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1. Introduction

Families of automorphic forms have been a rather fruitful area of research since their introduction
by Hida in 1986 for ordinary modular forms and their generalisations, notably the Coleman-Mazur
eigencurve, but also to other groups than GL2. Among examples of applications we can for example
cite some cases of the Artin conjecture, for many modular forms the parity conjecture, and generalisation
to a bigger class of automorphic representations of instances of Langlands’ philosophy (together with
local-global compatibility).

The goal of this article is to present a new construction of what is called an "Eigenvariety", i.e. a
p-adically rigid-analytic variety which parametrises Hecke eigensystems. More precisely, the idea is to
construct families of eigenvalues for an appropriate Hecke algebra acting on certain rather complicated
cohomology groups, which are large Qp-Banach spaces, into which we can identify classical Hecke
eigenvalues. For example Hida and Emerton consider for this cohomology groups some projective
systems of étale cohomology on a tower of Shimura varieties, whereas Ash-Stevens and Urban instead
consider cohomology of a large system of coefficients on a Shimura variety. Another construction which
was introduced for GL2 by Andreatta-Iovita-Stevens and Pilloni was to construct large coherent Banach
sheaves on some open neighborhood of the rigid modular curve (more precisely on strict neighborhoods
of the ordinary locus at p) indexed by p-adic weights and that vary p-adically. Their approach was then
improved in [AIP15, ABI`16] to treat the case of Siegel and Hilbert modular forms, still interpolating
classical automorphic sheaves by large (coherent) Banach sheaves. This method relies heavily on the
construction of the Banach sheaves for which the theory of the canonical subgroup is central. For
example in the case of GL2, the idea is to construct a fibration in open ball centered in the images
through the Hodge-Tate map of generators of the (dual of the) canonical subgroup inside the line bundle
associated to the conormal sheaf ω on the modular curve X0ppq. This rigid sub-bundle has then
more functions but as the canonical subgroup doesn’t exists on the entire modular curve this fibration
in open balls only exists on a strict neighborhood of the ordinary locus. Following the strategy of
[AIP15, ABI`16], Brasca, [Bra16] extended this Eigenvariety construction to groups that are associated
to PEL Shimura varieties whose ordinary locus (at p) is non empty, still using the canonical subgroup
theory as developed in [Far11].

As soon as the ordinary locus is empty, the canonical subgroup theory gives no information and
without a generalisation of it the previous strategy seems vacuous. To my knowledge no eigenvarieties
has been constructed using coherent cohomology when the ordinary locus is empty. Fortunately we
developed in [Her16] a generalisation of this theory, called the canonical filtration, for (unramified at
p) PEL Shimura varieties. The first example when this happen is the case of Up2, 1qE{Q, where E is
a quadratic imaginary field, as the associated Picard modular surface has a non empty ordinary locus
if and only if p splits in E. In this article we present a construction of an eigenvariety interpolating
p-adically (cuspidal) Picard modular forms when p is inert in E. The strategy is then to construct new
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coherent Banach sheaves on strict neighborhoods of the µ-ordinary locus using the (2-steps) canonical
filtration, and we get the following result,

Theorem 1.1. — Let E be a quadratic imaginary field and p ‰ 2 a prime, inert in E. Fix a neat level K
outside p, and a type K Ă KJ , with J a complex representation of KJ{K . Let N be the places where K
is not hyperspecial (or very special) and Ip the Iwahori subgroup at p. There exists two equidimensional of
dimension 3 rigid spaces,

E κ
ÝÑW,

with κ locally finite, together with dense inclusions Z3 Ă W and Z Ă E such that κpZq Ă Z3, and all
z P Z , coincide with Hecke eigensystem for HNp b ZrUp, Sps acting on cuspidal Picard modular forms of
weight κpzq, type pKJIp, Jq that are finite slope for the action of Up.

In order to get the previous result we need to have a control on the global sections of this Banach
spaces. A general strategy to prove such result is developed in [AIP15] and more generally [Lan13]
(though it doesn’t apply here directly), but in the simpler case of Up2, 1q, as the boundary of the
toroidal compactification is quite simple, we manage to simplify a part of the argument of [AIP15]. In
a forthcoming work, we will use this method together with the tecnics developed in [Her16] to contruct
Eigenvarieties for more general PEL Shimura datum.

The second part of this article focuses on a very nice application of Eigenvarieties to construct Galois
extension on certain Selmer groups. The method follows the strategy initiated by Ribet ([Rib]) in the
inequal characteristics case to prove the converse to Herbrand theorem. It was then understood by
Mazur-Wiles how to apply this technic in equal caracteristics using Hida families to prove Iwasawa main
conjecture. In his PhD [Bel02], Bellaïche understood that using a certain endoscopic representation
together with a generalisation of Ribet’s lemma he could produce some extension of Galois representa-
tions, and then how to delete the wrong extensions to only keep the one predicted by the Bloch-Kato
conjecture. This method was then improved using p-adic families and Kisin’s result on triangulations of
modular forms to construct desired extensions in Selmer groups as in [BC04] for imaginary quadratic
character and [SU02] for modular forms using Saito-Kurokawa lifts to GSp4. In the previous construc-
tions, it seemed necessary that the sign at the center of the functionnal equation is -1. In this article, we
study the simplest case with a sign +1.

Let χ be an algebraic Hecke character of E satisfying the following polarisation,

χK :“ pχcq´1 “ χ|.|´1

and Lpχ, sq is L-function. Denote χp : GE ÝÑ Fˆ, where F {Qp is a finite extension, the associated
p-adic Galois character, and H1

f pE,χpq the Selmer group of χp. The conjecture of Bloch-Kato predicts
the equality ords“0 Lpχ, sq “ dimF H

1
f pE,χpq, and in particular the following result, due to Rubin,

Theorem 1.2 (Rubin). — If Lpχ, 0q “ 0 then H1
f pE,χpq ‰ t0u.

The previous result follows from Rubin’s work on Iwasawa main conjecture for CM elliptic curve and
its proof uses Euler systems. In particular we get few control on the predicted extensions. Another proof
of this result ([BC04]) uses families of Picard modular forms given by the corresponding Eigenvarieties,
a particular case of transfer as predicted by Langland’s philosophy, together with a generalisation of
Ribet’s "change of lattice" Lemma. More precisely, if p is split in E, p ffl Condpχq, and the order
of vanishing ords“0 Lpχ, sq is odd, then Bellaïche-Chenevier can construct the predicted extension
in H1

f pE,χpq by deformation of a non-tempered automorphic form πnpχq for Up3q, the compact at
infinity unitary group in three variables. It is a natural question to ask why this condition of the order
of vanishing being odd is necessary. If the order of vanishing is even, following multiplicity results
on automorphic representations for unitary groups on three variables of Rogawski ([Rog92, Rog90]),
there exists a non tempered automorphic representation πnpχq for Up2, 1q with Galois representation
ρπnpχq,p “ 1 ‘ χp ‘ χKp . In this article we check that we can indeed deform this representation such
that the associate Galois deformation is generically irreducible, and that we can control the reduction
at each place, thus constructing an extension in the Selmer group. More precisely we can reprove the
following case of Rubin’s result,
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Theorem 1.3. — Let p a prime, unramified in E, and p ‰ 2 if p is inert, such that p ffl Condpχq. If
Lpχ, 0q “ 0 and ords“0 Lpχ, sq is even, then

H1
f pE,χpq ‰ 0.

In particular we can extend the result of [BC04] when the order of vanishing is even, and also to the
case of an inert prime p using the corresponding Eigenvariety (when the ordinary locus is empty). An
advantage of the construction of the eigenvariety presented here is that if an Hecke eigensystem appears
in the classical cuspidal global sections of a coherent automorphic sheaf, then there is an associated
point on the eigenvariety. This argument might be more complicated with other constructions, as the
representation πnpχq is not a regular discrete series (it doesn’t even appear in the cohomology of middle
degree). Another advantage of using coherent cohomology is that we can also deal with the limit
case where πnpχq does not appears in the etale cohomologyp1q (but it was known to Bellaïche [Bel12]
how to get this limit case). Apart from this fact, the deformation when p is split follows the lines of
[BC04], whereas when p is inert the geometry of the Eigenvariety is quite different. In particular, there
is less refinements (and thus only one point on E corresponding to πnpχq instead of three) and we need
a bit more care to isolate the right extension. We also need to be slightly more careful with p-adic
Hodge theory to understand the local-global compatibility at p and a generalisation of Kisin’s result
on triangulation of refined families as provided by [Liu12]. Let us also remark that a consequence of
this construction and Chenevier’s method to compare the eigenvarieties for Up3q and Up2, 1q (say when
p splits) is that the point πnpχq when the sign at infinity is `1 together with its good refinement also
appears in the eigenvariety of Up3q, despite not being a classical point for this group.

Acknowledgements. — I would like to warmly thank my PhD advisors Laurent Fargues, and even
more Vincent Pilloni for explaining me carefully his previous work and suggesting this subject. I would
also like to thank Fabrizio Andreatta and Adrian Iovita for their support, remarks and interesting dis-
cussions on this subject. It should be clear that this work is a continuations of theirs. I would like to
particularly thank Joël Bellaïche and Gaëtan Chenevier for their perfectly written article and book on
extensions in Selmer groups (from which my inspiration is easy to feel) but also for very inspiring discus-
sions, encouragements and remarks. I would also like to thank Nicolas Bergeron, Stéphane Bijakowski,
Jean-François Dat, Guy Henniart, Bruno Klingler, Arthur-César Le Bras, Alberto Minguez, Benoit Stroh,
and Éric Urban for very interesting discussions on the subject.

2. Shimura datum

2.1. Global datum. — Let E{Q a quadratic imaginary field and denote ‚ the complex conjugation of
E. Let pV “ E3, ψq be the hermitian space of dimension 3 over E, of signature (2,1) at infinity given by
the matrix

J “

¨

˝

1
1

1

˛

‚.

Let us then denote,

G “ GUpV, ψq “ GUp2, 1q

“ tpg, cpgqq P GLpV q ˆGm,Q : @x, y P V, ψpgx, gyq “ cpgqψpx, yqu Ă GLV ˆGm,

the reductive group over Q of unitary similitudes of pV, ψq.
Let p be a prime number, unramified in E. If p “ vv is split in E, then,

V bQ Qp “ V bE Ev ‘ V bE Ev,

where the action of Ev is by v on V bE Ev . Moreover, the complex conjugation exchanges V bE Ev
and V bE Ev . In particular, GbQQp » GLpV bE EvqˆGm (this isomorphism depends on the choice
of v over p).

p1qi.e. when χ8pzq “ z or χ8pzq “ z
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We will be particularly interested in the case where p is inert in E, the case when p split has been
studied before (see for example [Bra16]).

Remark 2.1. — We could more generally work in the setting of pB, ‹q a simple E-algebra of rank 9
with an involution of the second kind, such that pB bQp, ‹q is isomorphic to pV bQp, ψq, and replace
G with the group,

GB “ t g P B
ˆ : g‹g “ cpgq P Gm,Qu.

The construction of the Eigenvarieties in the case where B isn’t split is easier as the associated Shimura
varieties are compact, but some non-tempered automorphic form, for example the one constructed by
Rogawski and studied in [BC04] and the second part of this article will never be automorphic for such
non split B.

The Shimura datum we consider is given by,

h :

¨

˚

˚

˝

S ÝÑ GR

z “ x` iy ÞÝÑ

¨

˝

x iy
z

iy x

˛

‚

˛

‹

‹

‚

2.2. Complex Picard modular forms and automorphic forms. — Classically, Picard modular forms
are introduced using the unitary group Up2, 1q, but we can treat the case of GUp2, 1q similarly. Let
GpRq “ GUp2, 1qpRq the group stabilizing (up to scalar) the signature matrix J and let,

X “ tz “ pz1, z2q P C2 : 2=pz1q ` |z2|
2 ă 0u,

be the symmetric space associated to GpRq, it is isomorphic to the 2-dimensional complex unit ball.
On X , there is an action of GpRq through,

ˆ

A b
c d

˙

z “
1

c ¨ z ` d
pAz ` bq P B, A PM2ˆ2pCq.

Remark 2.2. — It is known that Up2, 1qpRq stabilizes X , and GUp2; 1qpRq stabilizes X too as if
tAJA “ cJ with c P Rˆ, we get detAdetA “ |detA|2 “ c3 thus c ą 0.

This action is transitive and identifies X with GpRq{K8 where K8 “ Stabppi, 0qq Ă tpA, eq P
GUp2qpRq ˆGUp1qpRqu can be identified with tpA, eq P GUp2qpRq ˆCˆ : cpAq “ Npequ. We denote
pi, 0q “ x0.

The subgroup K8 is not compact but can be written ZpRq0pUp2qpRqˆUp1qpRqq, with Z the center
of GUp2, 1q. Let P be the C-points of K8. Then P » pGL2ˆGL1q ˆ GL1pCq is a parabolic in
GL3ˆGL1pCq. For any κ “ pk1, k2, k3, rq P Z4 such that k1 ě k2, there is an associated (irreducible)
representation SκpCq of P , of highest weight

¨

˝

t1
t2

t3

˛

‚, c P pGL2 ˆGL1q ˆGL1pCq ÞÝÑ tk1
1 t

k2
2 t

k3
3 c

r.

K8 embeds in P by pA, eq ÞÑ ppA, eq, Npeqq.
Following [Har90, Har84],[Mil88], such a representation gives Ωκ a locally free sheaf with GpCq-

action on GpCq{P , whose structure as sheaf doesn’t depend on r. Restricting it to GpRq{K8 “ X we
get a sheaf Ωκ whose section over X can be seen as holomorphic functions,

f : GpRq{K8 ÞÝÑ SκpCq,
such that fpgkq “ ρκpkq

´1fpgq, for g P GpRq, k P K8, which we call (meromorphic at infinity) modular
forms of weight κ. In an informal way, the choice of the previous integer r normalize the action of the
Hecke operators and corresponds to normalize the (norm of the) central character of the modular forms.
We will not use this description of the sheaves, and instead introduced a modular description of these
automorphic sheaves.

Fix τ8 : E ÝÑ C an embedding, and σ ‰ 1 P GalpE{Qq, thus στ8 “ τ8 is the other embedding
of E. Over C, the Picard variety YKpCq of level K can be identified with a (disjoint union of some)
quotient of B “ GUp2, 1q{K8, but also with the moduli space parametrizing quadruples pA, ι, λ, ηq
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where A is an abelian scheme of genus 3, ι : OE ÝÑ EndpAq is an injection, λ is a polarisation for
which Rosati involution corresponds to the conjugation ¨ on O, and η is a type K level structure such
that the action of OE on the sheaf ωA decomposes under the embeddings τ8, στ8 into to direct factors
of respective dimensions 1 and 2. This is done for example explicitly in [dG16], section 1.2.2 to 1.2.4,
and we will be especially interested in the description by "moving lattice" given in 1.2.4. Thus, to every
x “ pz1, z2q P B, we can associate a complex abelian variety,

Ax “ C3{Lx,

where Lx is the OE-module given in [dG16] (1.25), and the action of OE on Ax is given by

a P OE ÞÝÑ

¨

˝

τ8paq
τ8paq

τ8paq

˛

‚PM3pCq.

There is moreover ηx a canonical (K-orbit of) level N structure (for KpNq Ă K Ă GpAf q). Over
YKpCq we thus have a sheaf ωA that can be decomposed ωτ,A ‘ ωστ,A according to the action of OE ,
and we can consider the sheaf

ωκ :“ Symk1´k2 ωστ,A b detbk2ωστ,A b detbk3ωτ,A,

for pk1, k2, k3q a dominant (i.e. k1 ě k2) weight. Using the previous description, if we denote ζ1, ζ2, ζ3
the coordinates on C3, ωAx,στ is generated by dζ1, dζ2 and ωAx,τ by dζ3.

There is also XKpCq a toroidal compactification of YKpCq, [Lar92] and [Bel06b], on which ωκ

extends as ωκ (the canonical sheaf of Picard modular forms) and ωκp´Dq (the sheaf of cuspidal forms).

Definition 2.3. — We call the module H0pXKpCq, ωκq (respectively H0pXKpCq, ωκp´Dqq “:
H0
cusppXKpCq, ωκq) the space of (respectively cuspidal) Picard modular forms of level K and weight κ.

We sometimes say ’classical’ if we want to emphasis the difference with overconvergent modular
forms defined later. Denote also V κ the representation of GL2ˆGL1 given by,

pA, eq ÞÝÑ Symk1´k2pAq b detk2Ab detk3e.

Definition 2.4. — For all g P GpRq “ GUp2, 1qpRq, write,

g “

ˆ

A b
c d

˙

, A “

ˆ

a1 a2

a3 a4

˙

and for x “ pz1, z2q P B, following [Shi78], define,

κpg, xq “

ˆ

a1 ´ a3z1 c2z1 ´ c1
a3z2 ´ b1 d´ c2z2

˙

, and jpg, xq “ pcx` dq.

Finally, define,
Jpg, xq “ pκpg, xq, jpg, xqq P GL2ˆGL1pCq.

The following proposition is well known (see [Hsi14] Lemma 3.7) and probably already in [Shi78],
but we rewrite it to fix the notations,

Proposition 2.5. — There is a bijection between H0pYKpCq, ωκq and functions F : BˆGpAQ,f q ÝÑ V κ

such that,

1. For all γ P G1pZq, F pγx, γkq “ Jpγ, xq ¨ F px, kq,
2. For all k1 P K,F px, kk1q “ F px, kq,

given by F px, kq “ fpAx, ηx ˝ k
σ, pdζ1, dζ2, dζ3qq

Proof. — For all γ P G1pZq, there is an isomorphism between pAx, ηxq and Aγx, ηγx ˝ γ
σ , for ex-

emple described in [dG16] 1.2.2 or in [Gor92] which sends pdζ1, dζ2, dζ3q to γ˚pdζ1, dζ2, dζ3q “
pγ˚pdζ1, dζ2q, γ

˚dζ3q as γ preserve the action of OE . γ˚dζ3 is calculated in [dG16], Proposition 1.15,
and given by,

γ˚dζ3 “ jpγ, xq´1dζ3.



6 VALENTIN HERNANDEZ

Moreover, by the Kodaira-Spencer isomorphism ωAx,τ b ωAx,στ “ Ω1 ([dG16] Proposition 1.22 for
example), we only need to determine the action of γ on dz1, dz2. But this is done in [Shi78], 1.15 (or an
explicite calculation), given by cpγqtκ´1pγ, xqjpγ, xq, and we get,

γ˚pdζ1, dζ2q “
tκpγ, xq

´1
pdζ1, dζ2q.

Thus, setting F px, kq “ fpAx, ηx ˝ k
σ, pdζ1, dζ2, dζ3qq, we get,

F pγx, γkq “ Symk1´k2ptκpγ, xq´1qppdetκpγ, xqqq´k2jpγ, xq´k3F px, kq.

Thus, to f P H0pYKpCq, ωκq we can associate a function, Φf : GpQqzGpAq ÝÑ V κ, by

Φf pgq “ cpg8q
´k1´k2´k3Jpg8, x0q

´1 ¨ F pg8x0, gf q,

where the action ¨ is the one on V κ, and we use the decomposition g “ gQg8gf P GpQqGpRqGpAf q.
We can check that this expression doesn’t depends on the choice in the decomposition. This association
commutes with Hecke operators, but ĂΦf doesn’t have a unitary central character. Indeed, for z8 P

Cˆ “ ZpRq,

Φf pz8gq “ Npz8q
´k1´k2´k3z8

k1`k2z8
k3Φf pgq “ z´k3

8 z8
´k1´k2Φf pgq.

Let L : V κ ÝÑ C a non zero linear form. Define the injective map of right-K8-modules,

L :
V κ ÝÑ FonctpK8,Cq
v ÞÝÑ LpJpk, x0q

´1vq

We have the following well known proposition,

Proposition 2.6. — The map f ÞÑ ϕf “ L ˝ Φf is an isometry from H0
cusppXKpCq, ωκq “

H0pXKpCq, ωκp´Dqq to the subspace of L2
0pGpQqzGpAq,Cq of functions ϕ, C8 in the real variable, such

that,

1. For all g P GpAq, the function ϕg : k P K8 ÞÑ ϕpgkq is in LpV κq, and in particular ϕ is right
K8-finite,

2. For all k P K,ϕpgkq “ ϕpgq,
3. For all X P p´C , Xϕ “ 0, i.e. ϕ is holomorphic.

This isometry is equivariant under the Hecke action of HN (KpNq Ă K).

Using the previous proposition, to every f P H0
cusppXK , ω

κq, an eigenvector for the Hecke algebra,
we will be able to attach a automorphic form ϕf , and an automorphic representation Πf (with same
central character).

2.3. Local groups. — In this subsection, we describe the local group at an inert prime. Let p be a
prime, inert in E. Let Ep Ą Qp its p-adic completion. Recall that V bQp “ E3

p and that the hermitian
form is given by the matrix,

J “

¨

˝

1
1

1

˛

‚.

The diagonal maximal torus T of GQp is isomorphic to Eˆp ˆ E
ˆ
p ,

T pQpq “

$

&

%

¨

˝

a
e

Npeqa´1

˛

‚, a, e P Eˆp

,

.

-

.

and contains T 1, isomorphic to Eˆp ˆ E1
p , where E

1
p “ tx P Ep : xx “ 1u “ pOEpq

1, the torus of
UpE3, Jq,

T 1pQpq “

$

&

%

¨

˝

a
e

a´1

˛

‚, a P Eˆp , e P E
1
p

,

.

-

.
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We also have the Borel subgroups B “ BGL3pEq XGQp of upper-triangular matrices,

BpQpq “

$

&

%

¨

˝

a x y
e xa´1e

Npeqa´1

˛

‚, a, e, x, y P Eˆp and Trpa´1yq “ Npa´1xq

,

.

-

,

and B1 the corresponding Borel for UpE3, Jq,

B1pQpq “

$

&

%

¨

˝

a x y
e xa´1e

a´1

˛

‚, a, x, y P Eˆp , e P E
1
p and Trpa´1yq “ Npa´1xq

,

.

-

.

3. Weight space

Denote by O “ OEp , and by T 1pZpq the torus Oˆ ˆO1 over Zp. It is the torus of Up2, 1qpZpq and
by T 1 “ T 1 bZp O the split torus over SpecpOq.

Definition 3.1. — The weight space W is the rigid space over Qp given by HomcontpT
1pZpq,Gmq, of

algebra,

ZprrT 1pZpqss,

and such that the K-points (K extension of Qp) are given by,

WpKq “ HomcontpOˆ ˆO1,Kˆq.

W is isomorphic to a union of pp` 1qpp2 ´ 1q open balls of dimension 3 (see Appendix A, compare
with [Urb11] section 3.4.2),

W »
ž

pOˆˆO1qtors

B3p0, 1q.

There is also a universal character,

κun : T 1pZpq ÝÑ ZprrT 1pZpqss,

which is locally analytic and we can write W “
Ť

wą0 Wpwq as an increasing union of affinoids using
the analycity radius (see Appendix A).

Definition 3.2. — To k “ pk1, k2, k3q P Z3 is associated a character,

k :
Oˆ ˆO1 ÝÑ Qp2

px, yq ÞÝÑ pστqpxqk1τpxqk3pστqpyqk2 .

Characters of this form are called algebraic, or classical. They are analytic and Zariski dense in W .

4. Induction

Set U “ Up2, 1q{Zp, T 0 its maximal torus, K “ Qp2 and O “ OK . We have U bZp O » GL3 {O,
and we denote by T its torus, and GL2ˆGL1 Ă P the Levi of the standard parabolic of GL3 {O. Let
T Ă B the upper triangular Borel of GL2ˆGL1 and U its unipotent radical.

Definition 4.1. — Let κ P X`pT q, then there exists a (irreducible) algebraic representation of
GL2ˆGL1 (of highest weight κ) given by,

Vκ “ tf : GL2 ˆGL1 ÝÑ A1 : fpgtuq “ κptqfpgq, t P T, u P Uu,

where GL2ˆGL1 acts by translation on the left (i.e. gfpxq “ fpg´1xq). Vκ is called the algebraic
induction of highest weight κ of GL2ˆGL1.
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Let I “ I1 be the Iwahori subgroup of GL2pOq ˆ GL1pOq, i.e. matrices that are upper-triangular
modulo p. Let In be the subset of matrices in B modulo pn, i.e. of the form

¨

˝

a b
pnc d

e

˛

‚, a, b, c, d P O.

Denote by U0 the opposite unipotent of U , and N0
n the subgroup of elements reducing to identity

modulo pn. We identify N0
n with pnO Ă pA1

Oq
an. For ε ą 0; denote,

N0
n,ε “

ď

xPpnO
Bpx, εq Ă pA1

Oq
an.

For L an extension of Qp, denote Fε´npN0
n, Lq the set of functions N0

n ÝÑ L which are restriction of
analytic functions on N0

n,ε. Let ε ą 0 and κ PWεpLq a ε-analytic character, we note,

V ε´anκ,L “ tf : I ÝÑ L : fpibq “ κpbqfpiq and fN0 P Fε´anpN0, Lqu.

We also denote, for ε ą 0 and k “ t´ logppεqu,

V ε´an0,κ,L “ tf : Ik ÝÑ L : fpibq “ κpbqfpiq and fN0
k
P Fε´anpN0

k , Lqu,

where t.u denote the previous integer, and,

V l´anκ,L “
ď

εą0

V ε´anκ,L and V l´an0,κ,L “
ď

εą0

V ε´an0,κ,L .

Concretely, V ε´an0,κ,L is identified to analytic functions on Bp0, pt´ logp εuq (a ball of dimension 1) .

We can identify V l´anκ,L with F l´anppO, Lq by restricting f P V l´anκ,L to N0. We can also identify

V l´an0,κ,L to the germ of locally analytic function on 0.
Let

δ “

¨

˝

p´1

1
1

˛

‚

which acts on GL2ˆGL1 and stabilise the Borel BpKq, and define an action on Vκ,L for κ P X`pT q,
via pδ ¨ fqpgq “ fpδgδ´1q. The action by conjugation of δ on I does not stabilise it, but it stabilise N0.
We can thus set, for j P I , write j “ nb the Iwahori decomposition of j, and set,

δ ¨ fpjq “ fpδnδ´1bq.

We can thus make δ act on V ε´anκ,L , V l´anκ,L , V ε´an0,κ,L , V
l´an
0,κ,L . Via the identification V ε´anκ,L »

F l´anppO, Lq, δ ¨ fpzq “ fppzq. Thus δ improves the analycity radius. Moreover, its supremum
norm is negative.

Proposition 4.2. — Let f P V l´an0,κ,L . Suppose f is of finite slope under the action of δ, i.e. δ ¨f “ λf, λ P Lˆ.
Then f comes (by restriction) from a (unique) f P V anκ,L.

Proof. — f P V p
n
´an

0,κ,L for a certain n, in particular, it defines a function,

f :

¨

˝

a u
pnO b

c

˛

‚“ In ÝÑ L

which is identified to a function in FanppnO, Lq. But f is eigen with eigenvalue λ ‰ 0 P L, thus
f “ λ´1δpfq. But if f “ fpzq, with the identification to FanppnO, Lq, δf is identified with fppzq, thus
f P Fanppn´1O, Lq i.e. δ´1 strictly increase the analyticity radius, and by iterating, f P FanppO, Lq,
thus f P V anκ,L.

Proposition 4.3. — For κ “ pk1, k2, rq P X
`pT q, there is an inclusion,

Vκ,L Ă V anκ,L,

which under the identification of V anκ,L with FanppO, Lq identifies Vκ with polynomial functions of degree
less or equal than k1 ´ k2.
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Proposition 4.4. — Let κ “ pk1, k2, rq P X
`pT q. The following sequence is exact,

0 ÝÑ Vκ,L ÝÑ V anκ,L
dκ
ÝÑ V anpk2´1,k1`1,rq,L,

where dκ is given by,
f P V anκ,L ÞÝÑ Xk1´k2`1f,

and

Xfpgq “

¨

˝

d

dt
f

¨

˝g

¨

˝

1
´t 1

1

˛

‚

˛

‚

˛

‚

t“0

Proof. — Let us first check that dκ is well defined. Indeed, using pk1 ´ k2 ` 1q-times the formula,

pXfqpg

¨

˝

t1
t2

1

˛

‚q “

¨

˝

d

dt
f

¨

˝g

¨

˝

t1
t2

1

˛

‚

¨

˝

1
´t 1

1

˛

‚

¨

˝

t´1
1

t´1
2

1

˛

‚

¨

˝

t1
t2

1

˛

‚

˛

‚

˛

‚

t“0

“

¨

˝

d

dt
f

¨

˝g

¨

˝

1
´t2t

´1
1 t 1

1

˛

‚

˛

‚tk1
1 t

k2
2

˛

‚

t“0

“ t2t
´1
1 pXfqpgqtk1

1 t
k2
2 “ tk1´1

1 tk2`1
2 pXfqpgq

(and the corresponding formula for the action of

¨

˝

1 u
1

1

˛

‚) we deduce that dκf has the right

weight.

We can check (evaluating on

¨

˝

1
u 1

1

˛

‚) that on FanppO, Lq dκ correspond to p ddz q
k1´k2`1,

where z is the variable on pO. Thus, using the previous identification with Vκ and polynomials of
degree less or equal than k1 ´ k2, we deduce can check that Vκ is exactly the kernel of dκ.

Remark 4.5. — A more general version of the previous proposition as been developed by Jones [Jon11],
see also [AIP15], section 2.

5. Hasse Invariants and the canonical subgroups

Let p be a prime. Fix E Ă E Ă C an algebraic closure of E and fix an isomorphism C » Qp. Call
τ, στ the two places of Qp that corresponds respectively to τ8, στ8 through the previous isomorphism
(sometimes if p splits in E we will instead right v “ τ and v “ στ following the notation of [BC04]).
Suppose now p is inert in E. Let us take K “ KpKp Ă GpAf q a sufficiently small compact open,
hyperspecial at p, and denote X “ XK{SpecpOq an integral model of the Picard Variety associated to
the Shimura datum of the first section and the level K (recall O “ OE,p). Denote I “ HompO,Cpq “
tτ, στu the set of embeddings of O into an algebraic closure of Qp (Cp “ xQp), where σ is the Frobenius
of O, which acts transitively on I , and GalpE{Qq “ tid, σu.

Recall the (toroidal compactification of the) Picard modular surface X “ XK is the (compactified)
moduli space of principally polarized abelian varieties A ÝÑ S of genus 3, endowed with an action of
OE , and a certain level structure Kp, and such that, up to extending scalars of S, we can decompose
the conormal sheaf of A under the action of O “ OE,p,

ωA “ ωA,τ ‘ ωA,στ ,

and we assume dimOS ωA,τ “ 1 (and thus dimOS ωA,στ “ 2).

Remark 5.1. — If p splits in E, there is also a integral model of the Picard Surface, which is above
SpecpZpq, and it has a similar description (of course in this case OE,p » Zp ˆ Zp).
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5.1. Classical modular sheaves and geometric modular forms. — On X , there is a sheaf ω, the
conormal sheaf of A, the universal (semi-)abelian scheme, along its unit section, and ω “ ωτ ‘ ωστ .

For any κ “ pk1, k2, k3q P Z3 such that k1 ě k2, is associated a "classical" modular sheaf,

ωκ “ Symk1´k2 ωστ b pdetωστ q
k2 b ωk3

τ .

Denote by κ1 “ p´k2,´k1,´k3q, this is still a dominant weight, and κ ÞÑ κ1 is an involution. There is
another way to see the classical modular sheaves.

Denote by T “ HomX,OpO2
X bOX , ωq where O acts by στ on the first 2-dimensional factor and τ

on the other one. Denote T ˆ “ IsomX,OpO2
X bOX , ωq, the GL2ˆGL1-torsor of trivialisations of ω

as a O-module. There is an action on T of GL2ˆGL1 by g ¨ w “ w ˝ g´1.
Denote by π : T ˆ ÝÑ X the projection. For any dominant κ as before, define,

ωκ “ π˚OT ˆrκ
1s,

the subsheaf of κ1-equivariant functions for the action of the upper triangular Borel B Ă GL2ˆGL1.
As the notation suggests, there is an isomorphism, if κ “ pk1, k2, k3q,

π˚OT ˆrκ
1s » Symk1´k2 ωστ b pdetωστ q

k2 b ωk3
τ .

Definition 5.2. — Recall that X is the (compactified) Picard variety of level K “ KpK
p. The global

sections H0pX,ωκq is the module of Picard modular forms of level K and weight κ. If D denotes the
boundary of X , the submodule H0pX,ωκp´Dqq is the submodule of Picard cusp-forms.

In the sequel we will be interested in the case Kp “ I , the Iwahori subgroup.

Remark 5.3. — There is a more general construction of automorphic sheaves ωk1,k2,k3,r given in
[Har84], they are independant of r as sheaves on the Picard Variety, only the G-equivariant action (and
thus the action of the Hecke operators) depends on r. Thus, we will only use the previous definition of
the sheaves. We could get more automorphic forms by twisting by the norm character (which would be
equivalent to twist the action of the Hecke operators).

5.2. Local constructions. — Let G be the p-divisible group of the universal abelian scheme over
Y Ă X . Later we will explain how to extend our construction to all X . G is endowed with an action of
O, and we have that his signature is given by,

"

pτ “ 1 qτ “ 2
pστ “ 2 qστ “ 1

which means that if we denote ωG “ ωG,στ ‘ ωG,τ , the two pieces have respective dimensions pστ “ 2

and pτ “ 1. Moreover G carries a polarisation λ, such that λ : G
„
ÝÑ GD,pσq is O-equivariant.

The main result of [Her15], see also [GN17], is the following,

Definition 5.4. — There exists sections,

Ćhaστ P H
0pX bO{p,detpωG,στ q

bpp2
´1qq and Ąhaτ P H

0pX bO{p, pωG,τ qbpp
2
´1qq,

such that Ąhaτ is given by (the determinant of) V 2,

ωG,τ
V
ÝÑ ω

ppq
G,στ

V
ÝÑ ω

pp2
q

G,τ ,

and Ćhaσ τ is given by a division by p on the Dieudonne crystal of G of V 2, restricted to a lift of the
Hodge Filtration ωGD,στ .

Remark 5.5. — 1. These sections are Cartier divisors on X , i.e. they are invertible on an open and
dense subset (cf. [Her15] Proposition 3.22 and [Wed99]).

2. Because of the O-equivariant isomorphism λ : G » GD,pσq, and the compatibility of Ąhaτ with
duality (see [Her15], section 1.10), we deduce that,

Ąhaτ pGq “ Ąhaτ pG
Dq “ Ąhaτ pG

pσqq “ Ćhaστ pGq.
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Thus, we could use only Ćhaστ or Ąhaτ and define it in this case without using any crystalline
construction. We usually denote by Ąµha “ Ąhaτ b Ćhaστ , but because of the this remark, we will
only use Ąhaτ in this article (which is then reduced, see the appendix).

3. We use the notation r‚ to denote global sections, but if we have G{SpecpOCp{pq a p-divisible

O-module of signature p2, 1q, we will also use the notation haτ pGq “ vp Čhaτ pGqq, where the
valuation v on OCp is normalized such that vppq “ 1 and truncated by 1.

Definition 5.6. — We denote by X
ord

the µ-ordinary locus of X “ X bO O{p, which is tx P X :
Čhaτ pGxq is invertibleu. It is open and dense (see [Wed99]).

Let us recall the main theorem of [Her16] in the simple case of Picard varieties. Recall that p still
denotes a prime, inert in E, and suppose p ą 2.

Theorem 5.7. — Let n P Nˆ. Let H{SpecpOLq, where L is a valued extension of Qp, a truncated
p-divisible O-module of level n` 1 and signature ppτ “ 1, pστ “ 2q. Suppose,

haτ pHq ă
1

4pn´1
.

Then there exists a unique filtration (socalled "canonical" of height n) of Hrpns,

0 Ă Hn
τ Ă Hn

στ Ă Hrpns,

by finite flat sub-O-modules of Hrpns, of O-heights n and 2n respectively. Moreover,

degστ pH
n
στ q ` p degτ pH

n
στ q ě npp` 2q ´

p2n ´ 1

p2 ´ 1
haτ pHq,

and

degτ pH
n
τ q ` p degστ pH

n
τ q ě np2p` 1q ´

p2n ´ 1

p2 ´ 1
haτ pHq.

In particular, the groups Hn
τ and H

n
στ are of high degree. In addition, points of H

n
τ coïncide with the kernel

of the Hodge-Tate map α
Hrpns,τ,n´ p

2n´1

p2´1
haτ pHq

and Hn
στ with the one of αHrpns,στ,n´ p2n´1

p2´1
haτ pHq

. They

also coïncide with steps of the Harder-Narasihman filtrations (associated respectively to τ and στ ) and are
compatible with ps-torsion (s ď n) and quotients.

Definition 5.8. — Let H{SpecpOLq as before, with n “ 2m. Then we can consider inside Hr2ms the
finite flat subgroup,

Km “ H2m
τ `Hm

στ .

It coïncides, after reduction to SpecpOL{πLq (the residue field of L) with the kernel of F 2m of Hrp2ms

(see [Her16], section 2.9.1).

Recall that we denoted X{SpecpOq the (schematic) Picard surface. Denote by Xrig the associated
rigid space over Ep, there is a specialisation map,

sp : Xrig ÝÑ X,

and we denote by Xord Ă Xrig the open subspace defined by sp´1pX
ord
q.

Let us denote, for v P p0, 1s,

Xpvq “ tx P Xrig : haτ pxq “ vpĄhaτ pGxqq ă vu and Xp0q “ Xord,

the strict neighbourhoods ofXord. The previous theorem and technics introduced in [Far10] (see [Her16]
section 2.9) implies, if v ď 1

4pn´1 , that we have a filtration in families over the rigid space Xpvq,

0 Ă Hn
τ Ă Hn

στ Ă Grpns.

A priori, this filtration does not extend to a formal model of Xpvq, but as X is a normal scheme, we
will be able to use the following proposition.
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Definition 5.9. — For K{Qp an extension, define the category Adm of admissible OK-algebra, i.e. flat
quotient of power series ring OK ăă X1, . . . , Xr ąą for some r P N. Define NAdm the sub-category
of normal admissible OK-algebra.

Proposition 5.10. — Let m be an integer, S “ Spf R a normal formal scheme over O, and G ÝÑ S
a truncated p-divisible O-module of level 2m ` 1 and signature ppτ “ 1, pστ “ 2q. Suppose that for all
x P Srig , haτ pxq ă

1
4p2m´1 . Then the subgroup Km “ H2m

τ `Hm
στ Ă Grp2ms of Srig entends to S.

Proof. — As we know that Km coincide with the Kernel of Frobenius on points, this is exactly as
[AIP15], proposition 4.1.3.

6. Construction of torsors

6.1. Hodge-Tate map and image sheaves. — Let p a prime, inert in E, and O “ OE,p, a degree 2
unramified extension of Zp. Let K be a valued extension of Ep. Let m P Nˆ and v ă 1

4p2m´1 . Let
S “ SpecpRq where R is an object of NAdm{OK , and G ÝÑ S a truncated p-divisible O-module of
level 2m and signature,

"

pτ “ 1 qτ “ 2
pστ “ 2 qστ “ 1

where τ : O ÝÑ OC is a fixed embedding. Suppose moreover that for all x P Srig , haτ pxq ď v.
According to the previous section, there exists on Srig a filtration of Grp2ms by finite flat O-modules,

0 Ă H2m
τ Ă H2m

στ Ă Grp2ms,

of O-heights 2m and 4m respectively. Moreover, we have on S a subgroup Km Ă Grp2ms, finite
flat of O-height 3m, etale-locally isomorphic (on Srig) to O{p2mO ‘ O{pmO, and on Srig , Km “

H2m
τ `H2m

στ rp
ms.

Proposition 6.1. — Let wτ , wστ P vpOKq such that wστ ă m´ p2m
´1

p2´1 v and wτ ă 2m´ p4m
´1

p2´1 v. Then,
the morphism of sheaves on S π : ωG ÝÑ ωKm , induce by the inclusion Km Ă G, induces isomorphisms,

πτ : ωG,τ,wτ
„
ÝÑ ωKm,τ,wτ and πστ : ωG,στ,wστ

„
ÝÑ ωKm,στ,wστ .

Proof. — If G{SpecpOCq (C a complete algebraically closed extension of Qp), the degrees of the
canonical filtration of G assure that,

degστ pGrp
ms{Hm

στ q ě
p2m ´ 1

p2 ´ 1
v and degτ pGrp

2ms{H2m
τ q ě

p4m ´ 1

p2 ´ 1
v,

and there is thus an isomorphism,

ωGrpms,τ,wτ
„
ÝÑ ωHnτ ,τ,wτ ,

and also for στ and Grp2ms. But there are inclusions Hm
στ “ H2m

στ rp
ms Ă Km Ă G and H2m

τ Ă Km Ă

G such that the composite,

ωG,στ,wστ ÝÑ ωKm,στ,wστ ÝÑ ωHmστ ,στ,wστ ,

is an isomorphism, which implies that the first one is. The same reasoning applies for τ . We can
thus conclude for S as in [AIP15] proposition 4.2.1 : Up to reducing R we can suppose ωG is a free
R{p2m`1-module, and look at the surjection αστ : R2 � ωG,στ � ωKm,στ,wστ , it is enough to prove
that for any px1, x2q in kerαστ we have xi P pwτR, but as R is normal, it suffice to do it for Rp, and
even for xRp, for all codimension 1 prime ideal p that contains ppq. But now xRp is a complete, discrete
valuation ring of mixed characteristic, and this reduce to the preceding assertion.

Proposition 6.2. — Suppose there is an isomorphism KD
mpRq » O{pmO‘O{p2mO. Then the cokernel of

the στ -Hodge-Tate map,
HTKD

m,στ
b1 : KD

mpRqrp
ms bO R ÝÑ ωKm,στ ,

is killed by p
p`v

p2´1 , and the cokernel of the τ -Hodge-Tate map,

HTKD
m,τ

b1 : KD
mpRqrp

ms bO R ÝÑ ωKm,τ ,
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is killed by p
v

p2´1 .

Proof. — This is true for G{SpecpOCq by, [Her16] Théorème 6.10 (2),with the previous proposition
(because p`v

p2´1 ă 1 ´ v, already for m “ 1). For a general normal R, we can reduce to previous case
(see also [AIP15] proposition 4.2.2) : up to reduce SpecpRq, we have a diagram,

R2 R2

KD
n pRqrp

ns bO R ωKn,στ

γ

HTστ b1

and Fitt1
pγq (which is just a determinant here) annihilates the cokernel of γ, and it suffices to prove that

p
p`v

p2´1 P Fitt1
pγq. But as R is normal, it suffice to prove that p

p`v

p2´1 P Fitt1
pγqRp for every codimension

1 prime ideal p that contains ppq. But by the previous case, we can conclude. The same works for τ .

Proposition 6.3. — Suppose we have an isomorphism KD
mpRq » O{pmO‘O{p2mO. Then there exists on

S “ SpecR locally free subsheaves Fστ ,Fτ of ωG,στ and ωG,τ respectively, of ranks 2 and 1, which contains
p
p`v

p2´1ωG,στ and p
v

p2´1ωG,τ , and which are equipped, for all wστ ă m´ p2m
´1

p2´1 and wτ ă 2m´ p4m
´1

p2´1 v,
with maps,

HTστ,wστ : KD
mpRq ÝÑ Fστ bR Rwστ , and HTτ,wτ : KD

mpRq ÝÑ Fτ bR Rwτ ,

which are surjective after tensoring KD
mpRq with R over O.

More precisely, via the projection,

KD
mpRq� pH2m

τ qDpRKq,

we have induced isomorphisms,

HTστ,wστ : KD
mpRKq bO Rwστ ÝÑ Fστ bR Rwστ ,

and
HTτ,wτ : pH2m

τ qDpRKq bO Rwτ ÝÑ Fτ bR Rwτ .

Proof. — This is the same construction as [AIP15] proposition 4.3.1. To check the assertion about the
isomorphism with H2m

τ , it suffices to show that the map HTτ,wτ factors, but it is true over Rp (as the
canonical filtration is given by kernels of Hodge-Tate maps) for every codimension 1 ideal p, and it is
moreover surjective, so it globally factors and is globally surjective, but the two free Rwτ -modules are
free of the same rank 1, so it is an isomorphism.

Moreover the construction of the sheaves F is functorial in the following sens,

Proposition 6.4. — Suppose given G,G1 two truncated p-divisible O-module such that for all x P

Srig,haτ pGxq,haτ pG
1
xq ă v, and an isogeny,

φ : G ÝÑ G1.

Assume moreover that we are given trivialisations of the points of KD
mpGq and K

D
mpG

1q. Then φ˚ induces
maps

φ˚τ : F 1τ ÝÑ F 1τ and φ˚στ : F 1στ ÝÑ Fστ ,
that are compatible with inclusion in ω, reduction modulo pw and the Hodge-Tate maps of KD

m .

Proof. — Once we know that φ will send KD
mpGq inside K

D
mpG

1q this is straightforward as F? corre-
sponds to sections of ωG,? that are modulo pw? generated by the image of HT?. But Km is generated by
the subgroupHm

στ andH
2m
τ each begin a breakpoint of the Harder-Narasihman filtration HNστ pGrp

msq

and HNτ pGrp
2msq respectively, and thus by functoriality of these filtrations, φ sends each subgroup for

G inside the one for G1 and thus sends KmpGq inside KmpG
1q.
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6.2. The torsors. — To simplifiy the notations, fix w “ wτ “ wστ ă m ´
p2m

´1
p2´1 v to use the

previous propositions. Let R P OK ´ NAdm and S “ SpfpRq. In rigid fiber, we have a subgroup of
Kmrp

ms{Srig , Hm
τ Ă Kmrp

ms which induces a filtration,

0 Ă pHm
στ {H

m
τ q

DpRKq Ă KD
mpRq,

of cokernel isomorphic to pHm
τ q

DpRKq.
Suppose we are given a trivialisation,

ψ : O{pmO ‘O{p2mO » KD
mpRq,

which induces trivialisations (first coordinate and quotient),

ψστ : pHm
στ {H

m
τ q

DpRKq » O{pmO and ψτ : pH2m
τ qDpRKq » O{p2mO.

Let Grστ ÝÑ S be the Grassmanian of locally direct factor sheaves of rank 1, Fil1 Fστ Ă Fστ . Let
Gr`στ ÝÑ Grστ the G2

m-torsor of trivialisations of Fil1 Fστ and Fστ {Fil1 Fστ . Let also Gr`τ ÝÑ S the
Gm-torsor of trivialisations of Fτ .

Definition 6.5. — We say that a point of Grστ ,Gr`στ or Gr`τ , pFil1 Fστ , Pστ1 , Pστ2 , P τ q is w-compatible
with ψτ , ψστ if

1. Fil1 Fστ bR Rw “ HTστ,wppH
m
στ {H

m
τ q

DpRKq bO Rwq,
2. Pστ1 bR Rw “ HTστ,w ˝pψστ bO Rwq,
3. Pστ2 bR Rw “ HTστ,w ˝pψτ bO Rwq,
4. P τ bR Rw “ HTτ,w ˝pψτ bO Rwq.

We can define the functors,

IWστ,w :
R´ Adm ÝÑ SET

A ÞÝÑ tw ´ compatible Fil1pFστ bR Aq P Grστ pAqu,

IW`
στ,w :

R´ Adm ÝÑ SET

A ÞÝÑ tw ´ compatible pFil1pFστ bR Aq, P τ1 , P τ2 q P Gr`στ pAqu,

IW`
τ,w :

R´ Adm ÝÑ SET
A ÞÝÑ tw ´ compatible P τ P Gr`τ pAqu.

The previous functors are representable by formal schemes, affine over S “ SpfpRq, and locally iso-
morphic to,

ˆ

1
pwBp0, 1q 1

˙

ˆSpfpOKq SpfpRq for IWστ,w, 1` pwBp0, 1q for IW`
τ,w

and
ˆ

1` pwBp0, 1q
pwBp0, 1q 1` pwBp0, 1q

˙

ˆSpfpOKq SpfpRq for IW`
στ,w

We also define IW`
w “ IW`

τ,w ˆS IW`
στ,w . The previous constructions are independent of n “ 2m

(because Fτ ,Fστ are).
Let T 0 “ ResO{Zp GmˆUp1q the torus of Up2, 1q over Zp whose Zp-points are OˆˆO1. Its scalar

extension T “ T 0 bZp O is isomorphic to G3
m, and Gr` “ Gr`τ ˆ Gr`στ ÝÑ Gr “ Grτ is a T -torsor.

Denote T ÝÑ SpfpOq the formal completion of T along its special fiber, and Tw the torus defined by,

TwpAq “ KerpTpAq ÝÑ TpA{pwAq.

Then IW`
w ÝÑ IWστ,w is a Tw-torsor.

Denote by IWστ,w, IW`
τ,w, IW

`
στ,w, IW

`
w , T the generic fibers of the previous formal schemes.
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7. The Picard surface and overconvergent automorphic sheaves

7.1. Constructing automorphic sheaves. — Let us consider the datum pE, V, ψ,OE ,Λ “ O3
E , hq

the PEL datum introduced in section 2. Let p be a prime, inert in E and G the reductive group
associated over Zp. We fix Kp a compact open subgroup of GpApf q sufficiently small and C “ GpZpq
an hyperspecial subgroup at p. Let X “ XKpC{SpecpOq the (integral) Picard variety associated to the
previous datum (cf. [Kot92],[Lan13],[LRZ92]).

Let K{Or1{ps be a finite extension (that we will choose sufficiently large) and still denote X “

XOK “ X ˆSpecO SpecpOKq.
Denote by A the universal semi-abelian scheme, Xrig the rigid fiber of X , Xord the ordinary locus

and for v P vpKq, Xpvq the rigid-analytic open tx P Xrig : haτ pxq ă vu. Denote also X ÝÑ SpfpOKq

the formal completion of X along its special fiber, ĆXpvq the admissible blow up of X along the ideal
pĄhaτ , p

vq and Xpvq its open subscheme where pĄhaτ , p
vq is generated by Ąhaτ .

Lemma 7.1. — The formal scheme Xpvq is normal.

Proof. — As Xpvq is smooth, thus normal, and Ąhaτ is reduced, this follow from the

Lemma 7.2. — Let A P OK ´ Adm such that AK is normal and A{πK is reduced. Then A is normal.

Proof. — Denote, for all x P AK ,

vApxq “ sup tn P Z : π´nK x P Au and |x|A “ π
´vApxq
K .

Then we can check that |f`g|A ď supp|f |A, |g|Aq and that |fn|A “ |f |nA. Indeed, π
´vApfq
K f P AzπKA.

Thus, as A{πKA is reduced, pπ´vApfqK fqn P A zπKA and thus vApfnq “ nvApfq. For this norm, we
have that

A “ tx P AK : |x|A ď 1u.

Now let us verify that A is normal. Let x P Anorm, in particular, x P AnormK but as AK is normal,
x P AK . Now write, for ai P A, 0 ď i ď n and an “ 1

xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a1x “ ´a0.

Then sup1ďiďn |x
ian´i|A “ |a0|A ď 1, thus |xn|A “ |x|nA ď 1, and |x|A ď 1. Thus x P A.

Let n “ 2m P Nˆ, and v ă 1
2p2m´1 . In general unfortunately Arpns will not be a finite flat (because

it has a non-constant toric rank on the boundary of X ), but up to cover X by an etale affine covering,
A will be approximated by a Mumford 1-motive, which preserve Arpns, and we can thus suppose that
locally on X we are given a truncated p-divisible O-module G of level 2m` 1, and signature p2, 1q that
coincide with Arp2m`1s over Y (as in [Str10]).

By the previous sections, we have on Xpvq a filtration of G by finite flat O-modules,

0 Ă H2m
τ Ă H2m

στ Ă Grp2ms,

locally isomorphic to O{p2mO and pO{p2mOq2. Moreover, the subgroup Km “ H2m
τ ` H2m

στ rp
ms

extend to Xpvq by proposition 5.10, and over Xpvq is locally isomorphic to

O{p2mO ‘O{pmO.

Definition 7.3. — We denote,

X1pp
2mq “ IsomXpvq,polpK

D
m ,O{pmO ‘O{p2mOq,

where the condition pol means that we are looking at isomorphisms ψ “ pψ1, ψ2q which induces an
isomorphism "in first coordinate",

ψ1,1 “ pψ1q|pHmστ {Hmτ qD : pHm
στ {H

m
τ q

D » O{pmO,

such that pψ1,1q
D “ ppψ1,1q

pσqq´1, and such that the quotient morphism,

ψ2,1 “ ψ1{pψ1q|pHmστ {Hmτ qD : pH2m
τ qD ÝÑ O{pmO,
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is zero.

Remark 7.4. — The map ψ1,1 is automatically an isomorphism. Moreover,

pψ1,1q
D : O{pmO ÝÑ Hm

στ {H
m
τ

λ
» pHm

στ {H
m
τ q

D,pσq,

where the last morphism is induced by λ, the polarisation of A.

Denote by Bn the subgroup of GLpO{pmO ‘O{p2mOqq of matrices,
ˆ

a pmb
0 d

˙

such that a´1 “ apσq i.e. a P pO{pmOq1. We can map Oˆ ˆO1 (diagonally) to Bn.

Bn »

ˆ

pO{pmOq1 O{pmO
pO{p2mOqˆ

˙

.

Denote also,

B8pZpq “
ˆ

O1 O
0 Oˆ

˙

which surjects to Bn and that we can embed into GL2 ˆGL1 (even in its upper triangular borel) via,

ˆ

a b
0 d

˙

ÞÝÑ

¨

˝

στpaq στpbq
στpdq

τpdq

˛

‚.

We denote by ψτ and ψστ the inverses of the induced isomorphisms,

ψστ : O{pmO » pHm
στ {H

m
τ q

D,

and the quotient,
ψτ “ ψ´1{ψστ : O{p2nO » pH2m

τ qD.

We also denote X1pp
2mqpvq the normalisation of Xpvq in X1pp

2mqpvq. Over X1pp
2mqpvq, we have by

the previous section locally free subsheaves of OX1pp2mqpvq-modules Fτ ,Fστ of ωG,τ and ωG,στ together
with morphisms,

HTτ,w ˝ψτ rp
ms : pO{pmOq bO OX1pp2mqpvq

„
ÝÑ Fτ bOK OK{p

w,

HTστ,w ˝ψστ : pO{pmOq bO OX1pp2mqpvq ãÑ Fστ bOK OK{p
w,

and denote by Fcan
στ,w the image of the second morphism, it is a locally direct factor of Fστ bOK{p

w,
and passing through the quotient, we get a map,

HTστ,w ˝ ψτ rp
ms : pO{pmOq bO OX1ppmqpvq

„
ÝÑ pFστ bOK OK{p

wq{pFcan
στ,wq,

Using the construction of torsors of the previous section, we get a chain of maps,

IW`
w

π1
ÝÑ IWw

π2
ÝÑ X1pp

2mqpvq
π3
ÝÑ Xpvq.

Moreover, π1 is a torsor over the formal torus Tw, π2 is affine, and we have and action of Oˆ ˆ O1

and Bn on X1pp
2mq over Xpvq. Denote by B the Borel of GL2ˆGL1, B its formal completion along

its special fiber, and Bw,
BwpAq “ KerpBpAq ÝÑ BpA{pwAqq.

We can embed T in B (which induce an embedding Tw Ă Bw) and Oˆ ˆO1 in T, via

pa, bq P Oˆ ˆO1 ÞÝÑ

¨

˝

στpbq
στpaq

τpaq

˛

‚P T.

such that the action of Oˆ ˆ O1 on X1pp
2mqpvq and via T on Gr` preserve IW`

w (over Xpvq). More
generally, the action of B8pZpq on X1pp

2mqpvq (and thus X1pp
2mqpvq) and via B on Gr` preserve

IW`
w .
Let κ PWwpLq. The character κ : Oˆ ˆO1 ÝÑ OˆL extend to a caracter,

κ : pOˆ ˆO1qTw ÝÑ OˆLyGm,
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which can be extended as a character of,

κ : pOˆ ˆO1qBw ÝÑ OˆKyGm,

where Uw Ă Bw acts trivially, and even as a character,

κ : BpZpqBw ÝÑ OˆKyGm,

where UpZpqUw acts trivially. Let us denote π “ π3 ˝ π2 ˝ π1.

Proposition 7.5. — The sheaf π˚OIW`
w
rκs is a formal Banach sheaf, in the sense of [AIP15] definition

A.1.2.1.

Proof. — We can use the same devissage as presented in [AIP15] : denote κ0 the restriction of κ to
Tw . Then pπ1q˚OIW`

w
rκ0s is an invertible sheaf on IWw . Its pushforward via π2 is then a formal

Banach sheaf because π2 is affine, and pushing through π3 avec taking invariants over B8pZpq{pn “
Bn, π˚OIW`

w
rκs is a formal Banach sheaf.

Definition 7.6. — We call wκ:w :“ π˚OIW`
w
rκs the sheaf of v-overconvergent w-analytic modular

forms of weight κ. The space of integral v-overconvergent, w-analytic modular forms of weight κ and
level (outside p) Kp, for the group G is,

Mκ:
w pXpvqq “ H0pXpvq,wκ:w q.

Remark 7.7. — Unfortunately it doesn’t seem clear how to define an involution κ ÞÑ κ1 on all W
which extend the one on classical weights, and thus we only get that classical modular form of (classical,
integral) weight κ embeds in overconvergent forms of weight κ1...

7.2. Changing the analytic radius. — Let m ´ 1
2p2p2m`1q ą w1 ą w and κ P WwpLq, and thus

κ PWw1pLq. There is a natural inclusion,

IW`
w1 ãÑ IW`

w ,

compatible with the action of pOˆ ˆO1qBw . This induces a map wκ:w ÝÑ wκ:w1 and thus a map,

M :κ
w pXpvqq ÝÑM :κ

w1 pXpvqq.

Definition 7.8. — The space of integral overconvergent locally analytic Picard modular forms of weight
κ, and level (outside p) Kp, is,

M :
κpK

pq “ lim
ÝÑ

vÑ0,wÑ8

Mκ:
w pXpvqq.

7.3. Classical and Overconvergent forms in rigid fiber. — Denote XIw`pp2mqpvq the quotient of
X1pp

2mqpvq by Ũm Ă Bm, which is isomorphic to,
ˆ

1 O{pmO
1` pmO{p2mO

˙

Ă

ˆ

pO{pmOqˆ O{pmO
pO{p2mOqˆ

˙

.

Let also denote XIw`pp2mqpvq the corresponding rigid space. Over the scheme X , we have the locally
free sheaf ωA “ ωA,τ‘ωA,στ , which is locally isomorphic to OX‘O2

X , with the corresponding action of
O. Denote by T the schemeHomX,OpO2

X‘OX , ωGq of trivialisation of ωG as aOXbZpO “ OX‘OX -
sheaf, denote T ˆ its subsheaf of isomorphisms, it is a GL2ˆGL1-torsor over X , where g P GL2ˆGL1

acts on T ˆ by g ¨ φ “ φ ˝ g´1. For κ P X`pT q a classical weight, denote by ωκ the sheaf π˚OT ˆrκ
1s,

where π : T ˆ ÝÑ X is the projection and κ ÝÑ κ1 the involution on classical weights. In down-to-earth
terms, κ “ pk1, k2, lq where k1 ě k2 and

ωκ “ Symk1´k2 ωG,στ b pdetωG,στ q
bk2 b pdetωG,τ q

bl.

We have defined Xpvq, which is the rigid fiber of Xpvq. Denote by Tan, T ˆan, pGL2ˆGL1qan the
analytification of the schemes T , T ˆ,GLg , and Trig, T ˆrig, pGL2ˆGL1qrig Raynaud’s rigid fiber of the
completion along the special fibers of the same schemes. As T ˆ{B is complete, T ˆan{Ban “ T ˆrig{Brig ,
over which there is the diagram,
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T ˆrig{Urig T ˆan{Uan

T ˆrig{Brig

f
g

where f is a torsor over Urig{Brig “ Trig (the torus, not to be mistaken with Trig) and g a torsor over
Tan (same remark).

Definition 7.9. — Let κ P WwpKq. We denote by ωκ:w the rigid fiber of wκ:w on Xpvq. It exists by
[AIP15] Proposition A.2.2.4. It is called the sheaf of w-analytic overconvergent modular forms of weight
κ. The space of v-overconvergent, w-analytic modular forms of weight κ is the space,

H0pXpvq, ωκ:w q.

The space of locally analytic overconvergent Picard modular forms of weight κ (and level Kp) is the
space,

M :
κpXq “ lim

ÝÑ
vÑ0,wÑ8

H0pXpvq, ωκ:w q.

The injection of OXpvq-modules Fτ ‘Fστ Ă ωA “ ωA,τ ‘ωA,στ is an isomorphism in generic fiber,
and this induces an open immersion,

IWw ãÑ T ˆrig{Brig ˆXpvq X1pp
2mqpvq.

We also have an open immersion,

IW`
w ãÑ T ˆan{Uan ˆXpvq X1pp

2mqpvq.

The action of Bn on X1pp
2mqpvq (or X1pp

2mqpvq) lift to an action on IWw (or IWw) because being
w-compatible for Fil1 Fτ only depend on the trivialisation of KD

n modulo Bn. Similarly the action of
Ũn lifts to IW`

w and IW`
w . We can thus define IW0

w and IW`,0
w the respectives quotient of IWw and

IW`
w by Bn and Ũn, which induces open immersions,

IW0
w ãÑ T ˆrig{Brig ˆXpvq Xpvq and IW`,0

w ãÑ T ˆan{Uan ˆXpvq XIw`pp2mqpvq.

Proposition 7.10. — Suppose w ą m´ 1. Then there are embeddings

IW0
w Ă pT an{BqXpvq and h : IW0,`

w Ă pT an{UqXpvq.

Proof. — Let S be a set of representatives in I8 »

ˆ

O1 O
pO Oˆ

˙

of In{ĂUn which we can suppose of

the form,
ˆ

rbs
prcs ras

˙

, a P pO{pmqˆ, b P pO1{pmq, c P O{pm´1.

Here, r.s denote any lift. Then h is locally (over Xpvq) isomorphic to,

h :
ž

γPS

M

¨

˝

1` pwBp0, 1q
pwBp0, 1q 1` pwBp0, 1q

1` pwBp0, 1q

˛

‚

rγ ÝÑ pGL2ˆGL1 {Uqan

where M is the matrix which is locally given the Hodge-Tate, and correspond to the inclusion Fτ ‘
Fστ Ă ωτ ‘ ωστ , and if γ P S, then rγ is given by,

rγ “

¨

˝

στpbq
pστpcq στpaq

τpaq

˛

‚, if γ “

ˆ

b
pc a

˙

But there exist M 1 with integral coefficients such that M 1M “

˜

p
p`v

p2´1 I2
p

v
p2´1

¸

, and it is easily

checked that M 1 ˝ h is then injective if w ą m´ 1. The proof for the other embedding is similar (and
easier).
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We could have defined ωκ:w directly, by g˚OIW0,`
w
rκs where g is the composite,

IW0,`
w ÝÑ IW0

w ÝÑ Xpvq

as shown by the next proposition. Remark that Xpvq Ă XIwppqpvq via the canonical filtration of level 1.

Proposition 7.11. — The sheaf ωκ:w (defined as the rigid fiber of wκ:w ) is isomorphic to g˚OIW0,`
w
rκs.

Proof. — In the rigid setting, we did a quotient by rUn to get IW0,`
w . But ωκ:w is constructed as

ppπ2 ˝ π1q˚OIW`rκ0sqp´κqBn , and the action of ĂUn on pπ2 ˝ π1q˚OIW`rκ0s is trivial and it thus
descend to XIw`pp2mqpvq and is isomorphic to the κ0-variant vectors in the pushforward of OIW0,`

w
.

Proposition 7.12. — For κ P X`pT 0q and ω ą 0, there is a restriction map,

ωκXpvq ãÑ ωκ
1
:

w ,

induced by the inclusion IW0,`
w Ă pT an{Uq. Moreover, locally for the etale topology, this inclusion is

isomorphic to the following composition,

Vκ1 ãÑ V w´anκ1
res0
ÝÑ V w´an0,κ1 .

Proof. — Locally for the etale topology, ωκ is identified with algebraic function on GL2ˆGL1 which
are invariant by U and varies as κ1 under the action of T , i.e. to Vκ1 . But a function f P ωκ

1
:

w is locally
identified with a function,

f : t

¨

˝

τpaqp1` pwBp0, 1qq
pwBp0, 1q τpbqp1` pwBp0, 1qq

στpbqp1` pwBp0, 1qq

˛

‚, a P O1, b P Oˆu ÝÑ L,

which vary as κ1 under the action on the right of T pZpqTw . As κ1 “ pk1, k2, k3q P X`pT q we can
extend f to a κ1-varying function on

Ipw “ t

¨

˝

Gm Bp0, 1q
pwBp0, 1q Gm

Gm

˛

‚u,

extending it "trivially" ; i.e.

f

¨

˝

¨

˝

x u
pwz y

t

˛

‚

˛

‚ “ f

¨

˝

¨

˝

1 0
pwzx´1 1

1

˛

‚

¨

˝

x u
0 y ´ pwzu

t

˛

‚

˛

‚

“ xk1py ´ pwzuqk2tk3f

¨

˝

¨

˝

1 0
pwzx´1 1

1

˛

‚

˛

‚.

Under this identification, locally for the etale topology ωκ
1
:

w is identified with V w´an0,κ1 .

8. Hecke Operators, Classicity

As explained in [AIP15] and [Bra16], it is not possible to find a toroidal compactification for more
general PEL Shimura varieties (already for GSp4) that is preserved with all the Hecke correspondance,
but this can be overcome by looking at bounded section on the open variety. For the Picard modular
variety, there is only one choice of a toroïdal compactification, and thus this problem doesn’t appear,
but we will keep the general strategy (and thus we won’t have to check that the correspondances extend
to the boundary). Thus, instead we will define Hecke operators on the open Picard Variety YIwppq of
Iwahori level, and as bounded section on the open variety extend automatically to the compatification
(see [AIP15] theorem 5.5.1, proposition 5.5.2, which follows from a Theorem of Lutkebohmert), we show
that Hecke operators send bounded functions to bounded functions, and thus induces operators on
overconvergent locally analytic modular forms.
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8.1. Hecke operators outside p. — These operators have been defined already in [Bra16], section 4.
We explain their definition quickly, and refer to [Bra16] (see also [AIP15] section 6.1) for the details.
Let ` ‰ p be an integer, and suppose ` ffl N , the set of places where Kv is not maximal. Let γ P
GpQ`q X EndOE,`pO3

E,`q ˆQˆ` , and consider,

Cγ Ñ YIwppq,
the moduli space of isogeny f : A1 ÝÑ A2 such that,

1. f is OE-linear, and of degree a power of `.
2. f is compatible with polarisations, i.e. f˚λ2 is a multiple of λ1.
3. f is compatible with the Kp-level structure (at places that divides N ) (remark that f is an isomor-

phism on TqpAiq when q ‰ ` is a prime).
4. f is compatible with the filtration given by the Iwahori structure at p.
5. The type of f is given by the double class GpZ`qγGpZ`q.

Remark 8.1. — The space Cγ doesn’t depends on γ, only on the double class GpZ`qγGpZ`q.
We could similarly define Cγ without Iwahori level at p (i.e. for YGpZpqKp ) without the condition that

f is compatible with the filtration given by the Iwahori structure at p. In our case, this Iwahori structure
at p will always be the canonical one, and thus f is automatically compatible as it sends the canonical
filtration of A1 in the one of A2.

Denote by pi : Cγ ÝÑ Y the two (finite) maps that sends f to Ai. Denote by Cγppnq the fiber
product with p1 of Cγ with Y1pp

nqpvq ÝÑ Ypvq Ăs YIwppqpvq, where s is the canonical filtration of
Arps. Denote by f the universal isogeny over Gγppnq. It induces an O-linear isomorphism,

p˚2 pFτ ‘ Fστ q ÝÑ p˚1 pFτ ‘ Fστ q.
In particular, we get a BpZpqBw-equivariant isomorphism,

f˚ : p˚2
ĄIW

`

w,|Y1ppnqpvq
„
ÝÑ p˚1

ĄIW
`

w,|Y1ppnqpvq.

We can thus form the composite morphism,

H0pY1pp
nqpvq,O

ĆIW`

w

q
p˚2
ÝÑ H0pCγpp

nqpvq, p˚2O
ĆIW`

w

q
pf˚q´1

ÝÑ H0pCγpp
nqpvq, p˚1O

ĆIW`

w

q

Trpp1q
ÝÑ H0pY1pp

nqpvq,O
ĆIW`

w

q.

As f˚ is an isomorphism, it send bounded functions to bounded functions, and we thus get the propo-
sition,

Definition 8.2. — Let κ PWwpKq a weight. We define the Hecke operator,

Tγ : Mκ:
v,w ÝÑMκ:

v,w,

as the restriction of the previous operator to the bounded, κ-equivariant sections under the action of
BpZpqBw . It induces an operator,

Tγ : Mκ: ÝÑMκ:.

Definition 8.3. — Define H to be the commutative Z -algebra generated by all operators Tγ for all
` ffl Np and all double classes γ. These operators commutes on overconvergent forms, and thus H acts
on them.

8.2. Hecke operator at p. — We will define a first Hecke operator at p, Up. Define C the moduli
space over K which parametrize data pA, λ, i, η, Lq where pA, λ, i, ηq P XKpvq and L Ă Arp2s is a
totally isotropic O-module for λ of rank p3 such that

Lrps ‘H1
τ “ Arpsq and pL‘H1

στ “ Arps.

As remarked by Bijakowski in [Bij16], the second condition is implied by the first one and the isotropic
condition. We then define two projections,

p1, p2 : C ÝÑ XK ,
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where p1 is the forgetful map which sends pA, λ, i, η, Lq to pA, λ, i, η, Lq and p2 sends pA, λ, i, η, Lq to
pA{L, λ1, i1, η1q. To compare the correspondance with the canonical filtration we will need the following
lemma.

Lemma 8.4. — Let p ą 2 and G be a p-divisible O-module of unitary type and signature p2, 1q. Let H be
a sub-O-module of p-torsion and of O-height 1. Then the two following assertions are equivalent,

1. Degτ pHq ą 1` p´ 1
2 ,

2. haτ pGq ă
1
2 and H is the canonical subgroup of Grps associated to τ .

Let H be a sub-O-module of p-torsion and of O-height 2. Then the two following assertions are equivalent,
1. Degστ pHq ą p` 2´ 1

2 ,
2. haτ pGq ă

1
2 and H is the canonical subgroup of Grps associated to στ .

In both cases we can be more precise : if v “ 1 ` p ´ Degτ pHq (respectively 2 ` p ´ Degστ pHq) then
haτ pGq ď v.

Proof. — In both cases we only need to prove that the first assumption implies the second, by the
existence theorem of the canonical filtration phaτ pGq “ haστ pGqq. Moreover, we only have to prove
that haτ pGq ă

1
2 , because then Grps will have a canonical filtration, and in both cases, H will be a

group of this filtration because it will correspond to a break-point of the Harder-Narasihman filtration
(for the classical degree, as we only care about filtration in Grps). Let us do the second case, as it is the
most difficult one (the first case can be treated similarly, even using only technics introduced in [Far11]).
Let v “ 2` p´Degστ pHq. We can check that degστ pHq ą 2´ v, thus degστ pH

Dq ă v, and thus for
all ε ą 1´ v, if E “ Grps{H ,

ωGD,στ,ε » ωED,στ,ε.

But then the cokernel of αE,στ,ε b 1 is of degree 1
p2´1 Degστ pEq (it is a Raynaud subgroup of type

(p...p)), and the following square is commutative,

GrpspOKq EpOKq

ωGrpsD,στ,ε ωED,στ,ε

αE,στ,εαG,στ,ε

„

thus in particular deg CokerpαE,στ,εb1q “ deg CokerpαGrps,στ,εb1q. But according to proposition 5.25

of [Her16], we can check that the image of αGrps,στ is always included inside up
haστ pGq

p2´1 Fp2`p
1
p2 OC{p Ă

ωGrpsD,στ » OC{p for some u P OˆC . Rewriting the inequality with Degστ pEq “ Degστ pGrpsq ´
Degστ pHq we get,

minphaτ pGq,
p2 ´ 1

p2
q ď 2` p´Degστ pHq “ v,

but as v ă 1
2 ă 1´ 1

p2 , we get haτ pGq ď v.

Thus, we can deduce the following,

Lemma 8.5. — Let pA, λ, i, η, Lq as before with corresponding pA, λ, i, ηq P Xpvq and v ă 1
2pp2`1q . Then

A{L P Xpvq, and Arp2s{L coincide with the group K1pA{Lq.

Proof. — By hypothesis on L, the map

H1
τ ÝÑ Arps{Lrps,

is an isomorphism on generic fiber, thus Degτ pArps{Lq ě Degτ pH
1
τ q ą 1`p´v. Thus by the previous

lemma, we get that, haτ pA{Lq ď v and moreover Arps{Lrps coincide with the first canonical subgroup
associated to τ . Moreover, we deduce that degArps{L ě 2´ v. Now consider the composite map,

H2
στ ÝÑ Arp2s{L ÝÑ pArp2s{Lq{pArps{Lrps “ Q ÝÑ 0.
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Because H1
στ is sent inside Arps{Lrps, we get the factorisation,

H2
στ {H

1
στ ÝÑ Q.

This is a generic isomorphism by the second hypothesis on L, and thus Degστ pQq ě Degστ pH
2
στ {H

1
στ q.

But by construction,H2
στ {H

1
στ is the canonical subgroup (for στ ) of A{H1

στ and thus Degστ pH
2
στ {H

1
στ q ě

p ` 2 ´ Haστ pA{H
1
στ q, and Haστ pA{H

1
τ q ě p2 Haστ pAq (this is [Her16] proposition 8.1), and this

implies that degQ ą 3´ p2v. Using the exact sequence,

0 ÝÑ Arps{Lrps ÝÑ Arp2s{L ÝÑ Q ÝÑ 0,

we get that degArp2s{L ą 5 ´ p2v ´ v. A similar argument also shows that degK1pA{Lq ě 5 ´
pp2 ` 1qhaτ pA{Lq. But using Bijakowski’s proposition recalled in [Her16] Proposition A.2, we get that
if 2pp2 ` 1qv ď 1, then Arp2s{L “ K1pA{Lq.

Lemma 8.6. — Suppose v ă 1
2p4 . Let G{SpecpOCq be a p-divisible group such that haτ pGq ă v, then

K1 Ă Grp2s coincide over OC{p
1

2p2 with KerF 2 Ă Grp2s. In particular,

haτ pG{K1q “ p2 haτ pGq.

Proof. — This is Appendix B.

Proposition 8.7. — Let v ă 1
2p4 . The Hecke correspondance Up define by the two previous maps preserve

Xpvq. More precisely, if y P p2pp
´1
1 ptxuqq where x P Xpvq, then y P Xpv{p2q.

Proof. — This is the two previous lemmas as pA{Lq{pArp2s{Lq “ A.

Denote the universal isogeny over C by,

π : A ÝÑ A{L,

which induces maps ωA{L,τ
π‹τ
ÝÑ ωA,τ and ωA{L,στ

π‹στ
ÝÑ ωA,στ . We define

Ăπ‹ : p˚2T ˆan ÝÑ p˚1T ˆan
by Ăπ‹ “ Ăπ‹τ ‘Ăπ‹στ by Ăπ‹τ “ π‹τ and Ăπ‹στ sends a basis pe1, e2q of ωA{L,στ to p 1

pπ
‹e1, π

‹e2q. This
is an isomorphism, and we can check the following,

We will need to slightly change the notation as in [AIP15], Proposition 6.2.2.2.

Definition 8.8. — Denote by w0 “ m ´
p2m

´1
p2´1 v and for w “ pw1,1, w2,1, w2,2, wσq, define IW0,`

w

as the subspace of T ˆ{Uan (over X1pp
nqpvq) of points for a finite extention L of K consisting of

pA,ψN ,Filστ , P
στ
1 , Pστ2 , P τ q such that there exists a polarised trivialisation ψ of KD

m satisfying,

1. Filστ is pw0, ψq-compatible with Hm
τ ,

2. Pστ1 “ a1,1 HTστ,w0
pψpe1qq ` a2,1 HTστ,w0

pψe2q pmod pw0Fστ q,
3. Pστ2 “ a2,2 HTστ,w0

pψpe2qq pmod pw0Fστ ` Filστ q,
4. Pτ “ tHTτ,w0pψpe2qq pmod pw0Fτ q,

where a1,1 P Bp1, p
w1,1q, a2,2 P Bp1, p

w2,2q, t P Bp1, pwσ q, a2,1 P Bp0, p
w2,1q.

Let w as before, with w2,1, w2,2 ă m´ 1´ p2m
´1

p´1 v. Denote w1 “ pw1,1, w2,1 ` 1, w2,2, wσq.

Proposition 8.9. — The quotient map,

Ăπ‹
´1

: p˚1T ˆan{Uan ÝÑ p˚2T ˆan{Uan
sends p˚1IW

0,`
w to p˚2IW

0,`
w1 (i.e. improves the analycity radius)

Proof. — Let x “ pA,ψN , Lq be a point of C . Let pe1, e2q be a basis of KD
m (pmO{p2mOe1 ‘

O{p2mOe2 “ KD
n ) and denote by pe11, e

1
2q a similar basis for A{L such that if x1, x2 and x11, x

1
2 denote

the dual basis then πD : K
1,D
m ÝÑ KD

m in these basis is given by
ˆ

p
1

˙

.
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Let pFil1, w1q P p˚2T ˆan{Uan. As πD is a generic isomorphism on the multiplicative part, it in enough
to check the proposition on Fστ . Suppose rπ˚pFil1, w1q “ pFil, wq P p˚1IW

0,`
w , which means (on the

στ -factor),
1

p
π˚w11 P a1,1 HTστ,wpe1q ` a2,1 HTστ,wpe2q ` p

w0Fστ ,

π˚w12 P a2,2 HTστ,wpe2q ` p
w0Fστ ` Fil1 .

But then,

π˚w11 P pa1,1 HTστ,wpe1q`pa2,1 HTστ,wpe2q`p
w0`1Fστ “ a1,1 HTστ,wpπ

De11q`pa2,1 HTστ,wpπ
De12q`p

w0`1Fστ ,
and thus, as pF Ă π˚F 1,

w11 P a1,1 HTw,στ pe
1
1q ` pa2,2 HTw,στ pe

1
2q ` p

w0F 1,

w12 P a2,2 HTw,στ pe
1
2q ` Fil1`pw0´1F 1.

As w2,2 ď w0 ´ 1 we get the result.

Suppose v ă 1
2pp2`1q , and define ωκ:w1 “ g˚IW0,`

w1 rκs. Suppose w ă m´ 1´ p2m
´1

p2´1 v. We can then
look at the following composition,

H0pYpv{p2q, ωκ:w1 q
p‹2
ÝÑ H0pC, p˚2ω

κ:
w q

prπ‹q´1

ÝÑ H0pC, p˚1ω
κ:
w q

1
p3 Trp1

ÝÑ H0pYpvq, ωκ:w q,

where w12,1 “ w ` 1 (remark that if κ is w ` 1-analytic, there is an isomorphism between g˚IW0,`
w1 rκs

and ωκ:w2,1
).

Remark 8.10. — The normalisation of the Trace map is the same as in [Bij], the renormalisation of π‹

giving a factor p´k2 .

Definition 8.11. — Suppose v ă 1
2pp2`1q . The operator Up is defined as the previous composition on

bounded functions precomposed by H0pYpvq, ωκ:w q ãÑ H0pYpv{p2q, ωκ:w1 q. In particular it is compact

as H0pYpvq, ωκ:w q ãÑ H0pYpv{p2q, ωκ:w1 q is.

Proposition 8.12. — Let L be a finite extension of K , and x, y P XpvqpLq such that y P p2pp
´1
1 pxqq, and

let κ be a ω-analytic character. Then Up is identified with δ, i.e. there is a commutative diagram,

pωκ
1
:

w qy pωκ
1
:

w qx

V w´an0,κ1,L V w´an0,κ1,L

prπ‹q´1

δ

We can also define an operator Sp, by considering the two maps,

p1, p2 : XIwppq ÝÑ XIwppq

defined by p1 “ id and p2pA,FilpArpsqq “ pA{Arps, p´1 FilpArpsq{Arpsq. The map p2 correspond to
multiplication by p on ω and the universal map π : A ÝÑ A{Arps over XIwppq induces a map,

π˚ “ p˚2T ˆan ÝÑ T ˆan.

Define Ăπ˚ “ 1
pπ
˚ and consider the operator,

H0pXIwppq, ω
κ:
w q

p˚2
ÝÑ H0pXIwppq, p

˚
2ω

κ:
w q

Ąπ˚
´1

ÝÑ H0pXIwppq, ω
κ:
w q.

The map π˚ preserve the Hasse invariant (as Arp8s{Arps » Arp8s) and sends the canonical filtration
if it exists to itself (if v ă 1

4p ). In concrete terms, on the classical sheaf ωκ
1

Ă ωκ:, if we write
κ1 “ pk1, k2, k3q P Z3 (and thus κ “ p´k2,´k1,´k3q) the previous composition corresponds to a
normalisation by p´k1´k2´k3 of the map that send fpA, dziq ÞÑ fpA, pdziq.
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Definition 8.13. — Define also the Hecke operator Sp to be the previous composition. Sp is invertible
as p is invertible in T ˆ.

We define the Atkin-Lehner algebra at p asAppq “ Zr1{psrUp, S˘1
p s. It acts on the space of (classical)

modular forms too.

Classicaly it is also possible to define geometrically operators Up and Sp at p on classical modular
forms of Iwahori level at p, and they obviously coincide with ours through the inclusion of classical
forms to overconvergent ones. It is actually proven in [Bij16] that these Hecke operators preserve a strict
neighborhood of the canonical-µ-ordinary locus of XI , given in terms of the degree.

Remark 8.14. — Because of the normalisation, the definition of the Hecke operator slightly differs
with the one by convolution on automorphic forms. The reason is that the Hodge-Tate or automorphic
weights does not vary continuously in families. This is already the case in other constructions. Let us
be more specific. Let f P H0pXIw,K , ω

κq a classical automorphic form of weight κ “ pk1, k2, k3q and
Iwahori level at p. To f , as explained in proposition 2.6 is associated a (non-scalar) automorphic form
Φf (and a scalar one ϕf whose Hecke eigenvalues are the same as the one of Φf ). The Hecke action
on f and Φf is equivariant for the classical (i.e. non renormalised) action at p, more precisely at p
if we denote Sp and Up the previous (normalised operators) the classical one are Sclassp “ p|k|Sp and
U classp “ pk2Up. The operators Sclassp and U classp corresponds to the two matrices,

¨

˝

p
p

p

˛

‚ and

¨

˝

p2

p
1

˛

‚P GUp2, 1qpQpq.

Their similitude factor is in both cases p2 “ Nppq. Let f P H0pXIw,K , ω
κq be a classical eigenform

that is proper for the Hecke operator Up and Sp, of respective eigenvalues µ, λ, then ϕf has eigenvalues
for the corresponding (non-normalised) Hecke operators at p, pk2µ and pk1`k2`k3λ.

8.3. Remarks on the operators on the split case. — When p splits in E, the Eigenvariety for
Up2, 1qE is a particular case of Brasca’s construction (see [Bra16]). Unfortunately as noted by Brasca,
there is a slight issue with the normalisation of the Hecke operators at p constructed in section 4.2.2.
of [Bra16], where there should be a normalisation in families that depends on the weights, as in [Bij16]
section 2.3.1 for classical sheaves (without this normalisation Hecke operators do not vary in family).
More explicitely on the split Picard case, we have 4 Hecke operators at p (Bijakowski only consider
two of them, which are relevant for classicity), denoted Ui, i “ 0, . . . , 3, following [Bij16], section 2.3.1
(allowing i “ 0 and i “ 3). The normalisations are the following on classical weights,

U0 “
1

pk3

ĂU0

U1 “ ĂU1

U2 “
1

pk2

ĂU2

U3 “
1

pk1`k2

ĂU3

as we choose a splitting of the universal p-divisible group Arp8s “ Arv8s ˆ Arv8s and Arv8s “
Arv8sD , where v coincide with τ8 through the fixed isomorphism C » Qp; thus G “ Arv8s has height
3 and dimension 1, and modular forms of weight κ “ pk1 ě k2, k3q P Z3

dom are sections of,

Symk1´k2 ωGD b pdetωGD q
k2 b ωbk3

G .

8.4. Classicity results. — In this section, we will prove a classicity result. As in [AIP15], this is
realised in two steps. First show that a section in M :

κ is actually a section of ωκ
1

over Xpvq (this is
called a result of classicity at the level of sheaves), then shows that this section extends to all XIw, but
this is done in [Bij16].
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If n is big enough, there is an action of Ipn Ă GL2 ˆGL1 on IW0,`
w which can be derived as an

action of Upgq on OIW0,`
w

denoted by ‹. As in section 4, let κ “ pk1, k2, rq be a classical weight, and
we denote by dκ the map,

f P OIW0,`
w
ÞÑ Xk1´k2`1 ‹ f,

which sends ωκ:w to ωpk2´1,k1`1,rq:
w .

Proposition 8.15. — Let κ “ pk1, k2, rq be a classical weight. There is an exact sequence of sheaves on
Xpvq,

0 ÝÑ ωκ
1

ÝÑ ωκ:w
dκ
ÝÑ ωpk2´1,k1`1,rq:

w .

Proof. — This is exactly as in [AIP15] Proposition 7.2.1 (we don’t need assumption on w as V 0,w´an
κ,L is

isomorphic to analytic functions on 1 ball only and Jones theorem applies).

Proposition 8.16. — On ωκ:w we have the following commutativity,

Up ˝ dκ “ p´k1`k2´1dκ ˝ Up.

In particular, if H0pXpvq, ωκ:w q
ăk1´k2`1 denote the union of generalised eigenspaces for eigenvalues of slope

smaller than k1 ´ k2 ` 1, and f P H0pXpvq, ωκ:w q
ăk1´k2`1, then f P H0pXpvq, ωκ

1

q.

Proof. — We can work etale-locally in which case by the previous results on ωκ:w locally the first part
reduces to section 4. Now, if f is a generalised eigenvector for Up of eigenvalue λ of slope (strictly)
smaller than k1 ´ k2 ` 1, then dκf is generalised eigenvector of slope λp´k1`k2´1 which is of negative
valuation, but this is impossible as Up (and etale-locally δ) if of norm strictly less than 1. Thus dκf “ 0
and f is a section of ωκ.

The previous result is sometimes referred to as a classicity at the level of sheaves. Moreover, we have
the following classicity result of S.Bijakowski, [Bij16]

Theorem 8.17 (Bijakowski). — Let f be an overconvergent section of the sheaf ωκ, κ “ pk1 ě k2, k3q,
which is proper for Up of eigenvalue α. Then if,

3` vpαq ă k2 ` k3,

then f is a classical form of weight κ and level KpI .

9. Constructing the Eigenvariety

In this section we will construct the Eigenvariety associated to the algebra H b Appq and the sets
of overconvergent modular forms M :

κ. In order to do this, we will use Buzzard’s construction of Eigen-
varieties, and we need to show that the sets M :

κ (and a bit more) are projective. The method of proof
follows closely the lines of [AIP15], but as this case is simpler (because the toroïdale compactification
is) we chose to write the argument in details.

9.1. Projection to the minimal compactification. —

Definition 9.1. — Let X˚ be the minimal compactification of Y as a (projective) scheme over SpecpOq.
There is a map

η : X ÝÑ X˚,

from the toroidal to the minimal compactification. Denote X˚rig the rigid fiber and X˚pvq the image of
Xpvq in X˚rig . If v P Q this is an affinoid as X˚ord is pdetω is ample on the minimale compactification).
Denote also by D the boundary in the toroïdale compactification X , and by abuse of notation in
X1pp

2mq and X1pp
2mqpvq.

The idea to check that our spaces of cuspidal overconvergent modular forms are projective, is to
push the sheaves to X˚pvq which is affinoid and use the devissage of [AIP15] Proposition A.1.2.2. But
we need to show that the pushforward of the family of sheaves wκ

0,un

w p´Dq is a small Banach sheaf. In
order to do this, we will do as in [AIP15] and prove that the pushforward of the trivial sheaf has no
higher cohomology, and we will need to calculate this locally.
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9.1.1. Description of the toroïdal compactification. — Let V “ O3
E with the hermitian form ă,ą chosen

in the datum. For all totally isotropic factor V 1, we denote CpV {pV 1qKq the cone of symmetric hermitian
semi-definite positive forms on pV {pV 1qKq bZ R with rationnal radical. Denote by C the set of such V 1,
and

C “
ž

V 1PC non zero

CpV {pV 1qKq.

Remark 9.2. — The subspaces V 1 are of dimension 1 (if non zero), and CpV {pV 1qKq » R`.

Fix ψN level N structure,
ψN : pOE{NOEq

3 » V {NV

and ψ of level p2m,
ψ : OE{p

2me1 ‘ p
mOE{p

2me2 Ă V {p2mV.

Let Γ Ă GpZq be the congruence subgroup fixing the level outside p, and Γ1pp
2mq fixing ψN and

ψ. Suppose that N is big enough so that Γ is neat. Fix S a polyedral decomposition of C which is
Γ-admissible : on each CpV {pV 1qKq “ R` there is a unique polyedral decomposition and thus there is
a unique decomposition S and it is automatically Γ (or Γ1pp

2mq)-admissible.
Recall the local charts of the toroïdal compactification X . For each V 1 P C non zero, we have a

diagram,

MV 1 MV 1,σ

BV 1

YE

where YE is the moduli space of elliptic curves with complex multiplication by OE of principal level
N structure, denote by E the universal elliptic curve, then BV 1 “ Ext1pE ,Gm b OEq is isogenous to
tE , and is a Gm-torsor, MV 1 ÝÑ BV 1 is a Gm-torsor, it is the moduli space of principally polarised
1-motives, with ψN -level structure, and MV 1 ÝÑMV 1,σ is an affine toroidal embedding associated to
the cone decomposition of CpV {pV 1qKq, locally isomorphic over BV 1 to Gm Ă Ga.

Over BV 1 we have a semi-abelian scheme of constant toric rank,

0 ÝÑ Gm bZ OE ÝÑ rGV 1 ÝÑ E ÝÑ 0.

Denote by ZV 1 the closed stratum of MV 1,σ .
Recall that X is the toroïdal compactification of our moduli space Y (it is unique as the polye-

dral decomposition S is), as defined in [Lar92] or [Lan13] in full generality, and X˚ is the minimal
compactification. X is proper and smooth and X˚ is proper. Moreover we have a (proper) map,

η : X ÝÑ X˚.

Moreover, π is the identity on Y . As sets, X˚ is a union of Y to which we glue points corresponding
to elliptic curves with complex multiplication, one for each component of D, the boundary of X , and
over each x P X˚zY , η´1pxq is a CM elliptic curve.

Denote by {MV 1,σ the completion of MV 1,σ alors the closed stratum ZV 1 . On X there is a strat-
ification indexed by C{Γ (the open subset Y corresponding to V 1 “ t0u). For all non zero V 1, the
completion of X along the V 1 stratum is isomorphic to {MV 1,σ , as ΓV 1 , the stabilizer of V 1, is trivial
: V 1 » OE so ΓV 1 Ă OˆE , which is finite as E is quadratic imaginary, and thus because Γ is neat,
ΓV 1 “ t1u.

As the Hasse invariant on the special fiber of X is defined as the one of the abelian part of the
semi abelian scheme, we can identify it with the same one on MV 1,σ , which comes from the special
fiber of YV 1 » YE . Denote by Y , X the formal completion of Y,X along the special fiber. We have
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defined Xpvq ÝÑ X as an open subset of a blow up, denote by Ypvq the inverse image of Y, and we
will describe its boundary locally. Denote

– YE the formal completion along p of YV 1 .
– YEpvq the open subset of YEpvq along I “ ppv,Haτ q where I is generated by Haτ , but as every
CM elliptic curve is µ-ordinary, YEpvq “ YE .

– BV 1 the formal completion of BV 1 .
– Similarly, MV 1 ,MV 1,σ,ZV 1 .

Proposition 9.3. — The formal scheme Xpvq has a stratification indexed by C{Γ, and the stratum corre-
sponding to V 1 is isomorphic to ZV 1 if V 1 is non zero, and Ypvq if V 1 “ t0u. For all non zero V 1 P C the
completion of Xpvq along the V 1 stratum is isomorphic to {MV 1,σ (completion along ZV 1 ).

Proof. — We complete and pullback the stratification of X . The analogous result on X is ok since we
can invert the completion along p and the stratum. If V 1 ‰ 0 it is simply that the boundary of X is
inside the µ-ordinary locus. For V 1 “ 0 the stratum is the pull back of Y inside Xpvq, i.e. Ypvq.

We used the space X1pp
2mq in the previous sections, we would like to describe its boundary.

Let C1 be the subset of V 1 P C such that Impψq Ă pV 1qK{p2mpV 1qK. The (unique) polyedral
decomposition previously considered induce also a (unique anyway) polyedral decomposition on

ž

V 1PC1 non zero

CpV {pV 1qKq,

which is Γ1pp
2mq admissible.

For V 1 P C1 non zero, decompose,

0 ÝÑ V 1{p2m ÝÑ pV 1qK{p2m ÝÑ pV 1qK{pV 1 ` p2mpV 1qKq ÝÑ 0,

and denote W the image in pV 1qK{pV 1 ` p2mpV 1qKq of ψpO{p2m ‘ pmO{pmq. This is isomorphic
to O{pm. Indeed, as pV 1qK contains e1, p

me2 modulo p2m, pV 1qK{p2m “ O{p2mpe1, e2q. Then
V 1 “ V 1{p2m is totally isotropic inside, i.e. generated by ae1 ` be2 where pm|b (totally isotropic) and
a P Oˆ (direct factor). Thus the image of ψ is generated in pV 1qK{pV 1 ` p2mpV 1qKq by the image of
e1 “ a´1be2 which is pm-torsion.

We denote by,

1. YV 1 the rigid fiber of YV 1 ,
2. Hm,V 1 the canonical subgroup of level m of the universal elliptic scheme EV 1 over YV 1 ,
3. Y1pp

mqV 1 the torsor IsomYV 1 ppHm,V 1q
D,W_q, and ψV 1 the universal isomorphism,

4. Y1pp
mq the normalisation of YV 1 in Y1pp

mqV 1 ,
5. There is an isogeny i : BV 1 ÝÑ EV 1 , and if we denote i1 : EV 1 ÝÑ EV 1{Hm,V 1 , set,

B1pp
mqV 1pvq “ BV 1 ˆi,E,i1 EV 1{Hm,V 1 .

6. Denote M1pp
mqV 1 ,M1pp

mqV 1,σ,Z1pp
mqV 1,σ the fibered products of the corresponding formal

schemes with B1pp
mqV 1 over BV 1 .

Proposition 9.4. — The formal scheme X1pp
2mqpvq has a stratification indexed by C1{Γ1pp

2mq, for all non
zero V 1, the completion of X1pp

2mqpvq along the V 1-stratum is isomorphic to the completion yM1pp
2mqV 1,σ

along Z1pp
2mqV 1 .

Proof. — This is known in rigid fiber, with the same construction, but the previous local charts are
normal, and thus coincide with the normalisation in their rigid fiber of the level Γ-charts. Thus
M1pp

2mqV 1,σ is the normalisation of MV 1,σ in M1pp
2mqV 1,σ . But the completion of M1pp

2mqV 1,σ

along Z1pp
2mqV 1,σ coincide with the normalisation of {MV 1,σ

V 1

“ zXpvq
V 1

inside M1pp
2mqV 1,σ “

{X1ppnqpvq
V 1

.
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9.2. Minimal compactification. — Let X˚ be the minimal compactification of Y of level Γ. As a
topological space, it corresponds to adding a finite set of points to Y , corresponding to CM elliptic
curves. X˚ is also stratified by C{Γ. Let x P X˚zY a geometric point of the boundary, it corresponds
to a point x P YE .

Using the previous description of X , we can describe the local rings of X˚. Let V 1 P C non zero.
Over BV 1 , MV 1 is an affine Gm-torsor, and we can thus write,

MV 1 “ SpecB L,

where L is a quasi-coherent OBV 1 -algebra endowed with an action of Gm, that can be decomposed,

L “
à

kPZ
Lpkq.

For all k, Lpkq is locally free of rank 1 over BV 1 . Denote {BV 1;x the completion of BV 1 along the fiber
over x. We have the

Proposition 9.5. — X˚ is stratified by C{Γ and η : X ÝÑ X˚ is compatible with stratifications. Moreover,
for all V 1, X˚V 1 is isomorphic to YV 1 and for all x P X

‹
V 1 a geometric point,

{OX˚,x “
ź

kPZ
H0p{BV 1,x,Lpkqq,

where {OX˚,x is the completion of the strict henselisation of OX˚ at x.

Proof. — This is Serre’s theorem on global sections of the structure sheaf on proper schemes (as η is
proper and X˚ is normal), the theorem of formal functions and the previous description of X .

The Hasse invariant haτ descend to the special fiber of X˚ and we can thus define X˚ the formal
completion of X˚ along its special fiber and X˚pvq the normalisation of the open subspace of the blow
up of X˚ along ppv,haτ q where this ideal is generated by haτ .

Proposition 9.6. — For all V 1 P C the V 1-strata of X˚pvq is YV 1pvq (and YE if V 1 is non zero).

Proof. — This is known before the blow up, and thus for V 1 non zero as the boundary is contained in
the µ-ordinary locus. But for V 1 “ 0 this is tautologic.

9.3. Higher Cohomology and projectivity of the space of overconvergent automorphic forms. —
We will look at the following diagram,

X1pp
nqpvq Xpvq

X˚pvq

π4

η

π

Proposition 9.7. — Let D be the boundary of X1pp
2mqpvq. Then for all q ą 1,

Rqη˚OX1pp2mqpvqp´Dq “ 0.

Proof. — It is enough to work locally at x a geometric point of the boundary of X˚pvq, and by the
theorem of formal functions,

{pη˚OX1pp2mqpvqp´Dqqx “ Hqp {X1pp2mqpvq
η´1

pxq
,O

{X1pp2mqpvq
η´1pxqp´Dqq.

We will thus show that the right hand side is zero. But the completion {X1pp2mqpvq
η´1

pxq
is isomorphic

to a finite disjoint union of spaces of the form {M1pp2mqV 1,σ
y
for y a geometric point in YE . Denote by

Mσ this completed space. As
Mσ “ Spec

{B1ppmqV 1
p
à

kě0

Lpkqq,
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and thus the morphism,

Mσ ÝÑ
{B1ppmqV 1 ,

is affine, we have the equality,

HqpMσ,Op´Dqq “
ź

ką0

Hqp {B1ppmqV 1 ,Lpkqq,

(the product is over k ą 0 as we take the cohomology in Op´Dq). But for k ą 0, Lpkq is very ample

on the elliptic curve B1pp
mqV 1 , and thus Hqp {B1ppmqV 1 ,Lpkqq “ 0 for all q ą 0.

Theorem 9.8. — For m ě l two integers, we have the following commutative diagram,

X1pp
nqpvql X1pp

nqpvqm

X˚pvql X˚pvqm

i

i1

ηl ηm

and the following base change property is verified,

i1˚
´

pηmq˚w
κ0
:

w,mp´Dq
¯

“ pηlq˚w
κ0
:

w,l p´Dq.

In particular, η˚wκ
0
:

w p´Dq is a small Banach sheaf on X˚pvq. The same result is true over X˚pvqˆWpwq0

for

pη ˆ 1q˚w
κ0,un

:
w p´Dq.

Proof. — We can just restrict to l “ m´1, but as inductive limit and direct image commute, and as the

kernel wκ
0,un

:
w,m ÝÑ wκ

0,un
:

w,m´1 is isomorphic to wκ
0,un

:
w,1 which is itself a direct limit of sheaves with graded

pieces isomorphic to OX1ppmq{π (see corollary C.5) and thus by the previous proposition we have the

announced equality. We can thus use [AIP15] Proposition A.1.3.1 which proves that pη ˆ 1q˚w
κ0,un

:
w is

a small formal Banach sheaf (Recall that η is proper).

Proposition 9.9. — Let w ą 0. DenoteWpwq0 “ SpfpAq. Then,

Mκ0,un
:,cusp

v,w “ H0pX˚pvq ˆWpwq0, pη ˆ 1q˚ω
κ0,un

:
w p´Dqq

is a projective Ar1{ps-Banach module. Moreover the specialisation map, for κ PWpwq0,

Mκ0,un
:,cusp

v,w ÝÑ H0pX˚pvq, η˚ω
κ:
w p´Dqq,

is surjective.

Proof. — This is proved exactly as in [AIP15], Corollary 8.2.3.2. Let us sketch the ideas. Fix pUiq1ěiěr
a (finite) affine covering of X˚pvq, and for i “ pi1, . . . , isq P t1, . . . , ru

s denote Ui the interesection
Ui1 X . . .Uis . Then,

Mi,8 “ H0pUi ˆWpwq0, pη ˆ 1q˚w
κ0,un

:
w p´Dqq,

is isomorphic to the p-adic completion of a free A-module (i.e. is orthonormalisable). This is essentially
Corollary C.5 and topological Nakayama’s lemma. But then, as X˚pvq is affinoid, the Cech complex
after inverting p is exact and thus ([AIP15] Theorem A.1.2.2) provides a resolution of Mκ0,un

:,cusp
v,w by

the Mi,8r1{ps, and thus Mκ0,un
:,cusp

v,w is projective. For the surjectivity assertion, fix pκ the maximal
ideal of Ar1{ps corresponding to κ and consider the Koszul resolution of Ar1{ps{pκ. Tensoring this for
each i with η˚wκ

0,un
:p´DqpUiq gives a resolution of η˚wκ:w p´DqpUiq. This gives a double complex

where each column (for a fixed index of the Koszul complex) is exact. But each line (for a fixed i non
trivial) is also exact by the previous acyclicity, and thus we have the following bottom right square,
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ś

1ěiěr ω
κ0,un

:pUiq
ś

1ěiěr ω
κ:pUiq 0

ωκ
0,un

:pX˚pvq ωκ:pX˚pvqq

0 0

πκ

which proves that πκ is surjective.

Proposition 9.10. — Denote SpmpBq “Wpwq. Then the B-module

H0pX pvq ˆWpwq, ωκ
un
:

w p´Dqq

is projective. Moreover, for every κ PWpwq, the specialisation map,

H0pX pvq ˆWpwq, ωκ
un
:

w p´Dqq ÝÑ H0pX pvq, ωκ:w p´Dqq

is surjective.

Proof. — We can identify the B-module,

M 1 “ H0pX pvq ˆWpwq, ωκ
un
:

w p´Dqq,

with pMκ0,un
:,cusp

v,w bAr1{ps Bp´κ
unqqBn . But now Bn is a finite group, and B is of caracteristic zero,

thusM 1 is a direct factor is a projective B-module, and is thus surjective. Moreover, as Bn is finite, the
(higher) group cohomology vanishes, and the specialisation map stays surjective.

9.4. Types. — Let Kp
f be a compact open subgroup of GpApf q. Let Kf “ Kp

f I where I Ă GpQpq is
the Iwahori subgroup. Fix pJ, VJq a complex continuous irreducible representation of Kf , trivial at p
and outside a level N , it is of finite dimension and finite image, and thus defined over a number field.
Denote K0 Ă Kf its Kernel.

Definition 9.11. — The space of Picard modular forms of weight κ, v-overconvergent, w-analytic, of
type pKf , Jq is,

HomKf pJ,H
0pXpvq, ωκw:qq.

The space of overconvergent locally analytic Picard modular forms of weight κ and type pKf , Jq is then,

M
:,pKf ,Jq
κ “ HomKf pJ, lim

ÝÑ
vÑ0,wÑ8

H0pX pvq, ωκ:w q.

Remark 9.12. — In the beginning of this section we made the assumption that the level Γ, outside p,
is big enough ("neat"). But using the previous definition we can get rid of this assumption by taking
Kp
f big enough to have the neatness assumption, and take J the trivial representation to descend our

families for any level outside p, as the following proposition shows.

Proposition 9.13. — The space

M pK,Jq,κun:
cusp,v,w :“ HomKf pJ,H

0pX pvq ˆWpwq, ωκ
un
:

w p´Dqqq,

is a projective OWpwq-module, and the specialisation map is surjective.

Proof. — Suppose KpNq “ K Ă K0 “ KerpJq is neat (outside p, up to enlarging it). Then we have
shown that, in level K ,

H0pX pvq ˆWpwq, ωκ
un
:

w p´Dqq,

is projective, and that the corresponding specialisation map is surjective. We can thus twist the Kf {K
action by V ˚J and take the invariants over J ; as Kf {K is finite, the space if a direct factor inside
H0pX pvq ˆWpwq, ωκun:w p´Dqq b V ˚J and higher cohomology vanishes.
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Remark 9.14. — The same argument applies when p splits in E, for the spaces of overconvergent
modular forms defined in [Bra16], [AIP15]. In particular we can construct families of Picard modular
forms with fixed type when p is unramified.

9.5. Eigenvarieties. —

Theorem 9.15. — Let p be a prime number, unramified in E. LetW be the p-adic weight space of Up2, 1q,
as defined in section 3 when p is inert, it is a 3-dimensional ball over Qp when p splits. Fix pKJ , Jq a type
outside p, K Ă Ker J a neat level outside p, and let S be the set of places where K is not compact maximal
or p. There exists an equidimensional of dimension 3 eigenvariety E and a locally finite map,

w : E ÝÑW,

such that for any κ P W , w´1pκq is in bijection with eigensystems for TS bZ Appq acting on the space of
overconvergent, locally analytic, modular forms of weight κ and type-level pKJ , Jq (and Iwahori level at p),
finite slope for Up.

Proof. — If p is split this is a particular case of the main result of [Bra16] (taking into account the
previous remark and the normalisation of the Hecke operators). If p is inert, this is a consequence of
Buzzard-Coleman’s machinery ([Buz07]) using for all compatible v, w pWpwq,M pK,Jq,κun:

cusp,v,w , Up,HNp b

Appqq and glueing along v, w.

9.6. Convention on weights. — As in [BC04], we set as convention the Hodge-Tate weight of the
cyclotomic character to be -1. Fix an isomorphism C » Qp compatible with the inclusions E Ă C that
extend τ8 and denote τ, στ the p-adic places at p inert corresponding to τ8, cτ8. If p is split, we will
insted call v, v the places corresponding to τ8, cτ8, but in this section we focus on p inert, even if a
similar result hold with v, v.

Let us recall the different parameters that are associated to an algebraic automorphic representation
π of GUp2, 1q that we will need, following partly [Ski12]. There is λ “ ppλ1, λ2, λ3q, λ0q, the Harrish-
Chandra parameter, there is c “ ppc1, c2, c3q, c0q, the highest weight of the algebraic representation
which has the same infinitesimal character as π8 in the discrete series case and pc0, c10q is the parameter
at infinity of ωπ the conjugate of the central character of π. There is κ “ pk1, k2, k3q the classical
weight such that πf appears in H0pXK , ω

κq appears (if it exists) and there are the Hodge-Tate weights
pphτ1 , h

τ
2 , h

τ
3q, ph

στ
1 , hστ2 , hστ3 qq of the Galois representation of GE associated to π by Blasius-Rogawski

or Skinner. Let us explain how they are related.
First denote ρn the half-sum of the positive non-compact roots and ρc the half-sum of the positive

compact roots (see [Gol14], Section 5.3). We have then for i ě 1, λi “ pc ` ρn ` ρcqi, and pc0, c10q is
the infinite weight of the dual of the central character. The calculation of Harris and Goldring gives
p´k3, k1, k2q “ λ`ρn´ρc (forgetting the λ0 factor here, it is because we only considered 3 parameters
in the weight space). The Hodge-Tate weights of the Galois representation associated to π depends of
course on the normalisation of the correspondance, but take the one of Skinner, [Ski12] section 4.2,4.3
and after theorem 10, (up to a sign as the cyclotomic character has weight -1), we get,

pphτ1 , h
τ
2 , h

τ
3q, ph

στ
1 , hστ2 , hστ3 qq “

pp´c0 ´ c1,´c0 ´ c2 ` 1,´c0 ´ c3 ` 2q, p´c10 ` c3,´c
1
0 ` c2 ` 1,´c10 ` c1 ` 2qq.

Remark 9.16. — Let f P H0pX,ωκq be a classical form. To f is associated Φf an automorphic form,
with equivariant Hecke action, cf. section 4.2.2.

Before going further, let us remark that a (algebraic) representation π of GUp2, 1q is equivalent
to a pair pπ0, ψq of π0 a (algebraic) automorphic representation of Up2, 1q (the restriction of π) and
a (algebraic) Hecke character of GUp1q “ ResE{QGm (the central caracter of π) which extend the
central character of π0 (see section 10.4). To an algebraic (nice) π is associated a (non-necessarily
polarized) Galois representation ρπ , but also a pair π0, ψπ , and to π0 is associated a polarized Galois
representation, which will be what we will need. Thus from Skinner’s normalisation, removing the
central character of π, we get the following proposition (we could for example directly use [CH13]).
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Proposition 9.17. — Let κ “ pk1, k2, k3q P Z3 and f “ H0pX,ωκq which is an eigenvector for the Hecke
operator outside p. Denote |k| “ k1 ` k2 ` k3. Let π be the automorphic representation corresponding to f
(i.e. a irreducible factor in the representation generated by Φf of section 2.2).
Suppose π8 is a (regular) discrete series of Harrish-Chandra parameter λ, then

λ “ ppk1, k2 ´ 1, 1´ k3q, |k|q

(see [Gol14] section 5) with k1 ě k2 ą 2 ´ k3. Denote by ρπ,Ski the p-adic Galois representation associated
to π by Skinner, [Ski12]. Then ρπ,Ski satisfies the following essentially self-polarisation,

ρcπ,Ski » ρ_π,Ski b ε
´|k|´2
cycl b ρψ,

where ε is the cyclotomic character, ψ is a finite Hecke character, and if ωπ denote the central character of π,
ωπω

c
π is of the form N´|k|ψ.
Then, the τ -Hodge-Tate weights of ρπ,Ski are,

pk2 ` 1, 2` k1, k3 ` k1 ` k2q,

and the στ -Hodge-Tate weights are,
p2, k2 ` k3, k1 ` k3 ` 1q.

To π0 “ π|Up2,1q is associated a polarised continuous Galois representation ρπ verifiying,

ρcπ » ρ_π ,

of τ -Hodge-Tate weights p´k1, 1´ k2, k3 ´ 1q and (thus) στ -Hodge-Tate weights p1´ k3, k2 ´ 1, k1q.

Proof. — The calculation of λ in terms of κ is exactly [Gol14] Theorem 5.5.1. Remark also that we can
calculate in terms of κ which are the discrete series by Harish-Chandra Theorem ([Kna16] Theorem
6.6), and we find, k1 ě k2 ą 2 ´ k3. Thus, the calculation of the Hodge-Tate weights of the Galois
representations associated to π are [Ski12], under Theorem 10, with the previous calculation of c in
terms of λ. The representation ρπ is given by ρπ,Skiρ

´1
ωπ
p1q. In terms of the τ -Hodge-Tate weights of

ρπ , discrete series corresponds to h1 ă h2 ă h3.

Denote Z Ă E the set of characters corresponding to regular (i.e. w2pzq ď w1pzq ă ´2´w3pzq P Z3)
classical modular forms (recall that if f is classical of weight pk1, k2, k3q, wpfq “ p´k2,´k1,´k3q). For
each z P Z , there exists f a classical form, which determines Π an automorphic representation of
GUp2, 1q (generated by Φf defined in subsection 2.2). Such a Π correspond to a packet, to which by
work of Blasius-Rogawski [BR92], Theorem 1.9.1 (see also for generalisation to higher dimension unitary
groups and local global compatibilities the work of many authors, in particular [Bel06a, CH13, Ski12,
BGHT11]) is associated a number field Ez , and compatible system of Galois representations,

ρz,λ : GE ÝÑ GL3pEz,λq,@λ P SpmpOEz q,

satisfying local global compatibilities (see for example [Ski12], where the association is normalized by
the previous proposition (the Hodge-Tate weight of the cyclotomic character being ´1) and the previous
proposition for a normalisation suitable to our needs). In particular, denote S the set of prime of E
where KerpJqpI is not hyperspecial, and if ` a prime under λ, denote S` the set of places of E dividing
λ. Then ρz,λ, is unramified outside SS`.

We have the classical proposition, which is one reason why eigenvarieties are so usefull (see for
example [BC09] proposition 7.5.4),

Proposition 9.18. — Let p be unramified inE. To each z P Z , denote ρz the (p-adic) polarized representation
associated to z by proposition 9.17. There exists a unique continuous pseudocharacter

T : GE,S ÝÑ OE ,

such that for all z P Z , Tz “ trpρzq. Moreover there is a finite order self-polarised character,

ψ : GES ÝÑ OE ,

such that the pseudocharacter T satifies TK “ T b ψ, where TKpgq “ T ppτgτq´1q for all g P GE .
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Proof. — Z is dense in E by density of very regular weights in W and the two classicity results (8.16
and 8.17). We only need [Che04] Proposition 7.1 to conclude, the hypothesis pHq there being verified by
the Frobenius classes in S. The polarisation assumption follows from the case of z P Z by density.

10. Application to a conjecture of Bloch-Kato

Let E be a quadratic imaginary field, and fix an algebraic Hecke character,

χ : AˆE{E
ˆ ÝÑ Cˆ,

such that, for all z P Cˆ, χ8pzq “ zazb, for some a, b P Z. Call w “ ´a´ b the motivic weight of χ.
We are interested in the Selmer group H1

f pE,χq, which parametrises extensions U ,

0 ÝÑ χ ÝÑ U ÝÑ 1 ÝÑ 0,

which have good reduction everywhere ([BK90, FP94], [BC09] Chapter 5).
Associated to χ there is also an L-function Lpχ, sq, where s is a complex variable, which is an

meromorphic function on C, which verifies a functional equation,

Λpχ, sq “ εpχ, sqΛpχ˚p1q,´sq,

where Λpρ, sq is the completed L-function, a product of Lpρ, sq by a finite number of Γ-factors.
The conjecture of Bloch-Kato (more precisely a particular case of) in this case is the following equality,

dimH1
f pE,χq ´ dimpχqGE “ ords“0 Lpχ

˚p1q, sq.

The conjecture is more generally for a Galois representation ρ of the Galois group GF of a number field,
but in the previous case we have a special case by the theorem of Rubin on Iwasawa Main Conjecture
for CM elliptic curves,

Theorem 10.1. — Suppose that χ is polarized and of weight ´1, i.e.

χK “ χ|.|´1,

where χKpzq “ χ´1pczcq, and c P GQ induces the complex conjugation in E. Then,

ords“0 Lpχ, sq ‰ 0 ñ dimH1
f pE,χpq ě 1.

Remark 10.2. — Under the previous polarisation assumption, we have Lpχ˚p1q, sq “ Lpχ, sq.

Definition 10.3. — To stick with notations of [BC04], denote k the positive odd integer such that
χ8pzq “ z

k`1
2 z

1´k
2 (i.e. k “ 2a ´ 1 “ 1 ´ 2b). We suppose k ě 1, i.e. a ě 1 (which we can always

suppose up to changing χ by χc, which doesn’t change either the L-function nor the dimension of the
Selmer group).

10.1. Endoscopic transfer, after Rogawski. — Let χ0 “ χ|.|´1{2 the unitary character as in [BC04].
We will define following Rogawski [Rog92] an automorphic representation of Up2, 1q, by constructing
it at each place.

10.1.1. If ` is split in E. — Write ` “ vv and the choice of say v induces an isomorphism Up2, 1qpQ`q
iv
»

GL3pQ`q. Let P “MN be the standard parabolique of GL3pQpq with Levi M “ GL2ˆGL1. Define,

Ąχ0,` :

ˆ

A
b

˙

P GL2ˆGL1 ÞÝÑ χ0,`pdetAq,

trivially extended to P , and denote by ind´nGP pĄχ0,`q the normalised induction of Ąχ0,`. Then set,

πn` pχq “ i˚v ind´nGP pĄχ0,`q.

If χ` is unramified, then so is πn` pχq. Fix in this case K` a maximal compact subgroup of Up2, 1qpQ`q.
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10.1.2. If ` is inert or ramified in E. — In this case denote T “ OˆE` ˆ O1
E`

the torus of Up2, 1qpQ`q,
and consider the following character of T ,

rχ` :

¨

˝

a
b

a´1

˛

‚ ÞÝÑ χ`paq,

trivially extended to the Borel B of Up2, 1qpQ`q. Then the normalized induction ind´n
Up2,1qpQ`q
B pĂχ`q

has two Jordan-Holder factors, one which is non tempered that we denote by πn` pχq and the other one,
which is square integrable, that we denote by π2

` pχq, [Rog92].
If ` is inert and χ0,` is unramified, πn` pχq is also unramified (Satake) and we can choose K` a

maximal compact for which πn` pχq has a non zero fixed vector.
If ` is ramified and χ0,` is unramified, there is two conjugacy classes of maximal compact subgroup,

but only one of them, denoted K` (called very special) verifies that πn` pχq has a non-zero fixed vector
under K` whereas π2

` pχq has none.

10.1.3. Construction at infinity. — As in the inert case, let πn8pχq be the non-tempered Jordan-Holder
factor of ind´n

Up2,1qpRq
B pĂχ8q.

Then we have the following proposition, following Rogawski,

Proposition 10.4 (Rogawski). — Suppose a ě 1. Then the representation,

πnpχq “
1

â

`

πn` pχq b π
n
8pχq,

is an automorphic representation of Up2, 1q. If moreover Lpχ, 0q “ 0, it is a cuspidal representation. Its
Galois representation (associated by the work of [LRZ92] or see also [BC04] section 3.2.3 and Proposition 4.1)
ρπnpχq,p : GE ÝÑ GL3pQpq verifies,

ρπnpχq,p “ p1‘ χp ‘ χ
K
p q.

Moreover, its τ -Hodge-Tate weights are p´k`1
2 ,´k´1

2 , 0q “ p´a, 1´ a, 0q.

10.2. Accessible refinement (at p) for πnpχq. — In order to construct a p-adic family of modular
forms passing through πnpχq, we need to construct inside πnp pχq

I a form which is proper for the
operator Up previously defined. Strictly speaking, Up is defined for GUp2, 1q, and when p is inert, Up
is associated to the operator of the double Iwahori classe IU cpI where,

U cp “

¨

˝

p2

p
1

˛

‚

This class is not in Up2, 1qpQpq, but p´1U cp is. Fix T Ă B Ă Up2, 1qpQpq. As p is unramified, we
have as representation of T {T 0 (T 0 a maximal compact in T ), for π a representation of Up2, 1qpQpq an
isomorphism, see [BC04],

πI » pπN q
T 0

b δ´1
B .

Thus to understand how the double coset operator U cp in the Iwahori-Hecke algebra acts, we only need
to determine the Jacquet functor pπnp pχqqN as a representation of T . If p splits, this is computed in
[BC04] (and [BC09] in greater generality), so suppose that p is inert.

Proposition 10.5. — Let rχ be the (unramified) character of the torus T of Up2, 1qpQpq defined by,
¨

˝

a
e

a´1

˛

‚ ÞÝÑ χppaq.

Denote by w P WUp2,1qpQpq » Z{2Z the non trivial element and rχw the corresponding character of T

(rχw “ χpw ¨ wqq. Then the unique admissible refinement of πnp pχq is given by rχ
w, i.e. πnp pχqN “ rχwδ

1{2
B .
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Proof. — Denote for the proof G “ Up2, 1qpQpq. According to Rogawski we have ind´nGBprχq
ss “

t πnp , π
2
pu and pind´nGBprχqq

ss
N “ t rχδ

1{2
B , rχwδ

1{2
B u by Bernstein-Zelevinski’s geometric lemma. Follow-

ing [BC09], denote for σ P WG Sprχσq the unique subrepresentation of ind´nGBprχ
σq (this induction is

non split by [Key84] for example). It is also the Jordan-Hölder factor that contains rχσδ
1{2
B inside its

semi-simplified Jacquet functor. Thus Sprχq “ π2
p or Sprχq “ πnp . And as changing rχ by rχw exchanges

the subrepresentation and the quotient in the induced representation, Sprχq ‰ Sprχwq. So the proposi-
tion is equivalent to π2

p “ Sprχq. Let us remark that it is announced in [Rog92], as πnp is said to be the
Langlands quotient, but let us give an argument for that fact. We can use Casselman’s criterion for π2

p

([Cas95] Theorem 4.4.6). For A “ T split “ Gm Ă B,

A´zApOqAδ “ tDiagpx, 1, x´1q : x P ZpzZˆp “ pZpu,

and thus,

@x P pZp, |rχδ1{2
B pDiagpx, 1, x´1qq| “ |χpxq| “ |χ0pxq||x|

1{2 ă 1,

as χ0 is unitary, and thus rχδ1{2
B is an exposant of rGBpπ

2q and π2
p Ă ind´nGBprχq i.e.

pπnp qN “ rχwδ
1{2
B .

When p is split, the calculation is done in [BC04] and we get the following up to identifying an
unramified character of T pQpq » pQˆp q3,

ψ :

T pQpq ÝÑ C
¨

˝

x1

x2

x3

˛

‚ ÞÝÑ ψ1px1qψ2px2qψ3px3q

with the triple pψ1ppq, ψ2ppq, ψ3ppqq.

Proposition 10.6 (Bellaïche-Chenevier [BC04],[BC09]). — If p “ vv, the accessible refinement of πnp pχq
are given (with identification with GL3pQpq using v) by

– σ “ 1, p1, χKv ppq, χvppqq
– σ “ p3, 2q, pχKv ppq, 1, χvppqq
– σ “ p3, 2, 1q, pχKv ppq, χvppq, 1q.

Proof. — Indeed, the Langlands class associated to πnp pχq is pχ
K
v ppq, 1, χvppqq which corresponds, up to

a twist of the central caractere by pχKv q
´1 to the class p1, pχKv ppqq

´1, |p|q which in turn is associated by
Satake (up to twist by µ´1|.|1{2) to the unramified induction studied in [BC09] Lemma 8.2.1, n “ 1,m “

3 and π “ χc0 “ χ´1
0 (which satisfies the hypothesis of [BC09] 6.9.1), thus Lpπp|.|1{2q “ pχKppqq´1.

The refinements are then given by the Lemma 8.2.1.

10.3. Coherent cohomology. — In order to associate to the automorphic representation πnpχq a
point in the Eigenvariety constructed in section 8, we need also to show that πnpχq appears in the
global sections (over X ) of a coherent automorphic sheaf. The full calculation is made in Appendix D.
Here we give an alternative proof on the case a ą 1, which corresponds to a regular weight, as the case
a “ 1 will correspond to a singular weight (and for a “ 1, π2 is a non-holomorphic limit of discrete
series). Thus suppose a ą 1. According to Rogawski [Rog90] Proposition 15.2.1, the (regular) parameter
ϕ “ ϕpa, b, cq “ ϕpa, a´ 1, 0q (see [Rog90] p176, χ corresponding to χ´ϕ ) we already know that,

Hipg,K, πn8pχq b F_φ q “
"

C if i “ 1, 3
0 otherwise

for Fφ the representation of Up2, 1qpRq of highest weight pa´ 1, a´ 1, 1q, and

Hipg,K, π2
8pχq b F_φ q “

"

C if i “ 2
0 otherwise



36 VALENTIN HERNANDEZ

in particular the system of Hecke Eigenvalues of πnpχq appears in the first etale cohomology group of a
local system associated to Fφ, H1

etpX,Fφq. Using the Hodge-decomposition for H1
etpX,Fφq, we know

that there exists a coherent automorphic sheaf Vφ such that,

H1
etpX,Fφq “ H1pX,Vφq ‘H

0pX,Ω1
X b Vφq.

We thus need to show that the system of Hecke eigenvalues appears in the last factor. But, denote I the
opposite induced representation ind´n

Up2,1qpRq
B pχw8q, so that πn8 is the subrepresentation of I and π2

its quotient. Writing the long exact sequence of g,K-cohomology associated to

0 ÝÑ πn8 ÝÑ I ÝÑ π2
8 ÝÑ 0,

we get that H1pg,K, πn8bF_φ q “ H1pg,K, I bF_φ q. Using Hodge decomposition for this, we get that,

HomKpp
` b Fφ, πn8q “ HomKpp

` b Fφ, Iq,

and using Frobenius reciprocity we can calculate the last term as,

HomTXKpp
` b Fφ, pχw8qTXKq,

and as we know Fφ, we can calculate its restriction to T XK , we get,

pFφqTXK “ taea´1 ‘ ¨ ¨ ¨ ‘ t2a´2e,

where,

tkel :

¨

˝

t
e

t

˛

‚P T XK “ Up1q ˆ Up1q ÞÝÑ tkel.

We can also explicitely calculate that by conjugacy, TXK acts on p` by 1‘te´1 and on p´ by 1‘t´1e.

Remark 10.7. — This is because of our choice of h. If we change h by its conjugate, then the action
on p`, p´ would have been exchanged, and πnpχq would be anti-holomorphic (but we could have used
χc instead of χ in this case, πnpχcq would have been holomorphic).

As χwTXK “ t2a´1, we get that,

HomKpp
` b Fφ, Iq “ C and HomKpp

´ b Fφ, Iq “ t0u.

Remark 10.8. — Changing χ by χc invert the previous result, as predicted by the Hodge structure, so
we could have argued without explicitely calculating these spaces.

Proposition 10.9. — If a ą 1, the Hecke eigensystem corresponding to πnpχq appears in H0pX,Ω1 b Vφq,
where Vφ “ OX b Lφ and Lφ is the local system associated to F_φ . More generally, and more explicitely, for
a ě 1, the Hecke eigenvalues of πnpχq appear in the coherent sheaf ωpa,1,2´aq.

Proof. — Using Matsushima’s formula and the Hodge decomposition, for the local system Lφ associated
to F_φ , we can write, [Yos] Theorem 4.7

H0pX,Lφ b Ω1q “
à

π

mpπ,ΓqHomKpp
`, π8 b F_φ q,

and mpπn,Γq is non zero for our choice of Γ, and the previous calculation shows

HomKpp
`, πn8 b F_φ q “ C.

For the general case, this is Appendix D.
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10.4. Transfert to GUp2, 1q. — From now on, denote by G “ GUp2, 1q the algebraic group over Q
of unitary similitudes (relatively to pE3, Jq). It is endowed with a morphism ν, and there is an exact
sequence,

0 ÝÑ G1 ÝÑ G
ν
ÝÑ Gm,

where G1 “ Up2, 1q is the unitary group of pE3, Jq.
Let T “ ResE{Q Gm be the center of G, Nm : T ÝÑ Gm the norm morphism, and T 1 its Kernel;

the center of G1. We have the exact sequence,

1 ÝÑ T 1 ÝÑ T ˆG1 ÝÑ G,

where the first map is given by λ ÞÑ pλ, λ´1q.
Let π1 be an automorphic (resp. a smooth admissible local) representation of G1pAQq (resp. of

G1pQpq or G1pRq), of central character χ1 of T 1. Let χ be a character of T (local or global) that extend
χ1, we can thus look at the representation,

pz, gq P T ˆG1 ÞÝÑ χpzqπ1pgq,

of T ˆ G1. We can check that it factors through the action of T 1 and gives a representation of a
subgroup of G.

Proposition 10.10. — The automorphic representation πn of Up2, 1q given in proposition ?? has as central
character ω equal to the restriction of χ to E1. We can extend ω as an algebraic Hecke character rω of T by the
algebraic character rω “ N´2χ, where N is the norm of E. Thus, there exists an automorphic representation
Ăπn ofG such that for ` a prime, unramified for χ0, pπn` q

K` “ pĂπn` q
K` (whereK` Ă GpQ`q is the hyperspecial

(respectively special if ` ramifies in E) subgroup) and the Galois representation associated to rπn by [BR92]
Theorem 1.9.1 (or [Ski12]) is (with the normalisation of [Ski12]),

p1‘ χ‘ χKqχp´3q “ pχ‘ ωcycl ‘ 1qp´3q.

Moreover pπnp q
I “ pĂπnp q

I .

Proof. — To calculate ω, we only need to look at πnp for all place p, and we can use that πnp “

ind´n
GL3pQpq
P pχ0q for split p’s, and πnp Ă ind´n

Up3qpQpq
B prχwq for p “ 8 and inert or ramified p’s.

The character rω extends ω. Once we have extended the central character of πn, the existence of a
rπn is unique and assured by [CHT08] Proposition 1.1.4 (as 2` 1 “ 3 is odd). More precisely,

rπnpzgQg1q “ rωpzqπnpg1q,

where g “ zgQg1 is written following the decomposition GpAq “ T pAqGpQqG1pAq.
Denote by Vp the space of πnp (and thus of rπnp ). And I Ă GUp2, 1qpQpq the Iwahori subgroup, and I1

its intersection with Up2, 1qpQpq. As if M P I , then M ” B pmod pq, up to multiply by an element of
T P T pOq, suppose that TM ” U pmod pq. In this case cpTMq ” 1 pmod pq, thus, as p is unramified
in E, there exist T 1 P T pZpq such that cpT 1TMq “ 1 and thus M “ T´1pT 1TMq P T pZpqI1. Thus, as
we can write,

¨

˝

a
e

Npeqa´1

˛

‚“

¨

˝

ae´1

1
ea´1

˛

‚

¨

˝

e
e

e

˛

‚P I1T pZpq,

we get that,
V Ip “ tz P V

I1
p : @λ P T pQpq X I, rωppλqz “ zu,

but as T pQpq X I “ OEˆp
Id and rwp is unramified, V Ip “ V I1p . The assertion for K` follows the same

lines and is easier.

Remark 10.11. — We could have lifted the central character of πn simply by χ, in which case the
resulting representation would have been a twist of the previous one, but as we only used three variables
on the weight space, which means that we don’t allow families which are twists by power of the norm of
the central character, only one choice of the lift of the central character gives a point in our eigenvariety.
We can check that the Hecke eigenvalues of Ăπn appears in H0pX,ωκq, with

κ “ pa, 1, 2´ aq.
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How can we find the power of the norm and the coherent weight ? First, as Hodge-Tate and coherent

weights vary continuously on E , and Čπnpχq appears as a classical form of E (proposition D.2), according
to proposition 9.17 and proposition 9.18, the polarised Galois representation associated to Ăπnpχq is,

1‘ χ‘ χK,

thus p´k1, 1´ k2, k3 ´ 1q “ p´a, 0, 1´ aq up to order. This let us 6 possibilities for κ :

1. pa, 1, 2´ aq
2. pa´ 1, 1, 1´ aq
3. pa, a, 1q
4. p0, 1` a, 2´ aq
5. p0, a, 1´ aq
6. pa´ 1, 1` a, 1q

but as for classical points (as Ăπnpχq) k1 ě k2, and a ě 1, this eliminates the three last possibilities
(and the second when a “ 1). But then, we know that the lowest K8-type for πnpχq is of dimension a
by restriction to Up2q and the calculation of Appendix D, proposition D.2, which makes only the first
coherent weight possible when a ą 1. When a “ 1, the first and third weights are the same. Another
possibility is also to find the infinitesimal character of πnpχq (using for example [Kna16] Proposition
8.22), and that η “ p´k3, k1, k2q is the highest weight character of V _λ`ρn´ρc in the notations of [Gol14]
(paying attention to the dual). Then to find the corresponding power of the norm, note that |κ| must

be equal to the opposite of the power of the norm of the central character of Čπnpχq by the calculation
before proposition 2.6 and conventions on weights (see section 9.6 about pc0, c10q).

10.5. Refinement of representations of GUp2, 1qpQpq. — Let G “ GUp2, 1qpQpq. Consider in
CcpIzG{I,Zr1{psq the double classes,

U cp “

¨

˝

p2

p
1

˛

‚ and Scp “

¨

˝

p
p

p

˛

‚.

The caracteristic functions of Scp and U cp are invertible in CcpIzG{I,Zr1{psq and denote by Appq the
sub-algebra generated by the characteristic functions of U cp , S

c
p and their inverses.

Proposition 10.12. — For π a smooth complex representation ofG, we have a natural CrAppqs-isomorphism,

πI ÝÑ pπN q
T 0

b δ´1
B .

Let π be a smooth admissible representation of G, such that π is a subquotient of the (normalised)
induction of an unramified character ψ of the torus T of G. For example this is the case if π is
unramified, or if πI ‰ t0u (by the previous equality and adjonction beetwen Jacquet functor and
induction for example).

Definition 10.13. — Following [BC09], an accessible refinement of π is a σ PW such that ψσδ1{2
B is a

subrepresentation of πT
0

N (equivalently if ψσδ´1{2
B appears in πI ).

Another way to see it is that a refinement is an ordering of the eigenvalues of the Frobenius of
LLpπq, the Weil representation associated by local Langlands to π, and it is accessible if it appears in
the previous sense in πI (or πT

0

N ).
For GUp2, 1q when p is split, GUp2, 1qpQpq » GL3pQpq ˆ Qˆp and ψ is an unramified character of

Q4
p. The local Langlands representation associated to π “ π1 b ψ4 in this case is LLpπ1q b ψ4 which

has eigenvalues pψ1ppqψ4ppq, ψ2ppqψ4ppq, ψ3ppqψ4ppqq and an ordering of this eigenvalues is given by
an element of S3 “WGL3 “WGL3 ˆGL1 . Of course, a priori not all refinement are accessible (πnp will
be an example).
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When p is inert, WG » Z{2Z, and a character of T “ pResQp2 {Qp Gmq2 is given by two characters
pχ1, χ2q, by,

¨

˝

a
e

Npeqa´1

˛

‚, a, e P Qˆp2 ÞÝÑ χ1paqχ2peq.

The non trivial element w P WG acts on the character by w ¨ pχ1, χ2q “ pχ
K
1 , χ2pχ1 ˝ Nqq. Thus a

refinement in this case is simply given by 1 or w.

Remark 10.14. — In terms of Galois representation, the base change morphism from GUp2, 1q to
GL3ˆGL1 send the (unramified) Satake parameter χ1, χ2 (if χ2 is unramified, it is trivial on E1) to
the parameter ppχ1, 1, χ

´1
1 q, χ1χ2q (see [BR92] Theorem 1.9.1 or [Ski12] section 2), whose semi-simple

class in GL3 associated by Local Langlands has Frobenius given by
¨

˝

χ2ppq
χ1ppqχ2ppq

χ2ppqqχ
2
1ppq

˛

‚

In the inert case, say σ PWG is a refinement, then the action of Up on the σ-part of πT
0

N is given by
χσ1 ppq

2χσ2 ppq, the action of s is given by χσ1 ppqχ
σ
2 ppq. In particular, the action of Appq (through T {T 0),

and actually of Up or u1 “ UpS
´1
p , on πI determine the refinement.

This is also true (and easier) if p splits.
As we normalized our Galois representation ρπ so that they are polarized, i.e. forgetting the central

character, the previous class does not directly relate to the Frobenius eigenvalues of ρπ but rather of
the one of ρπ,Ski. But as the link between both only differ through the central character of π, it is
straightforward that the Frobenius eigenvalues of (a crystalline) ρπ are given by pψ1, 1, ψ

K
1 q, when p is

inert, and ψ1 is given (if unramified) by the action of the Iwahori-Hecke double class
¨

˝

p
1

p´1

˛

‚

which corresponds to UpS´1
p (see next subsection). In the split case, an unramified character of the torus

of GL3ˆGL1 gives Frobenius eigenvalues ppψ1ppqψ4ppq, pψ2ppqψ4ppq, pψ3ppqψ4ppqq for (crystalline)
ρπ,Ski and pψ1ppq, ψ2ppq, ψ3ppqq for ρπ , which relates to operators Ui´1{U3 (see next subsection).

Thus, using the previous definition of Refinement, local global compatibility at p, we can associate to
Π “ π8 b

Â

` π` an algebraic regular cuspidal automorphic representation of GUp2, 1q of level KNpI
a representation ρπ,p together with an (accessible) ordering of its crystalline-Frobenius eigenvalues for
each choice of a character in πIp under Appq, such that

Proposition 10.15. — The automorphic representation rπnpχq of GUp2, 1q constructed by proposition 10.10
as only one accessible refinement at p if p is inert, it is given by,

ω ‰ 1 PWG,

which correspond to the ordering ppχKppq, 1, χppqq, χppqq or p1, χppq, |p|q. If p “ vv is split, there are three
accessible refinement, given by,

– σ “ 1, pp1, χKv ppq, χvppqq, χvppqq which corresponds to pχvppq, 1, |p|q.
– σ “ p3, 2q, ppχKv ppq, 1, χvppqq, χvppqq which corresponds to p1, χvppq, |p|q.
– σ “ p3, 2, 1q, ppχKv ppq, χvppq, 1q, χvppqq which corresponds to p1, |p|, χvppqq.

We denote σ the unique refinement in the inert case, and the refinement denoted p3, 2, 1q in the split case.

Proof. — The action of u1 on πnpχqp as been calculated in a previous section.
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10.6. Modular and Classical Hecke Operators. — In order to understand how the refinements vary
on the Eigenvariety, we need to explicite the link between Hecke operators (at p) constructed in section
8 and classical Hecke acting on automorphic forms, as above. Here we work at Iwahori level at p and
identifies matrices with the corresponding Iwahori double classes. If p is inert in E, the Atkin-Lehner
algebra we consider at p is generated by the two (so-called classical) operators U cp and Scp described
above. If p is split in E, we consider the Atkin-Lehner algebra Appq of GL3pQpq ˆ Qˆp (see [BC09]

section 6.4.1.), it is generated by the Hecke operators, up to identification of E bQp
ivˆiv
» Qp ˆQp,

ppI3, I3q, p

¨

˝

p
p

1

˛

‚, p

¨

˝

p
1

1

˛

‚q, p

¨

˝

p
1

1

˛

‚,

¨

˝

p
p

1

˛

‚q, pI3, pI3q,

that we denote respectively U c0 , U
c
1 , U

c
2 and U c3 (c stands for classical in the sense "not normalized").

If we use iv to identify GUp2, 1qpQpq with GL3ˆGL1pQpq then this operators identifies respectively
with,

ppI3, pq, p

¨

˝

p
p

1

˛

‚, pq, p

¨

˝

p
1

1

˛

‚, pq, pI3, pq,

In section 8 we defined Hecke operators modularly, Up and Sp in the inert case, and Brasca-
Bijakowski defined U0, U1, U2, U3 in the split case (see remark in subsection 8.3). These Hecke operators
have been normalized and correspond to the above Iwahori double classes, so that we have the following
result.

Let Π “ π8 b
Â

` π` be an algebraic, regular, cuspidal automorphic representation of GUp2, 1q of
level KNpI whose Hecke eigenvalues appear in the global sections of a coherent automorphic sheaf (of
weight κ) and f P ΠXH0pXI , ω

κq an eigenform for H “ HNp bAppq, such that, if p is inert,

Upf “ p´k2U cpf and Spf “ p´k1´k2´k3Scpf,

and if p splits,

U0f “ p´k3U c0f U1f “ U c1f U2f “ p´k2U c2f U3f “ p´k1´k2U c3f,

where the action of the double classes U cp , S
c
p and U ci is given by convolution on πp,

Proposition 10.16. — Suppose p is inert, f is a classical automorphic form of classical weight κ “

pk1, k2, k3q of Iwahori level at p (i.e. f P H0pXIw, ω
κq), eigen for the action of H b Appq, and denote

λ, µ the eigenvalues of f for Up, Sp respectively.
Let Π be a irreducible factor of the associated automorphic representation (generated by Φf ). Then ΠI

p ‰

t0u and thus the algebra Appq acts on ΠI
p with U

c
p of eigenvalue p

k2λ and Scp of eigenvalue p
|k|µ.

Proof. — To prove the statement, we remark that the association f ÞÑ Φf is Hecke equivariant for the
classical Hecke operators U cp , S

c
p acting on f . But we defined the Hecke operators Up, Sp geometrically

by Up “ p´k2U cp and Sp “ p´|k|Scp to make them vary p-adically. Thus we get the result.

Using the previous refinements for representations of GUp2, 1q, we can prove the following result on
density of crystalline points on the Eigenvariety E of theorem 9.15,

Proposition 10.17. — Suppose p is inert. Let x P EpF q. There exists a neighborhood V of x and a constant
C ą 0 such that for all classical points y P V , if |w2pyq ` w3pyq| ą C , then ρy is cristalline and of
Hodge-Tate weights pw2pyq ´ 1, w1pyq,´w3pyq ´ 2q.
In particular crystalline points are dense in E by classicity propostion 8.16 (as we can also assume w1pyq ´

w2pyq ą C) and theorem 8.17 (as we can moreover assume ´2w1pyq ´ w3pyq ą C).

Proof. — Denote by F1, F2 the two invertible function of E given by the eigenvalues under

Up “

¨

˝

p2

p
1

˛

‚ and Sp “

¨

˝

p
p

p

˛

‚.
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The valuations of F1, F2 are locally constant on E , and thus there exists V a neighbourhood of x where
these valuations are constant. As y corresponds to a f a classical form of (p-adic) weight wpyq and level
K proper under HbAppq, we can look at Π an irreducible component of the representation generated
by Φf , which is thus algebraic, regular, and its associated representation ρy doesn’t depends on Π as
it only depends on the eigenvalues of H on f . As Πp the p-th component of Π is generated by its
I-invariants, Πp is a subquotient of the induction ind´nGBpQpqpψq for some unramified character ψ
(prop 6.4.3 of [BC09] and the adjontion property of induction). We need to show that Πp is unramified,
but Πp appears as a subquotient of indBpψq, which has a unique unramified subquotient, it suffices to
prove that indBpψq is irreducible, which happens in particular when |ψ1ppq| ‰ p˘1 when p is inert (cf.
the key result of Keys, see [Rog90] 12.2).

In the inert case, we have that if w “ p´k2,´k1,´k3q if f is of automorphic classical weight
pk1, k2, k3q, then by proposition 10.16

ψσ1 ppq “ p´k1´k3F1pyq{F2pyq,

for a certain choice σ P WGU (see subsection 10.5 for example), but as the valuation of F1, F2 are
constant on V , there is a constant C such that if |k1` k3| ą C , Πp is unramified. Thus, by local-global
compatibility at p for Π (cf. [Ski12] Theorem B), ρy is crystalline.

Remark 10.18. — In the split case, the same proposition is true under the assumption δpwpyqq :“
minip|wipyq ´ wi`1pyq|q ą C , as the same proof of proposition 8.2 of [BC04], together with classicity
results of [BPS16] and [Bra16] Proposition 6.6, Theorem 6.7 applies.

10.7. Types at ramified primes for χ. — In order to control the ramification at `| Condpχq, Bellaïche
and Chenevier introduced a particular type pK0, J0q, which we can slightly modify to suit our situation.

Proposition 10.19. — Let `|Condpχq a prime. There exists a compact subgroup K` of GUp2, 1qpQ`q and
a representation J` of K` such that,

1. HomK`pJ`,
Čπn` pχq b pχ0,` ˝ detqq ‰ 0,

2. For all smooth admissible representation π of GUp2, 1qpQ`q such that HomK`pJ`, πq ‰ 0 and for all
place v|`, there exist four unramified characters φ1, φ2, φ3, φ4 : Eˆv ÝÑ Cˆ such that, the Langlands
semi-simple class in GL3ˆGL1 corresponds to,

LpπEv q “ pφ1 ‘ φ2 ‘ φ3χ
´1
0 , φ4χ

´1
0 q

or to the (unpolarized) Langlands class in GL3,

LpπEv q “ φ1φ4χ0 ‘ φ1φ4χ0 ‘ φ3φ4.

Proof. — Let pK0
` , J

0
` q be the type defined by Bellaïche and Chenevier in [BC04]. If ` “ v1v2 is split,

let K` be the subgroup of matrices congruent to
¨

˝

‹ ‹ ‹

‹ ‹ ‹

0 0 y

˛

‚, e

modulo `m, the `-adic valuation of Condpχq. Let J` be the representation that sends the matrices
in K` to χ´1

0,v1
pyqχ0,v1peq. As every matrix in GUp2, 1qpQ`q “ GL3ˆGL1pQ`q can be written as

M “ λU where U P Up2, 1qpQ`q “ GL3pQ`q and λ “ p1, λq is in the center, we can check that
HomK`pJ`, rπ

n
` b χ0,v1

˝ det´1
q ‰ 0.

Now if HomK`pJ`, πq ‰ 0q then HomK0
`
pJ0
` , π|Up2,1qq ‰ 0 when restricted to Up2, 1q “ GL3 thus by

[BC04] we have the conclusion up to a character. But asK 1 “ pIdˆGL1qXK
0
` » Zˆ` , π|K1 “ χ´1

0,v1
bψ

where ψ is an unramified character, and thus,

LpπE,vq “ φ1ψχ0 ‘ φ2ψχ0 ‘ φ3ψ.

If ` is prime, denote K` “ OˆE`K
0
` and define J` by,

J`pλM
0q “ χ`pλq

´2J0
` pM

0q.
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As OˆE` X K0 Ă O1
E`
, this is well define because the central character of J0

` is up to an unramified
character equal to χ´2

` . Moreover, HomK`pJ`, rπ
n
` pχqb pχ0,` ˝detq ‰ 0 as it is the case for pK0

` , J
0
` q by

[BC04] or which sends back to Blasco [Bla02], and the central character of Ăπn`pχq is equal to χ` (up to
a unramified character).

Conversly, if π is a representation ofGUp3qpQ`q such that HomK`pJ`, πq ‰ 0 thus HomK0
`
pJ0
` , π|Up3qpQ`qq ‰

0 and thus Lpπ|Up3qq “ φ1 ‘ φ2 ‘ φ3χ
´1
0 by [BC04], and its central character corresponds to χ` up to

an unramified character, and we thus get the result on the Langlands Base change of π.

11. Deformation of Ăπn

By proposition 10.19, we can find for every `|Condpχq K` a subgroup of GUp2, 1qpQ`q and an
irreducible representation J` such that

HomK`pJ`,Ăπ
n
` pχq b pχ0,` ˝ detqq ‰ 0,

and for all rπ` of type pK`, J`q, its base change to GL3pEvq, for all v|`, gives the representation (nor-
malised as in proposition 9.17), Theorem 9.18)

Lpπ`,Ev q “ φ1χ
´1
0 ‘ φ2 ‘ φ3,

where φj : Eˆv ÝÑ Cˆ are unramified characters.

11.1. Choosing the level. — Up to choosing compatibly places at 8 and embeddings of Qp2 , we can
make χ : GE ÝÑ Qp, the p-adic realisation of χ at p, have τ -Hodge-Tate weight ´a “ ´k`1

2 and thus
χ τ -Hodge-Tate weight a´ 1 “ k´1

2 .
Let N “ Condpχq, suppose p ‰ 2, p  |N , and is unramified in E. Define Kf “

ś

`K` by,

1. If ` is prime to pN , K` is the maximal compact subgroup defined previously such that rπn as
invariants by K` (hyperspecial at unramified `, very special otherwise)

2. If ` “ p, Kp is the Iwahori subgroup of GUp2, 1qpQpq.
3. If `|N , K` is the type as defined before.

We then set,
J “

â

`|N

J` b pχ0,` ˝ detq,

as representation of Kf .
By construction of Kf , there is φ P ĂπnpχqKf , an automorphic form, eigen for HNp and of character

under Appq corresponding to the refinement σ of proposition 10.15 and which is associated a classical
Picard modular form f P H0pXI , ω

κq (by proposition D.2 or proposition 10.9 if a ą 1) which is eigen
for Appq, whose eigenvalues for Appq corresponds to the refinement σ too (with the normalisation
explained in proposition 10.16), and κ “ pa, 1, 2´ aq.

Thus, setting w0 “ p´1,´a, a ´ 2q (corresponding to automorphic weight pa, 1, 2 ´ aq), to f is
associated a point x0 P E such that wpx0q “ w0 and ρssx,Ski “ χε´3p1‘χ‘χKq, and with normalisation
of proposition 9.17,

ρssx “ 1‘ χ‘ χK,

which is of Hodge-Tate weights p´a, 0, 1´ aq.

11.2. A family passing through f . — As we have normalized the pseudocharacter T of proposition
9.18 in order to have the "right" representation at x0 (corresponding to 1‘χ‘χK), the map w from the
eigenvariety gives the p-adic (automorphic) weight, and not a priori the classical automorphic weight
nor the Hodge-Tate weights of T , thus we will normalize this map accordingly.

The τ -Hodge-Tate weights of 1 ‘ χ ‘ χK are given by p´a, 0, 1 ´ aq “: κ0. Let F {Qp be a finite
extension such that f is defined over F .

Proposition 11.1. — If p is inert, there exists,

1. A dimension 1 regular integral affinoid Y over F , and y0 P Y pF q,
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2. a semi-simple continuous representation,

ρKpY q : GalpE{EqNp ÝÑ GL3pKpY qq,

satisfying ρKKpY q » ρKpY q, the property (ABS) of [BC04], and trpρKpY qqpGalpE{Eqq Ă OY ,

3. A F -morphism, h “ ph1, h2, h3q : Y ÝÑ A3 such that h2 “ 0, hpy0q “ κ0.
4. A subset Z Ă Y pF q such that wpZq Ă κ0 ` pp´ 1qpp` 1q2Z3

dom (i.e. the weight are regular)
5. A function F1 in OpY qˆ of constant valuation.

such that,

1. For every affinoid Ω containing y0, ΩX Z is Zariski dense in Ω.
2. For all z P Z Y ty0u ρ

ss
z is the Galois representation associated to a cuspidal (algebraic) automorphic

representation Π of GUp2, 1q such that

HomKf pJ, πf q ‰ 0.

3.
ρssy » 1‘ χ‘ χK.

4. For z P Z , pρssz qGK is crystalline of τ -Hodge-Tate weights h1pzq ă h2pzq ă h3pzq, and its τ -
refinement given by F1 is,

pph1´h3pzqF1pzq, 1, p
h3´h1pzqF´1

1 pzqq.

In particular,

Dcryspρ
ss
z q

ϕ2
“ph1´h3F1pzq

τ ‰ 0.

5. In y0, the refinement is,
pχKp ppq, 1, χpppqq.

Proof. — Recall that p is inert here. The modular form f corresponds to a point x0 P E , the Eigenva-
riety defined in Theorem 9.15, associated to the type pKf , Jq. Let B Ă Bpw0, rq Ă W be the closed
subset defined in the same fashion as in [BC04] by,

(1)

"

w1 “ ´1
w3 ´ 2w2 “ 3a´ 2

Thus w0 P B. Define X to be an irreducible component of E bW B containing xf . We get wB : X ÝÑ

B which is finite (if r small enough) surjective. We can thus look at the universal pseudo-character
T on E and compose it with OE ÝÑ OpXq. Applying lemma 7.2 of [BC04], we get an affinoid Y ,
regular of dimension 1, y0 P Y and a finite surjective morphism m : Y ÝÑ X such that mpy0q “ xf

and there exist a representation ρ : GE ÝÑ GL3pKpY qq of trace GE
T
ÝÑ OX ÝÑ OY satisfying

(ABS). At y0, the representation ρssy0
is given by 1‘ χ‘ χK. The map h is given as follow. First, denote

ν “ pν1, ν2, ν3q “ pw2, w1`1,´1´w3q and h is given by composition of withm of the map ν (the shift
of w) of E , it is still finite and surjective on B, and for every y P Y such that mpyq “ xf , hpyq “ κ0. In
terms of automorphic weight pk1, k2, k3q the previous map is given by p´k1, 1 ´ k2, k3 ´ 1q, and thus
gives the Hodge-Tate weights for regular discrete series. In terms of Hodge-Tate weights, the equations
(1) giving rise to B are

(2)

"

h2 “ 0
2h1 ` h3 “ 1´ 3a

Denote by,

Z “ th P B X κ0 ` pp´ 1qpp` 1q2Z3,dom : ´h1 ă C, h3 ą C 1

|h1 ´ h3| ą C2u,

where C2 ą 0 is bigger than the bound given (up to reducing r and thus B) in proposition 10.17 for
crystallinity, C 1 is the boung given by classicity theorem 8.17, and C is the bound given in classicity at
the level of sheaves, proposition 8.16 (remark that h2 is constant). Then Z is strongly Zariski dense in
B. Then Z :“ κ´1pZq Ă Y pF q contains only classical (and regular) points by proposition 8.16 and the
classicity result of Bijakowski (theorem 8.17). Moreover they are all crystalline by proposition 10.17. It
is strongly Zariski dense by flatness (thus openness) of κ. Let us define F1. The action on a point xf



44 VALENTIN HERNANDEZ

associated to modular form f – of (classical automorphic) weight pk1, k2, k3q associated to π that is a
quotient of ind

GUp3q
b pψq – of the operator

UpS
´1
p ,

which corresponds up to a normalisation by 1
ph1´h3´1 “ pk1`k3 to the classical Iwahori double coset

p´1

¨

˝

p2

p
1

˛

‚“

¨

˝

p
1

p´1

˛

‚,

corresponds to
pk1`k3ψσ1 ppq,

where ψ “ pψ1, ψ2q is a character of pOˆq2 and σ the refinement of f associated to the ac-
tion of Appq. Indeed, the eigenvalue of Up coincide with p´k2ψσ1 ppq

2ψσ2 and the one of Sp with
p´k1´k2´k3ψσ1 ppqψ

σ
2 ppq. Thus, UpS´1

p has eigenvalue pk1`k3ψσ1 ppq “ ph3´h1pψσ1 ppq. Thus, we set
F1 the function on E given by p´1UpS

´1
p . We have that ph1´h3F1 “ ψσ1 ppq. The property (2) comes

from the construction of the eigenvariety E . Part (3) is the calculation of the Galois representation
associated to πnpχq. Part (4) is local-global compatibility at ` “ p ([Ski12] as recalled in section 9.6)
and proposition 10.17 as the eigenvalues of the crystalline Frobenius ϕ2 coincide with ψσi ppq.

The last assertion is the calculation made in proposition 10.15.

Proposition 11.2. — If p “ vv is split, there exists,

1. A dimension 1 regular integral affinoid Y over F , and y0 P Y pF q,
2. a semi-simple continuous representation,

ρKpY q : GalpE{EqNp ÝÑ GL3pKpY qq,

satisfying ρKKpY q » ρKpY q, the property (ABS) of [BC04], and trpρKpY qqpGalpE{Eqq Ă OY ,

3. A F -morphism, h “ ph1, h2, h3q : Y ÝÑ A3 such that h2 “ 0, hpy0q “ κ0.
4. A subset Z Ă Y pF q such that wpZq Ă κ0 ` pp´ 1qpp` 1q2Z3

dom.
5. Three functions F1, F2, F3 in OpY q of constant valuation.

such that,

1. For every affinoid Ω containing y0, ΩX Z is Zariski dense in Ω.
2. For all z P Z Y ty0u ρ

ss
z is the Galois representation associated to a cuspidal (algebraic) automorphic

representation Π of GUp2, 1q such that

HomKf pJ, πf q ‰ 0.

3.
ρssy0

» 1‘ χ‘ χK.

4. For z P Z , pρssz qGv is crystalline of Hodge-Tate weights h1pzq ă h2pzq ă h3pzq, and

pph1pzqF1pzq, p
h2pzqF2pzq, p

h3pzqF3pzqq

is an accessible refinement of ρssz .
5. In y0, this refinement is pχKv ppq, χvppq, 1q.

Proof. — As the proof is almost the same as [BC04] and we chose to details the inert case, we will just
sketch it. Choose xf the point in E associated to πnpχq and the accessible refinement pχKv ppq, χvppq, 1q.
Denote by B ĂW the closed subset defined as in the inert case by

(3)

"

k2 “ 1
2k1 ´ k3 “ 3a´ 2

and choose X an irreducible component of E ˆW B containing xf . Apply lemma 7.2 of [BC04], and
get Y regular and y0 and a representation,

ρ : GE,Np ÝÑ GL3pOY q,
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such that ρK “ ρ. Denote h as in the inert case (ν “ p´k1, 1´ k2, k3 ´ 1q), and idem for Z (classicity
at the level of sheaves is given by [Bra16], 6.2, and classicity by Pilloni-Stroh [PS12] or (in greater
generality) [BPS16].). The four Hecke operators living on E , Ui, i “ 0, . . . , 3 are normalized as in 8.3,
then set for i “ 1, 2, 3,

Fi “ Ui´1U
´1
3 .

By subsection 10.6, and local-global compatibility at v (with the fact that v coincide with τ8), hi are
the Hodge-Tate weights of pρzq|Gv and the normalisation of the Hecke Operators recalled in 10.6 assure
that pphiFiqi is a refinement at v for all classical forms.

11.3. Constructing the extension. —

Proposition 11.3. — If p is split, then ρKpY q is absolutely irreducible.
If p in inert, then we are in one of the following two cases :

1. ρKpY q is absolutely irreducible.
2. There exists a two dimensional representation r Ă ρ such that rKpY q is absolutely irreducible and,

rssy0
“

ˆ

χ
χK

˙

.

Proof. — The split case is easier, and is done as in [BC04] Proposition 9.1, but unfortunately (not as
in the split case), when p is inert the refinement autorises a 2-dimensional subrepresentation and a
1-dimensional quotient. Focus on p inert, the split case can be treated similarly as [BC04] Proposition
9.1. Suppose we are not in the case where ρKpY q is irreducible. We can thus find a 2-dimensional
subrepresentation r Ă ρ (if r is one dimensional, take the quotient and apply p.qK, as ρK “ ρ). Suppose
that r is reducible. Take z P Z , as the valuation α1 of F1 is constant, we can calculate it at y0 and we
get, from ph1´h3F1py0q “ χKp ppq,

α1 “ 2.

But if rssz is not irreductible, this means, following Rogawski’s Classification recalled in [BC04], section
3.2.3, and the fact that the representations associated by Blasius-Rogawski are irreducible, that z is
either endoscopic-tempered of type p1, 1, 1q, endoscopic non tempered or stable non tempered. In the
case endoscopic non tempered, looking at the Arthur parameter at infinity, the Hodge-Tate weights
verifies k1 “ k2 or k2 “ k3, which is not possible by choice of Y and Z . In the stable non tempered
case, the Hodge-Tate weights are pk, k, kq, which is not allowed in Z . So we need to check that z is not
endoscopic of type (1,1,1). But in this case, this would mean by weak admissibility for ρssz (which would
thus be totally split) that,

th1 ´ h3 ` α1, 0, h3 ´ h1 ´ α1u “ th1 ´ h3, 0, h3 ´ h1u,

but the previous equality is impossible for |h1 ´ h3| ą 1. Thus z P Z is endoscopic, tempered, of type
(2,1), and r is irreducible. By weak admissibility, and the previous calculations, rssy0

has to be χK ‘ χ.

11.4. Good reduction outside p. —

Proposition 11.4. — In case when p is split or p is inert and previous case 1), denote ρ1 “ ρKpY q b pχ
K
p q
´1.

Let v| ` ‰ p be a place of E. Then,

1. If v  |Condpχq, then ρKpY q and ρ1 are unramified at v.
2. If v|Condpχq, then dimKpY qpρ

1
KpY qq

Iv “ 2.

In case 2), denote r1 “ rKpY q b pχ
K
p q
´1. Let v| ` ‰ p be a place of E. Then,

1. If v  |Condpχq, then rKpY q and r1 are unramified at v.
2. If v|Condpχq, then dimKpY qpr

1qIv “ 1.

Proof. — After all the constructions, this can be deduced as in [BC04]. First there exists g P OY such
that gpy0q ‰ 0 and ρKpY q has a OY g stable lattice. Denote ρ the representation valued in OY g , and
for all y P SpmpOY gq “ Y pg´1q, ρy the reduction at y. In case 1), as ρKpY q is semi-simple, ρz is
semi simple for z P Z 1, an cofinite subset of Z X Y pg´1q. But now, for z P Z 1, ρz “ ρssz is the Galois
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representation associated to a regular automorphic representation Πz of GUp2, 1q. In case 2), rKpY q is
semi-simple, thus for all z P Z 1, still cofinite in Z , rssz “ rz Ă ρssz , and,

dimKpY q r
1Iv ě dimKpY qpρ

1ssqIv ´ 1,

and dimKpY qpρ
1qIv is related to the ramification of a (tempered endoscopic of type (2,1)) automorphic

representation of GUp2, 1q. Thus, to show the result, we only need to control ramification at v of (the
base change of) Πz .

If v ffl Condpχq, by construction of the eigenvariety and choice of the maximal compact, pΠzqv has
a vector fixed by K`. We can thus conclude as if ` is unramified, K` is hyperspecial and if ` ramifies,
K` is chosen very special and [BC04] proposition 3.1 gives the result for the base change. Now by
local-global compatibility (for example [Ski12]), ρssz (and thus rz in case 2) is unramified at v.

If v|Condpχq, by construction Πz has type pK`, J` b χ
´1
0,` ˝ detq, and thus by proposition 10.19 the

local langlands representation associated to pΠzqv is φ1 ‘ φ2 ‘ φ3χ0,` for three unramfied characters
φi. Thus, by local-global compatibility again, there exists I 1v a finite index subgroup of Iv such that
ρ1zpI

1
vq “ 1. Thus, pρ1qpI 1vq “ 1. But up to extend scalars, ρ1

|Iv
is a finite representation θ of Iv{I 1v ,

defined on F 1 a finite extension of F . Thus, ρ1Iv bF F
1 is well defined, semi-simple, and evaluating the

trace, we get,
1‘ 1‘ pppχpq

Kq´1qIv “ pρ
1
|Iv
b F 1qssy0

» θ.

We thus get the result.

11.5. Elimination of case (2). — We want to prove that ρKpY q is always irreducible, and thus prove
that case 2. when p is inert can never happen. Thus suppose we are in case 2. (thus p is inert).

Proposition 11.5. — There exists a continuous representation r : GE ÝÑ GL3pF q such that r is a non
split extension of χK by χ,

r “

ˆ

χ ‹

χK

˙

verifying,

1. dimF pr b χq
Iv “ 2 if v ffl Condpχq.

2. dimF pr b χq
Iv ě 1 if v|Condpχq.

3. Dcris,τ prq
φ2
“χKppq ‰ 0.

Proof. — We sketch the proof as we will detail a bit the argument in proposition 11.7. First, by Ribet’s
Lemma (see [Bel03] Corollaire 1 or [Che03] Appendice, Lemma 3.1 and [BC04] Lemme 7.3) there exists

a g ‰ 0 P OY and a OY,pgq-lattice Λ stable by rKpY q such that r :“ rΛ “

ˆ

χ ‹

χK

˙

is a non split

extension. Then, condition 1. and 2. follows from the proposition 11.4. For condition 3., we can use the
analog of Kisin’s argument as extended by Liu, [Liu12], as in the proof of the next proposition, as for
all z P Z ,

Dcris,τ przq
φ2
“ph1F1 “ Dcris,τ pρzq

φ2
“ph1F1 ‰ 0

as shown by proposition 11.3.

Denote by r1 “ r b pχKp q
´1 “ r b χp, which is an extension of 1 by χpχp “ ωp (the cyclotomic

character).

Lemma 11.6. — The representation r1 is crystalline at p.

Proof. — Recall that p is inert. Then as χKp is crystalline, it is enough to prove that r is crystalline. But

V ÞÑ Dcrys,τ pV q
ϕ2
“u is left-exact, thus,

dimF Dcrys,τ pρq
ϕ2
“u ď dimF Dcrys,τ prq

ϕ2
“u `Dcrys,τ p1q

ϕ2
“u.

But Dcrys,τ p1q
ϕ2
“u “ 0 thus Dcrys,τ prq

ϕ2
“u ‰ 0. As Dcrys,τ is left-exact, because r is extension of

χKp by χp we have,
Dcrys,τ pχpq Ă Dcrys,τ prq,
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but on Dcrys,τ pχpq ϕ acts as χppq “ up´1, thus this line is distinct from Dcrys,τ prq
ϕ2
“u and thus

Dcrys,τ prq is of dimension 2. But because of the action of φ, Dcrysprq is a K bZp F -module of
dimension 2, i.e. r is crystalline.

Thus r1 gives a non zero element in H1
f pE,ωpq but by [BC04] Lemme 9.3, which is a well-know

result, H1
f pE,ωpq “ t0u thus r

1 must be trivial, which gives a contradiction. We are thus in case where
ρKpY q is irreducible.

11.6. Good reduction at p. — Suppose p inert. The result for p split is analogous to [BC04] Proposi-
tion 9.3. Denote u “ χKppq.

Proposition 11.7. — There exists a continuous representation ρ : GE ÝÑ GL3pF q such that,

1. For all place v of E not dividing p, we have,
(a) dimF pρ b pχ

K
p q
´1qIv ě 2 if v|Condpχq.

(b) dimF pρ b pχ
K
p q
´1qIv “ 3 if v ffl Condpχq.

2. Dcris,τ pρq
ϕ2
“u is non zero.

3. ρss » χp ‘ χ
K
p ‘ 1 and one of the two assertions is true :

(a) Either ρ has a subquotient r of dimension 2, such that rK » r and r is a non trivial extension
of χKp by χp.

(b) Either ρ » ρK; ρ has a unique sub-representation r1 of dimension 2 and a unique subquotient r2

of dimension 2, with r1 a non trivial extension of 1 by χp and r2 a non trivial extension of χKp
by 1, and rK1 » r2.

Proof. — Denote by O the rigid local ring of Y at y0, a discrete valuation ring of residual field F ,
denote L its fraction field, and ρL the representation which is the scalar extension of ρ to L. As
ρL

ss “ 1‘χp‘χ
K
p which are pairwise distincts characters, we can use also [BC04] proposition 7.1, the

analog to Ribet’s theorem, to find Λ Ă L3 a lattice stable by ρL such that the reduced representation
ρ “ ρΛ satisfies condition (3)(a) or (3)(b). The condition (i) is true by what preceed. We can argue as in
[BC04] to get (ii), but we will need a generalisation to GK if p is inert. Fortunately what we need is in
[Liu12]. As in [BC04] Lemma 7.3 there is an affinoid Y Ą Ω Q y0 such that ρL as a OΩ-stable lattice
ΛΩ such that ρΛΩ,y0

“ ρ. Denote ρ “ ρΛΩ
. Let thus Z 1 Ă Ω the points that are in Z Ă Y , in Ω, and

such that ρz is semi-simple (it is a cofinite subset of Z X Ω as ρKpΩq is semi-simple (irreducible)). By
choice of Z , we have that for all z P Z 1,

Dcrys,τ pρzq
φ2
“ph1pzqF1pzq ‰ 0.

As ρ is polarized, its στ -Hodge-Tate weights are hσpzq “ p´h3,´h2,´h1q. Set hKi “ phi, h4´iq P

Fτ ˆFστ “ KbQp F . Thus pΩ, ρ, ph
K
i qi, F1, Zq is a weakly refined (polarised) p-adic representation of

GK of dimension 3 in the sense of [Liu12] Definition 0.3.1. To verify (f) of [Liu12] Definition 0.3.1, recall
that over the weight space W we had an universal character χ “ χ1 ˆχ2 : Oˆ ˆO1 ÝÑ OpWqˆ, and
as W is regarded over K , we can split χ1bZˆp τ : OˆbZˆp Oˆ ÝÑ OpWqˆ as pχ1,τ , χ1,στ q. Then, set,

ψ “ χ1,τχ
´1
1,στ : Oˆ ÝÑ OpWqˆ,

whose derivative at 1 is ´h1 ` h3 and for every κ P Z3, corresponds to the character,

x P Oˆ ÞÑ τpxqk1στpxq´k3 .

Thus, the character,

Oˆ ψ
ÝÑ OpWqˆ ÝÑ OpBqˆ ÝÑ OpΩqˆ,

has the desired property (f).
Denote ρ1 “ ρ b ψ´1 (where ψ is precomposed by product of the two Lubin-Tate characters of K ,

GK ÝÑ Kˆ). Thus ρ1 as κK
1

1 “ p0, 0q as smallest Hodge-Tate weight. In Particular by [Liu12] Theorem
0.3.2, Ωfs “ Ω. But then by theorem 0.1.2 applied to S “ Ω, k, n big enough, and ρ1, we have that,

D`cryspρ
1
y0
qϕ

2
“F1 » D`Senpρ

1
y0
qΓ,
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(see remark 3.3.5 and corollary 1.5.4 of [Liu12], as 0 is the only negative Hodge-Tate weightp2q of ρ1,
corollary 1.5.4 applies), and D`Senpρ

1
y0
qΓ ‰ 0.

Thus Dcrys,τ pρ
1
y0
qϕ

2
“F1 ‰ 0 which means

Dcrys,τ pρy0
qϕ

2
“ph1py0qF1 “ Dcrys,τ pρy0

qϕ
2
“u ‰ 0.

11.7. Elimination of case (a). — We can do as in [BC04], and as we eliminated case 2. of proposition
11.3. Suppose we are in case (a), there is thus a subquotient r of ρ such that rK » r and r is an extension
of χKp by χp. Denote by r1 “ r b pχKp q

´1 “ r b χp, which is an extension of 1 by χpχp “ ωp (the
cyclotomic character).

Lemma 11.8. — The representation r1 is crystalline at p (at v1, v2|p is p is split).

Proof. — The split case is identical to [BC04], lemma 9.1. Suppose p is inert. Then this is identical to
lemma 11.6.

Lemma 11.9. — The representation r1 is unramified at every place w ffl p.

Proof. — This is exactly identical to [BC04] Lemme 9.2.

Thus by [BC04] Lemme 9.3, r must be trivial, which contradicts Proposition 11.7 3)(a).

11.8. Conclusion. — We are thus in case 3)(b), with r1 a non trivial extension of 1 by χp.

Lemma 11.10. — r1 is crystalline at p (if p is inert, at v1, v2|p if p splits).

Proof. — Again, if p splits the proof is identical to [BC04] Lemme 9.4, thus suppose p inert. As r1 » rK2 ,
we only need to prove that r2 is crystalline. Because Dcrys,τ p¨q

ϕ2
“u is left-exact, we again have,

dimF Dcrys,τ pρq
ϕ2
“u ď dimF Dcrys,τ pr2q

ϕ2
“u ` dimF Dcrys,τ pχpq

ϕ2
“u.

As Dcrys,τ pχpq
ϕ2
“u “ t0u and dimF Dcrys,τ pρq

ϕ2
“u ‰ 0, we have dimF Dcrys,τ pr2q

ϕ2
“u ‰ t0u.

Moreover,

Dcrys,τ p1q Ă Dcrys,τ pr2q,

by left-exacness of Dcrys,τ , which gives a line where ϕ2 acts as 1 ‰ u. Thus there are at least two
different lines in Dcrys,τ pr2q which means this is 2-dimensional and by existence of ϕ, r2 (thus r1) is
crystalline.

Theorem 11.11. — The representation r1 gives a non-zero element of H1
f pE,χpq.

Proof. — We only need to prove that r1 has good reduction outside p. But then as ρ in unramified
outside pCondpχq, by proposition 11.7, we only need to check v|Condpχq. We have shown in the proof
of Proposition 11.4 that there exists an open subgroup I 1w Ă Iw such that ρ1

|Iw
factors through Iw{I 1w

and ρ1
|Iw
“ 1‘ 1‘ pχKp q

´1
|Iw

. Thus rIw1 is then of dimension 1.

p2qIn [Liu12] the convenction of the Hodge-Tate weights is opposite to ours, there the Hodge-Tate weight of the cyclotomic
character is 1.
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Appendix A. Calculations on the weight space

In this appendix we explain a bit more the structure of the weight space W defined in section 3. W
is represented by a disjoint union of (pp`1qpp2´1q) 3-dimensional open balls over O. Indeed (if p ‰ 2)

Oˆ » pFp2qˆ ˆ p1` pOq,
which induced, up to the choice of a basis of O over Zp, an isomorphism,

HomcontpOˆ,Gmq » {pZ{pp2 ´ 1qZq ˆB2p1, 1
´q,

where B2p1, 1
´q is the open 2-dimensional ball centered in 1, of radius 1. And, as a Zp-module

O1 » S ˆ Zp,
where S is a finite group of cardinal p` 1.

Proof. — We have the exact sequence,

0 ÝÑ O1 ÝÑ Oˆ Nm
ÝÑ Zˆp ÝÑ 0,

(surjectivity is given by local class field theory for example). Reducing modulo p, we have the surjectivity

of Fp2
Nm
ÝÑ Fp. We thus have the diagram,

0 0 0

0 tx P O1 : x ” 1 pmod pqu 1` pO 1` pZp

0 O1 Oˆ Zˆp 0

0 tx P Fp2 : xp`1 “ 1u Fˆp2 Fˆp 0

0 0

Nm1

Nm

Nm

The application Nm1 “ 1`pO ÝÑ 1`pZp is surjective ; indeed, for all z inside 1`pZp, because Nm
is surjective, there exists u P Oˆ such that uuσ “ 1` pz (denote by σ the conjugation, and ‚ reduction
modulo p). We deduce that u P t x P Fp2 : xp`1 “ 1u. We then set u1 “ u{rus, where r.s denote
the Teichmuller lift. Then u1 P 1 ` pO and pu1qpu1qσ “ uuσ{prusrusσq “ uuσ{prup`1sq “ 1 ` pz.
The second equality is because r.s commute with Frobenius. (We could also prove the surjectivity by a
method of successive approximations). The map O1 ÝÑ tx P Fp2 : xp`1 “ 1u is also surjective : for
all x P tx P Fp2 : xp`1 “ 1u, rxsrxsσ “ rxp`1s “ r1s “ 1. Thus, up to choosing a base of O over
Zp, we can with the logarithm identify 1` pO to Z2

p; this assure that tx P O1 : x ” 1 pmod pqu » Zp
(because logarithm exchanges trace and Nm)

In particular,
HomcontpO1,Gmq »

ž

Ŝ

B1p1, 1
´q.

Thus, W is isomorphic to a union of pp`1qpp2´1q open balls of dimension 3. There is also a universal
character,

κun : T 1pZpq ÝÑ ZprrT 1pZpqss.
The following lemma is essential,

Lemma A.1. — Every weight κ PWpKq is automatically locally pQp´)analytic.
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Actually we can be more precise,

Lemma A.2. — Let U ĂW a quasi-compact open, then there exists wU such that κun|U is wU -analytic.

Proof. — It is [Urb11] Lemma 3.4.6.

We will construct Wpwq, an open subset of W containing the w-analytic κ (it is an affinoid). Set
w Psn ´ 1, ns X vpQpq. We define it this way, following [AIP15]. First set Wpwq0 to be Spf OK ăă

S1, S2, S3 ąą where K is a finite extension of Qp containing an element pw of valuation w. Define Tw
the subtorus of T the formal torus associated to T 0, given by,

TwpRq “ KerpTpRq ÝÑ TpR{pwRq,

for any flat,p-adically complete OK-algebra R. Denote X 1i the coordinates on Tw, so that 1` pwX 1i “
1`Xi on T, and define the universal character,

κ0un :
Tw ˆWpwq0 ÝÑ yGm

p1` pwX 11, 1` p
wX 12, 1` p

wX 13, S1, S2, S3q ÞÝÑ
ś3
i“1p1` p

wXiq
Sip

´w` 2
p´1

Then define Wpwq0 to be the rigid fiber of Wpwq0 and finally, W pwq to be the fiber product,

W ˆHomcontpp1`pOqˆp1`pOq1,Cˆp qWpwq
0,

where the map Wpwq0 ÝÑ Homcontpp1` pOq ˆ p1` pOq1,Cˆp q is given by,

ps1, s2, s3q ÞÝÑ pp1` pnx1, 1` p
nx2, 1` p

nx3q ÞÑ

3
ź

i“1

p1` pnxiq
sip

´w` 2
p´1

.

Then we can write W “
Ť

wě0 Wpwq as an increasing union of affinoids.

Appendix B. Kernel of Frobenius

Proposition B.1. — On the stack BT O
p2,1q,pol and X , the Cartier divisor haτ is reduced.

Proof. — This is [dG16] Theorem 2.8, which can be proved by considering the deformation space at a
point. Unfortunately we can’t use the result of [Her15] because of the polarisation (but a similar proof
works).

Proposition B.2. — Let G{SpecpOCq be a p-divisible O-module. Suppose haτ pGq ă
1

2p2 , and let K1 the
first Frobenius-subgroup of G (see theorem 5.7). Then

K1 ˆSpecpOCq SpecpOC{p
1

2p2 q “ KerF 2 ˆSpecpOC{p SpecpOC{p
1

2p2 q.

Denote, for K{Qp2 , by X{SpfpOKq a (smooth) presentation of BT O
r,p2,1q,pol{SpfpOKq (which is

smooth, see for example [Wed01]) and for v P vpKq, Xpvq is the open subset of the blow-up along
Iv “ pp

v,haτ q where Iv is generated by haτ . As X is smooth and haτ is reduced, Xpvq is normal and
its special fiber (modulo πK ) is reduced.

Take v “ 1
2p2 and K a totally ramified extension of Qp of degree 1

2p2 (so that vpπKq “ 1
2p2 ).

Then over Xpvq, the rigid fiber over K of Xpvq, we have a subgroup K1 Ă Grp2s, and by the
proposition 5.10 this subgroup extend to a subgroup over Xpvq. Now, over XpvqbOK{πK “ XpvqbκK
the rigid fiber of Xpvq, we have two subgroups, K1 and KerF 2, which coincide on every point (by
[Her16] section 9 or the very proof of the proposition 5.10) but as Xpvq b OK{πK is reduced, K1 “

KerF 2 over Xpvq bOK{πK . As every OC-point of BT O
p2,1q,pol gives a point of X, we have the result

using Grprs for r big enough (bigger than 3 is enough).

Corollary B.3. — Let G as in the previous proposition, but suppose haτ pGq ă
1

2p4 . Then haτ pG{K1q “

p2 haτ pGq
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Proof. — Recall that haτ “ haστ and haτ is given by detpV 2q without any division. By the previous

proposition, the map Grp2s ÝÑ Grp2s{K1 coincide modulo πK with the map Grp2s
F 2

ÝÑ Grp2spp
2
q.

Thus, there is an isomorphism modulo πK : detpωpG{K1qD,στ q » detpωbp
2

GD,στ
q which identify (modulo

πK ) Ćhaστ pG{K1q with Ćhaστ pGq
bp2

. Thus we get,

inftp2 haτ pGq,
1

2p2
u “ infthaτ pG{K1q,

1

2p2
u.

As p2 haτ pGq ă
1

2p2 , we get the result.

Appendix C. Devissage of the formal coherent locally analytic sheaves

Let κ P Wpwq a caracter and κ0 its restriction to Wpwq0, and w ă m ´
p2m´1
p2´1 . Denote on

X1pp
2mqpvq the sheaf wκ

0
:

w defined as,

ζ˚OIW`
w
rκ0s, where ζ : IW`

w ÝÑ X1pp
2mqpvq.

If we set π : X1pp
2mqpvq ÝÑ Xpvq, then the sheaf wκ:w of overconvergent forms is given by,

pπ˚w
κ0
:

w qp´κqBpZpqBw ,

where p´qp´κ1q denote a twist of the action of BpZpqBw and p´qBpZpqBw means taking invariants.
Remark that after the twist, the action of BpZpqBw factors through Bn.

Consider the projection "in family"

ζ ˆ 1 : IW`
w ˆWpwq0 ÝÑ X1pp

2mqpvq ˆWpwq0,

and denote
wκ

0,un
:

w “ pζ ˆ 1q˚OIW`
wˆWpwq0rκ

0,uns,

the family of sheaves over X1pp
2mqpvq ˆWpwq0.

Let SpfpRq a small enough open in X1pp
2mqpvq. Recall that we denote by ψ the univeral polar-

ized trivialisation of KD
m , denote e1, e2 a basis of O{pmO ‘ O{p2mO, eστ1 “ HTστ,wpe1q, e

στ
2 “

HTστ,wpe2q, e
τ “ HTτ,wpe2q the images of this basis in Fστ {pw,Fτ {pw . Denote fστ1 , fστ2 , fτ a lift of

this basis in Fστ ,Fτ .
With this choices we can identify IW`

w| SpfpRq with matrices,
¨

˝

1
pwBp0, 1q 1

1

˛

‚ˆ

¨

˝

1` pwBp0, 1q
1` pwBp0, 1q
1` pwBp0, 1q

˛

‚ˆSpfpOKq SpfpRq.

Denote X0 the coordinate in the 3x3 matrix and X1, X2, X3 the coordinates of the balls in-
side the column. Thus, we can identify a function f on IW`

w| SpfpRq to a formal series in
R ăă X0, X1, X2, X3 ąą.

Now, let κ0 PWpwq0, then f P wκ
0
:

w if it verifies,

fpX0, λX1, λX2, λX3q “ pκ
0q1pλqfpX0, X1, X2, X3q, @λ P TwpRq.

In particular, we deduce that there exists a unique g P R ăă X ąą such that,

fpX0, X1, X2, X3q “ gpX0qκ
0pX1, X2, X3q,

and thus there is a bijection wκ
0
:

w » R ăă X0 ąą. The same hold in family,

Lemma C.1. — For all f P wκ
0un

:
w pRb̂OK ăă S1, S2, S3 ąąq, there exists a unique g P R ăă

S1, S2, S3, X0 ąą such that,

fpX0, X1, X2, X3q “ gpX0qpκ
0unq1p1` pwX1, 1` p

wX2, 1` p
wX3q.

This decomposition induces a bijection

wκ
0un

:
w pRb̂OK ăă S1, S2, S3 ąąq » R ăă S1, S2, S3, X0 ąą .
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Lemma C.2. — Let π be a uniformiser of OK . Then,

κ0unpp1` pwXiqq P 1` πOK ăă S1, S2, S3, X1, X2, X3 ąą .

Proof. — The calculation is made is [AIP15] Lemma 8.1.5.3.

Corollary C.3. — Denote wκ
0un

:
w,1 the reduction modulo π of wκ

0un
:

w . Then the sheaf wκ
0un

:
w,1 is constant on

pX1pp
2nq ˆWpwq0q ˆ SpecpOK{πq : it is the inverse image of a sheaf on X1pp

2nq ˆ SpfpOK{πq.

Let fστ
1

1 , fστ
1

2 , fτ
1

be an other lift of the basis image of HT‹,w . Let

P “

¨

˝

1` pwa1 pwa2

pwa3 1` pwa4

1` pwa5

˛

‚

be the base change matrix from f to f 1 and X 1 the coordinates on IW`

w| SpfpRq relatively to f 1.

Lemma C.4. — We have the following congruences,

X0 ” X 10 ` a3 pmod pwq,

X1 ” X 11 ` a1 pmod pwq;

X2 ” X 12 ` a4 pmod pwq,

X3 ” X 13 ` a5 pmod pwq.

Proof. — Indeed, as seen inside T ˆa n{Uan, we have that the two systems of coordinates verifies,

P pI3 ` p
wXqU “ I3 ` p

wX 1,

where U P GL2ˆGL1 is a unipotent matrix of the form I3 ` p
wN , N upper triangular nilpotent and,

X “

¨

˝

X1

X0 X2

X3

˛

‚.

Thus, write P “ I3 ` p
wP0, then I3 ` pwpP0 `X `Nq ” I3 ` p

wX 1 pmod p2wq.

We can thus deduce the following corollary for the family of sheaves,

Corollary C.5. — Let κ0 PWpwqpKq. The quasi-coherent sheaf wκ0,un
:

w on X1pp
2mqˆWpwq0 is a small

Banach sheaf.

Proof. — We just have to check that on X1pp
2mq ˆWpwq0 ˆ SpecpOK{πq the sheaf wκ

0,un
:

w,1 is an

inductive limit of coherent sheaves which are extensions of the trivial sheaf. Write wκ
0,un

:,ěr
w,1 the

subsheaf of sections that are locally polynomials in X0 of total degree smaller than r. This makes sense

globally by Lemma C.4, and moreover, wκ
0,un

:
w,1 is the inductive limit over r of these sheaves. But then,

wκ
0,un

:,ěr
w,1 pmod qwκ

0,un
:,ěr´1

w,1 is isomorphic to the trivial sheaf.

Appendix D. Non tempered representations and pq,Kq-cohomology

We are interested in calculating the pq,Kq-cohomology of the representation πnpχq defined in propo-
sition 10.10 to show it appears in the global section of a coherent automorphic sheaf on the Picard
modular surface.

We have the following theorem of Harris ([Har90] Lemma 5.2.3 and proposition 5.4.2, [Gol14] The-
orem 2.6.1)

Theorem D.1. — Let π “ π8 b πf be an automorphic representation of Up2, 1q of Harrish-Chandra
parameter λ, and that H0pq,K, π8 b V

_
σ q ‰ 0, then there is a Up2, 1qpAf q equivariant embedding,

πf ãÑ H0pX,V _λ`ρn´ρcq,

where V _λ`ρn´ρc is the automorphic vector bundle associated to the representation Vσ of K “ K8.
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Thus we only need to calculate the pq,Kq-cohomology of πnpχq8, and even the one of the restric-
tion of the representation to SUp2, 1q. Fortunately we can explicitly do so, rewriting the induction
ind´n

SUp2,1q
B pRqpχ8q, as a space of function, and determining the quotient corresponding to πnpχq.

In [Wal76], Wallach calculated all the representations of SUp2, 1qpRq using this description of the in-
duction. As explained in [Wal76] p181, the induction space ind´n

SUp2,1qpRq
B pχq corresponds to XΛ

with Λ “ pa ´ 1qΛ1 ` p´aqΛ2 (which is thus reducible). The shift by ´Λ1 ´ Λ2 is due to the nor-
malisation by the modulus character in the induction. Its discrete series subobject corresponds to one
of the discrete series D´

rΛ
described p183, and its quotient corresponds to the non-tempered represen-

tation pT´a´2, Z
´
a´2q (defined p184, and the fact that it appears in the said induction is Lemma 7.12).

As the name doesn’t suggests, T´a´2 – which coincide with the restriction of πnpχq8 to SUp2, 1qpRq,
will be holomorphic (but we can exchange holomorphic and anti-holomorphic by changing the complex
structure of the Picard surface).

Proposition D.2. — Let pσ, Vσq “ Syma´1
b det´a : M ÞÑ Syma´1

pMqbdetpMq´a the representation
of Up2q “ SK8 Ă SUp2, 1qpRq. Then

H0pq,K8, T
´
a´2 b V

_
σ q ‰ 0.

To show the previous proposition, denote

J0 “

¨

˝

1
1
´1

˛

‚

the hermitian form of signature p2, 1q used in [Wal76]. Denote

P “

¨

˝

1?
2

1?
2

1
1?
2

´ 1?
2

˛

‚

the base change matrix (so that PJ0P “ J , P “ P´1 “ P ). In this new presentation, the complex
structure is given by h1 “ PhP , i.e.,

h1 : z P C ÞÑ

¨

˝

z
z

z

˛

‚P UJ0
pRq.

In this form, the Lie algebra of UJ0
pRq is given by,

g “ t

¨

˝

ia0 b c

´b ie0 f

c f il0

˛

‚, a0, e0, l0 P Ru.

using the action of h1piq we can decompose g “ k` p with

p “ t

¨

˝

0 0 c
0 f

c f 0

˛

‚, c0, a0 P Ru.

Extending scalars to C, we can further decompose, pC “ p` ‘ p´, where conjugacy by h1pzq on p` is
given by z{z and z{z respectively. Explicitely, p´ is generated by

X´ “ N` b i´N´ b 1 and Y ´ “M` b i´M´ b 1,

N´ “

¨

˝

0 i
0

´i 0

˛

‚ N` “

¨

˝

0 1
0

1 0

˛

‚

M´ “

¨

˝

0 0
0 i

0 ´i 0

˛

‚ M` “

¨

˝

0 0
0 1

0 1 0

˛

‚
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and p` is generated

X` “ N` b i`N´ b 1 and Y ` “M` b i`M´ b 1.

To calculate the action of p´ on our representation, we use the following formula for a matrice X
and f P g :

X ¨ f “ p
d

dt
expptXq ‚ fqt“0,

As Z´a´2 is a space of holomorphic functions, we get the following exponentials for the matrices
M˘, N˘ :

expptM´q “

¨

˝

1 0
ch t i sh t
´i sh t ch t

˛

‚ expptM`q “

¨

˝

1 0
ch t sh t
sh t ch t

˛

‚

expptN´q “

¨

˝

ch t i sh t
1 0

´i sh t ch t

˛

‚ expptN`q “

¨

˝

ch t sh t
1 0

sh t ch t

˛

‚

and the actions of the matrices M˘, N˘ is given by,

N`f “ ´pa´ 2qz1f ` pz1
2 ´ 1q

df

dz1
` z1z2

df

dz2
,

N´f “ ´ipa´ 2qz1f ` ipz1
2 ` 1q

df

dz1
` iz1z2

df

dz2
,

M`f “ ´pa´ 2qz2f ` z1z2
df

dz1
` pz1

2 ´ 1q
df

dz2
,

M´f “ ´ipa´ 2qz2f ` iz1z2
df

dz1
` ipz1

2 ` 1q
df

dz2
.

We deduce that the action of p´ is given by,

Y ´f

ˆ

z1

z2

˙

“ ´2i
df

dz2
,

and

X´f

ˆ

z1

z2

˙

“ ´2i
df

dz1

and the action of p` by

Y `f

ˆ

z1

z2

˙

“ ´2ipa´ 1qz2f ` 2iz1z2
df

dz1
` 2iz2

2 df

dz2
,

and

X`f

ˆ

z1

z2

˙

“ ´2ipa´ 1qz1f ` 2iz1z2
df

dz2
` 2iz1

2 df

dz1

As Z´a´2 is defined as the quotient a completion of the quotient of holomorphic polynomials in variables

z1, z2 by the subspace of polynomials of degrees less of equal than pa´2q, H0pp´, Z´a´2q “ pZ
`
a´2q

p´“0

is identified with homogeneous polynomials in z1, z2 of degree a´ 1.
As for a representation τ of K8, we have,

Hqpq,K, V b Vτ q “ pH
qpp´, V q b Vτ q

K

(cf. [Har90] 4.14), we have that H0pq,K, Z`a´1 b V
_
σ q ‰ 0.

Remark D.3. — Using a slightly more precise calculation for Up2, 1q instead of SUp2, 1q, we could
show that for Up2, 1q,

H0pq,K8, π
npχq b Vpa,1,2´aqq ‰ 0,

in particular, the Hecke eigenvalues of πnpχq appears in the global sections over X , the Picard modular
variety, of the automorphic sheaf ωpa,1,2´aq.
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