} @ --- B I, = II; @ --- AL, coincides after base
change, in particular the latter representation is regular algebraic. Moreover at unramified
places this is compatible with the local base change. O

Corollary A.8. — Let  be a cuspidal automorphic representation of G = GU (V') which is
cohomological, sufficiently regular, and unramified outside S, which contains ramified places of
E. Then to  is (strongly) essentially associated a unique Galois representation,

P Gps — GL,(Qy),
salisfying,
(p")" = (p")%e" 1.
In particular, for all prime A = vv of F' split in E, not in S, we have that the semi-simple

conjugacy class of p*(Frob,) is equal to the image of the Satake parameter of mo x| det \FTH,
seen as a representation of U(Fy) = GL, g, .
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Proof. — The previous proof allow us to reduce to my an automorphic representation of U
whose weak base change is II; - - - H1I,; f-stable, each II; being automorphic for GL,,,,
cuspidal, conjugate self dual up to twist by a character. Thus to my we can associate by

[CH13] again

AS Hl

P =pm, @ ®pm,-

.- @I, is O-stable, p* satisfies (p*)¥ =~ (p*)° ® e"~1. On the other hand,

we know the compatibility of the association of p" with local Langlands : at all ramified

primes pY = LL(W07U|.|%), i.e. p* is strongly associated to 7. O
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