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1. Introduction

Families of automorphic forms have been a rather fruitful area of research since their introduction
by Hida in 1986 for ordinary modular forms and their generalisations, notably the Coleman-Mazur
eigencurve, but also to other groups than GLy. Among examples of applications we can for example
cite some cases of the Artin conjecture, for many modular forms the parity conjecture, and generalisation
to a bigger class of automorphic representations of instances of Langlands’ philosophy (together with
local-global compatibility).

The goal of this article is to present a new construction of what is called an "Eigenvariety”, i.e. a
p-adically rigid-analytic variety which parametrises Hecke eigensystems. More precisely, the idea is to
construct families of eigenvalues for an appropriate Hecke algebra acting on certain rather complicated
cohomology groups, which are large Q,-Banach spaces, into which we can identify classical Hecke
eigenvalues. For example Hida and Emerton consider for this cohomology groups some projective
systems of étale cohomology on a tower of Shimura varieties, whereas Ash-Stevens and Urban instead
consider cohomology of a large system of coefficients on a Shimura variety. Another construction which
was introduced for GLy by Andreatta-Iovita-Stevens and Pilloni was to construct large coherent Banach
sheaves on some open neighborhood of the rigid modular curve (more precisely on strict neighborhoods
of the ordinary locus at p) indexed by p-adic weights and that vary p-adically. Their approach was then
improved in [AIP15, ABI*16] to treat the case of Siegel and Hilbert modular forms, still interpolating
classical automorphic sheaves by large (coherent) Banach sheaves. This method relies heavily on the
construction of the Banach sheaves for which the theory of the canonical subgroup is central. For
example in the case of GLy, the idea is to construct a fibration in open ball centered in the images
through the Hodge-Tate map of generators of the (dual of the) canonical subgroup inside the line bundle
associated to the conormal sheaf w on the modular curve Xo(p). This rigid sub-bundle has then
more functions but as the canonical subgroup doesn’t exists on the entire modular curve this fibration
in open balls only exists on a strict neighborhood of the ordinary locus. Following the strategy of
[AIP15, ABI*16], Brasca, [Bral6] extended this Eigenvariety construction to groups that are associated
to PEL Shimura varieties whose ordinary locus (at p) is non empty, still using the canonical subgroup
theory as developed in [Farll].

As soon as the ordinary locus is empty, the canonical subgroup theory gives no information and
without a generalisation of it the previous strategy seems vacuous. To my knowledge no eigenvarieties
has been constructed using coherent cohomology when the ordinary locus is empty. Fortunately we
developed in [Herl6] a generalisation of this theory, called the canonical filtration, for (unramified at
p) PEL Shimura varieties. The first example when this happen is the case of U(2, 1) /g, where E is
a quadratic imaginary field, as the associated Picard modular surface has a non empty ordinary locus
if and only if p splits in E. In this article we present a construction of an eigenvariety interpolating
p-adically (cuspidal) Picard modular forms when p is inert in . The strategy is then to construct new
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coherent Banach sheaves on strict neighborhoods of the pi-ordinary locus using the (2-steps) canonical
filtration, and we get the following result,

Theorem 1.1. — Let E be a quadratic imaginary field and p # 2 a prime, inert in E. Fix a neat level K
outside p, and a type K < K j, with J a complex representation of K j/K. Let N be the places where K
is not hyperspecial (or very special) and I, the Iwahori subgroup at p. There exists two equidimensional of
dimension 3 rigid spaces,

ESW,

with r locally finite, together with dense inclusions 72> = W and Z < & such that K(Z) < 73, and all
z € Z, coincide with Hecke eigensystem for H™NP @ Z[U,, S, acting on cuspidal Picard modular forms of
weight k(z), type (K1, J) that are finite slope for the action of U,.

In order to get the previous result we need to have a control on the global sections of this Banach
spaces. A general strategy to prove such result is developed in [AIP15] and more generally [Lanl3]
(though it doesn’t apply here directly), but in the simpler case of U(2,1), as the boundary of the
toroidal compactification is quite simple, we manage to simplify a part of the argument of [AIP15]. In
a forthcoming work, we will use this method together with the tecnics developed in [Herl6] to contruct
Eigenvarieties for more general PEL Shimura datum.

The second part of this article focuses on a very nice application of Eigenvarieties to construct Galois
extension on certain Selmer groups. The method follows the strategy initiated by Ribet ([Rib]) in the
inequal characteristics case to prove the converse to Herbrand theorem. It was then understood by
Mazur-Wiles how to apply this technic in equal caracteristics using Hida families to prove Iwasawa main
conjecture. In his PhD [Bel02], Bellaiche understood that using a certain endoscopic representation
together with a generalisation of Ribet’s lemma he could produce some extension of Galois representa-
tions, and then how to delete the wrong extensions to only keep the one predicted by the Bloch-Kato
conjecture. This method was then improved using p-adic families and Kisin’s result on triangulations of
modular forms to construct desired extensions in Selmer groups as in [BC04] for imaginary quadratic
character and [SU02] for modular forms using Saito-Kurokawa lifts to GSp4. In the previous construc-
tions, it seemed necessary that the sign at the center of the functionnal equation is -1. In this article, we
study the simplest case with a sign +1.

Let x be an algebraic Hecke character of I satisfying the following polarisation,

Xt =) =

and L(x, s) is L-function. Denote x, : Gg —> F'*, where F//Q, is a finite extension, the associated
p-adic Galois character, and H }(E , Xp) the Selmer group of x,. The conjecture of Bloch-Kato predicts

the equality ords—o L(x, s) = dimp H llc(E ,Xp), and in particular the following result, due to Rubin,
Theorem 1.2 (Rubin). — If L(x,0) = 0 then H};(E, x,) # {0}.

The previous result follows from Rubin’s work on Iwasawa main conjecture for CM elliptic curve and
its proof uses Euler systems. In particular we get few control on the predicted extensions. Another proof
of this result ((BC04]) uses families of Picard modular forms given by the corresponding Eigenvarieties,
a particular case of transfer as predicted by Langland’s philosophy, together with a generalisation of
Ribet’s "change of lattice” Lemma. More precisely, if p is split in £, p f Cond(x), and the order
of vanishing ords—g L(x, $) is odd, then Bellaiche-Chenevier can construct the predicted extension
in H}(E, Xp) by deformation of a non-tempered automorphic form 7" (x) for U(3), the compact at
infinity unitary group in three variables. It is a natural question to ask why this condition of the order
of vanishing being odd is necessary. If the order of vanishing is even, following multiplicity results
on automorphic representations for unitary groups on three variables of Rogawski ([Rog92, Rog90]),
there exists a non tempered automorphic representation 7" () for U(2,1) with Galois representation
Prnx)p = 1D Xxp D X;JI‘ In this article we check that we can indeed deform this representation such
that the associate Galois deformation is generically irreducible, and that we can control the reduction
at each place, thus constructing an extension in the Selmer group. More precisely we can reprove the
following case of Rubin’s result,
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Theorem 1.3. — Let p a prime, unramified in E, and p # 2 if p is inert, such that p } Cond(x). If
L(x,0) = 0 and ords—q L(x, $) is even, then

H{(E, xp) # 0.

In particular we can extend the result of [BC04] when the order of vanishing is even, and also to the
case of an inert prime p using the corresponding Eigenvariety (when the ordinary locus is empty). An
advantage of the construction of the eigenvariety presented here is that if an Hecke eigensystem appears
in the classical cuspidal global sections of a coherent automorphic sheaf, then there is an associated
point on the eigenvariety. This argument might be more complicated with other constructions, as the
representation 7" () is not a regular discrete series (it doesn’t even appear in the cohomology of middle
degree). Another advantage of using coherent cohomology is that we can also deal with the limit
case where 7" () does not appears in the etale cohomology(!) (but it was known to Bellaiche [Bell2]
how to get this limit case). Apart from this fact, the deformation when p is split follows the lines of
[BCO4], whereas when p is inert the geometry of the Eigenvariety is quite different. In particular, there
is less refinements (and thus only one point on £ corresponding to 7" (x) instead of three) and we need
a bit more care to isolate the right extension. We also need to be slightly more careful with p-adic
Hodge theory to understand the local-global compatibility at p and a generalisation of Kisin’s result
on triangulation of refined families as provided by [Liul2|. Let us also remark that a consequence of
this construction and Chenevier’s method to compare the eigenvarieties for U(3) and U(2, 1) (say when
p splits) is that the point 7™ (x) when the sign at infinity is +1 together with its good refinement also
appears in the eigenvariety of U (3), despite not being a classical point for this group.

Acknowledgements. — I would like to warmly thank my PhD advisors Laurent Fargues, and even
more Vincent Pilloni for explaining me carefully his previous work and suggesting this subject. I would
also like to thank Fabrizio Andreatta and Adrian Iovita for their support, remarks and interesting dis-
cussions on this subject. It should be clear that this work is a continuations of theirs. I would like to
particularly thank Joél Bellaiche and Gaétan Chenevier for their perfectly written article and book on
extensions in Selmer groups (from which my inspiration is easy to feel) but also for very inspiring discus-
sions, encouragements and remarks. I would also like to thank Nicolas Bergeron, Stéphane Bijakowski,
Jean-Francois Dat, Guy Henniart, Bruno Klingler, Arthur-César Le Bras, Alberto Minguez, Benoit Stroh,
and Eric Urban for very interesting discussions on the subject.

2. Shimura datum

2.1. Global datum. — Let F/Q a quadratic imaginary field and denote ® the complex conjugation of
E. Let (V = E3,4) be the hermitian space of dimension 3 over E, of signature (2,1) at infinity given by

the matrix
1

J = 1

Let us then denote,
G=GU((V,¢¥)=GU(2,1)
={(g,¢(9)) € GL(V) x G g : Yo,y € V. ¥(g97, 9y) = c(9)¥(z,y)} = GLy xGpy,

the reductive group over Q of unitary similitudes of (V).
Let p be a prime number, unramified in E. If p = vv is split in E, then,

V®@Qp = V@EE'UG_)V@EE’U?

where the action of E), is by T on V ®g E,. Moreover, the complex conjugation exchanges V ®g E,
and V ®g E,. In particular, G®q Q, ~ GL(V ®g E,) x Gy, (this isomorphism depends on the choice

of v over p).

(Mie. when xon(z) = 2 or Xeo(2) = Z
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We will be particularly interested in the case where p is inert in E, the case when p split has been
studied before (see for example [Bral6]).

Remark 2.7 — We could more generally work in the setting of (B, %) a simple E-algebra of rank 9
with an involution of the second kind, such that (B ® Q,, *) is isomorphic to (V ® Q,, ), and replace
G with the group,
Gp={geB”:g*g =c(9) € Gp 0}

The construction of the Eigenvarieties in the case where B isn’t split is easier as the associated Shimura
varieties are compact, but some non-tempered automorphic form, for example the one constructed by
Rogawski and studied in [BC04] and the second part of this article will never be automorphic for such
non split B.

The Shimura datum we consider is given by,

S — Gr
b . T 1y
z=x+1y —> z
Y T
2.2. Complex Picard modular forms and automorphic forms. — Classically, Picard modular forms

are introduced using the unitary group U(2, 1), but we can treat the case of GU(2,1) similarly. Let
G(R) = GU(2,1)(R) the group stabilizing (up to scalar) the signature matrix J and let,

X ={z = (21,22) € C* : 23(21) + |22|* < 0},

be the symmetric space associated to G(R), it is isomorphic to the 2-dimensional complex unit ball.

On X, there is an action of G(R) through,

A b 1
<C d)Z_C'Z+d(AZ+b)EB7 AEM2X2(C).
Remark 2.2. — 1t is known that U(2,1)(R) stabilizes X, and GU(2;1)(R) stabilizes X too as if
tAJA = cJ with c € R, we get det Adet A = |det A|? = ¢3 thus ¢ > 0.

This action is transitive and identifies X with G(R)/K,, where Ko, = Stab((i,0)) < {(A4,e) €
GU(2)(R) x GU(1)(R)} can be identified with {(A,e) € GU(2)(R) x C* : ¢(A) = N(e)}. We denote
(’i, 0) = Zg.

The subgroup K is not compact but can be written Z(R)°(U(2)(R) x U(1)(R)), with Z the center
of GU(2,1). Let P be the C-points of K. Then P ~ (GLy x GL;) x GL;(C) is a parabolic in
GL3 x GL{(C). For any k = (ki, ko, k3,7) € Z* such that k; > ko, there is an associated (irreducible)
representation Sy, (C) of P, of highest weight

tq

12 ,CE (GLQ X GLl) X GLl((C) N t]flté'th,gC’r.
t3

K embeds in P by (A4,¢) — ((A,e), N(e)).

Following [Har90, Har84],[Mil88], such a representation gives * a locally free sheaf with G(C)-
action on G(C)/P, whose structure as sheaf doesn’t depend on r. Restricting it to G(R)/Ky = X we
get a sheaf (2" whose section over X can be seen as holomorphic functions,

[ GR)/Kyp — 5:(C),

such that f(gk) = p. (k)1 f(g), for g € G(R), k € K, which we call (meromorphic at infinity) modular
forms of weight . In an informal way, the choice of the previous integer  normalize the action of the
Hecke operators and corresponds to normalize the (norm of the) central character of the modular forms.
We will not use this description of the sheaves, and instead introduced a modular description of these
automorphic sheaves.

Fix 7o, : B —> C an embedding, and o # 1 € Gal(E/Q), thus 07y = T is the other embedding
of E. Over C, the Picard variety Y (C) of level K can be identified with a (disjoint union of some)
quotient of B = GU(2,1)/K, but also with the moduli space parametrizing quadruples (4, ¢, A, n)
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where A is an abelian scheme of genus 3, ¢ : O —> End(A) is an injection, A is a polarisation for
which Rosati involution corresponds to the conjugation -~ on O, and 7 is a type K level structure such
that the action of O on the sheaf w4 decomposes under the embeddings 7, 07, into to direct factors
of respective dimensions 1 and 2. This is done for example explicitly in [dG16], section 1.2.2 to 1.2.4,
and we will be especially interested in the description by "moving lattice” given in 1.2.4. Thus, to every
x = (21, 22) € B, we can associate a complex abelian variety,

Ay = C¥/L,,
where L, is the Og-module given in [dG16] (1.25), and the action of O on A; is given by
Too(a)
aeOp+— Too(a) € M;3(C).
Too(a)
There is moreover 7, a canonical (K-orbit of) level N structure (for K(N) ¢ K < G(Ay)). Over
Y (C) we thus have a sheaf w4 that can be decomposed w; 4 @ wyr 4 according to the action of O,

and we can consider the sheaf

w" = Symkl_l€2 Wor,A ® det®*2 Wor,A ® det®"s Wr, A,

for (k1, ke, k3) a dominant (i.e. k1 > ko) weight. Using the previous description, if we denote (3, (2, (3
the coordinates on C3, wa,.or is generated by d¢y,d¢2 and wy, ~ by d(s.

There is also Xk (C) a toroidal compactification of Yx (C), [Lar92] and [Bel06b], on which w"
extends as w"” (the canonical sheaf of Picard modular forms) and w”(—D) (the sheaf of cuspidal forms).

Definition 2.3. — We call the module HY(Xg(C),w”) (respectively H’(Xg(C),w"(—D)) =:
H?,. (X (C),w")) the space of (respectively cuspidal) Picard modular forms of level K and weight k.

cusp

We sometimes say ’classical’ if we want to emphasis the difference with overconvergent modular
forms defined later. Denote also V' the representation of GLy x GL; given by,

(A, e) —> Sym"™ *2(A) ® det™ 4 ® det*se.
Definition 2.4. — For all g € G(R) = GU(2,1)(R), write,

- A b o ay ag
o= (2 )0 )
and for z = (21, 22) € B, following [Shi78], define,

K(g,2) = <

a; —agzy C2z1 —C1

azzo — b1 d—Caz )* and j(g,7) = (cx + d).

Finally, define,
J(g,2) = (k(g,7), (g, 7)) € GLa x GL1(C).

The following proposition is well known (see [Hsil4] Lemma 3.7) and probably already in [Shi78],
but we rewrite it to fix the notations,

Proposition 2.5. — There is a bijection between HO (Y (C),w") and functions F : B x G(Ag,5) — V*
such that,

L. Forally e GY(Z), F(yz,vk) = J(v,x) - F(x,k),

2. Forallk' € K, F(x,kk') = F(z,k),
givm b}’ F(SC, k) = f(A:m N © kU7 (dCthQa dCS))
Proof. — For all v € G*(Z), there is an isomorphism between (A,,7,) and Az, 7., © 77, for ex-
emple described in [dG16] 1.2.2 or in [Gor92] which sends (d(i,d(2,d(s) to v*(d(y,de,d(3) =
(v*(d(y1,dCa),v*d(3) as v preserve the action of Op. y*d(; is calculated in [dG16], Proposition 1.15,
and given by,

vrdGs = j(v,x) 7 dGs.
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Moreover, by the Kodaira-Spencer isomorphism wa, » ® wa, o» = Q' ([dG16] Proposition 1.22 for
example), we only need to determine the action of v on dz;, dz3. But this is done in [Shi78], 1.15 (or an
explicite calculation), given by c()'x 1 (v, x)j (7, z), and we get,

Y (dG1,dGa) = R(y, @) (dGr, dGa).
Thus, setting F(x,k) = f(Az, 1z 0 k7, (d(1,dCa, d(3)), we get,

F(ya,vk) = Sym*™ ™ ("k(y, 2) 1) ((det w7, 2))) 72 (7, 2) " F(x, k).

Thus, to f € H°(Yk(C),w") we can associate a function, ®; : G(Q)\G(A) — V*, by

Ds(g) = c(geo) %2783 (9o, o) T Fgano, 95),

where the action - is the one on V*, and we use the decomposition g = gggegr € G(Q)G(R)G(Ay).
We can check that this expression doesn’t depends on the choice in the decomposition. This association
commutes with Hecke operators, but ®; doesn’t have a unitary central character. Indeed, for z, €

C* = Z(R),
B (2009) = N(zop) 1R Roghithe s Bog(g) = 202071720 (g).
Let L : V* — C a non zero linear form. Define the injective map of right- K, -modules,

Ve —  Fonct(Kqy,C)

E s LIk, ae) ')

We have the following well known proposition,

Proposition 2.6. — The map [ — oy = Lo &y is an isometry from HY, . (Xk(C),w") =
H(Xg(C),w"(—D)) to the subspace of L3(G(Q)\G(A), C) of functions o, C* in the real variable, such
that,
L For all g € G(A), the function oy : k € Ky — @(gk) is in L(V"), and in particular ¢ is right
Ko -finite,
2. Forallk € K, p(gk) = ©(9),
3. Forall X € po, Xp =0, i.e. @ is holomorphic.

This isometry is equivariant under the Hecke action of H (K(N) < K).

Using the previous proposition, to every f € H, SUSP(X Kk,w"), an eigenvector for the Hecke algebra,
we will be able to attach a automorphic form ¢y, and an automorphic representation Iy (with same

central character).

2.3. Local groups. — In this subsection, we describe the local group at an inert prime. Let p be a
prime, inert in E. Let £, > Q, its p-adic completion. Recall that V ® Q, = E;’ and that the hermitian
form is given by the matrix,
1
J = 1
1

The diagonal maximal torus 7" of G, is isomorphic to £ x ES,

a
T(Q,) = e , a,e€ By
N(e)a*
and contains 7", isomorphic to E) x E}, where E} = {z € E, : 2T = 1} = (Og,)", the torus of
U(E®,J),
a
7(Q,) = e L acEf ecE)
a
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We also have the Borel subgroups B = Bgr, (k) N Gq, of upper-triangular matrices,

a x y
B(Q,) = e male , a,e,z,ye ES and Tr(@a 'y) = N(a"'2) ¢,
N(e)a?

and B! the corresponding Borel for U(E3,.J),

a x Y

B*(Q,) = e zTalte |, a,x,y€ E),ee E; and Tr(a 'y) = N(a 'x)

-1

3. Weight space
Denote by O = Op,, and by T*(Z,) the torus O* x O over Z,. It is the torus of U(2,1)(Z,) and
by 7" = T' ®z, O the split torus over Spec(O).

Definition 3.1. — The weight space W is the rigid space over Q, given by Hom op (T (Zp), Gyp), of
algebra,

Zp[[TH(Z)]],
and such that the K -points (K extension of Q) are given by,

W(K) = Homen: (0% x O, K*).
W is isomorphic to a union of (p + 1)(p? — 1) open balls of dimension 3 (see Appendix A, compare
with [Urbll] section 3.4.2),

W ~ ]_[ Bs(0,1).
(Oxxol)tors

There is also a universal character,
K T (Z,) — Z,([TM(E,)])

which is locally analytic and we can write W = [ J,,-, VW (w) as an increasing union of affinoids using
the analycity radius (see Appendix A).

Definition 3.2. — To k = (ky, ko, k3) € Z? is associated a character,
0> x 01 —_—> Qp2
(@y) > (on)(@)M () (o7)(y)".

Characters of this form are called algebraic, or classical. They are analytic and Zariski dense in W.

4. Induction

Set U = U(2,1)/Z,, T its maximal torus, K = Q2 and O = Og. We have U ®z, O ~ GL3 /O,
and we denote by T its torus, and GLa x GL; < P the Levi of the standard parabolic of GL3 /O. Let
T c B the upper triangular Borel of GLy x GL; and U its unipotent radical.

Definition 4.1 — Let k € X1(T), then there exists a (irreducible) algebraic representation of
GL2 x GL; (of highest weight k) given by,

Vi ={f:GLy x GL; — A' : f(gtu) = k(t)f(g),t € T,ue U},

where GLy x GL; acts by translation on the left (ie. gf(z) = f(g~'z)). Vi is called the algebraic
induction of highest weight k of GLy x GLj.
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Let I = I be the Iwahori subgroup of GLy(O) x GL1(0O), i.e. matrices that are upper-triangular
modulo p. Let I,, be the subset of matrices in B modulo p”, i.e. of the form

a b
ptc d , a,bec,de0.
e

Denote by U the opposite unipotent of U, and N the subgroup of elements reducing to identity
modulo p". We identify N2 with p"O < (A}))*". For € > 0; denote,

N,?}E = U B(z,e) c (A}Q)‘m.
zep” O
For L an extension of Q,, denote <~ "(N?, L) the set of functions N0 — L which are restriction of
analytic functions on N} _. Let ¢ > 0 and x € W.(L) a e-analytic character, we note,
V™ ={f: 1 — L: f(ib) = s(b) f(i) and fyo € F*~**(N°, L)}.
We also denote, for ¢ > 0 and k = |—log,(¢)],
Vo = {f + Iy —> L: f(ib) = 5(b) f(i) and fyo € F*°"(NR, L)},
where |.| denote the previous integer, and,
Ve = U v and Vo = U VR
e>0 e>0
Concretely, Vi 7" is identified to analytic functions on B(0, pl=1°8r 1) (a ball of dimension 1) .
We can identify VHITL‘I” with F!=%(pO, L) by restricting f € Vél‘m to N°. We can also identify

VOl;?L" to the germ of locally analytic function on 0.

Let
pl
§ = 1
1
which acts on GLy x GL; and stabilise the Borel B(K), and define an action on Vj, , for k € X (T),
via (0 f)(g) = f(6g6~1). The action by conjugation of § on I does not stabilise it, but it stabilise N°.

We can thus set, for j € I, write j = nb the Iwahori decomposition of j, and set,

§- f(4) = f(6nd~'b).
We can thus make ¢ act on V. ", Vé_La", Vo1 Vé;“}f . Via the identification V ;" =~
Fl=an(pO, L), § - f(z2) = f(pz). Thus § improves the analycity radius. Moreover, its supremum

norm is negative.

Proposition 4.2. — Let f € Vol;aL" Suppose f is of finite slope under the action of 9, i.e. 6-f = A\f, A e L*.
Then [ comes (by restriction) from a (unique) f € V.7 .

Proof. — f € VOPK—LWL for a certain n, in particular, it defines a function,
a u
f:1 »O b =1,— L
c

which is identified to a function in F**(p"O, L). But f is eigen with eigenvalue A # 0 € L, thus
f=X"15(f). Butif f = f(z), with the identification to F*"(p" O, L), & f is identified with f(pz), thus
feFu(p=tO, L) ie. 6! strictly increase the analyticity radius, and by iterating, f € F9"(pO, L),
thus f e V7. O
Proposition 4.3. — Fork = (ky, ko, ) € X T(T), there is an inclusion,
VH,L < :%7

which under the identification of V27 with F" (pO, L) identifies V. with polynomial functions of degree
less or equal than ki — ko.
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Proposition 4.4. — Let s = (k1,ko,7) € X (T). The following sequence is exact,

an

dy an
0— VI{,L K,L ‘/v(k2_17k1+177‘)7L7

where d,; is given by,
f eV s Xkt g,

and
d 1
Xflg) = ﬁf gl -t 1
1
t=0
Proof. — Let us first check that d,; is well defined. Indeed, using (k; — ko + 1)-times the formula,
ty
(XF)(g ta ) =
1
d ty 1 ! ty
-1
%f g to -t 1 ty 2
1 1 1 1 =0
d 1
=g o] —wt't 1 | =ty (X))t s = T (X ) (9)
1
t=0
1 wu
(and the corresponding formula for the action of 1 ) we deduce that d, f has the right
1
weight.
1
We can check (evaluating on | u 1 ) that on F**(pO, L) d,, correspond to (d—i)kl_kQH,
1
where z is the variable on pO. Thus, using the previous identification with V. and polynomials of
degree less or equal than k1 — k2, we deduce can check that V,; is exactly the kernel of d,. O
Remark 4.5. — A more general version of the previous proposition as been developed by Jones [Jonll],

see also [AIP15], section 2.

5. Hasse Invariants and the canonical subgroups

Let p be a prime. Fix E = E < C an algebraic closure of £ and fix an isomorphism C ~ Q,,. Call
7,07 the two places of Q, that corresponds respectively to T, 074, through the previous isomorphism
(sometimes if p splits in E' we will instead right v = 7 and v = o7 following the notation of [BC04]).
Suppose now p is inert in E. Let us take X = KP?K, c G(Ay) a sufficiently small compact open,
hyperspecial at p, and denote X = X/ Spec(O) an integral model of the Picard Variety associated to
the Shimura datum of the first section and the level K (recall O = O ). Denote Z = Hom(O,C,) =

{r, 07} the set of embeddings of O into an algebraic closure of Q, (C, = Q,), where o is the Frobenius
of O, which acts transitively on Z, and Gal(E/Q) = {id, o}.

Recall the (toroidal compactification of the) Picard modular surface X = X is the (compactified)
moduli space of principally polarized abelian varieties A — S of genus 3, endowed with an action of
Op, and a certain level structure P, and such that, up to extending scalars of .S, we can decompose
the conormal sheaf of A under the action of O = O ,,

WA =WArDWA T,
and we assume dimpg w4, = 1 (and thus dimpg w47 = 2).

Remark 5.1. — 1If p splits in E, there is also a integral model of the Picard Surface, which is above
Spec(Z,), and it has a similar description (of course in this case O , ~ Z, x Z,).
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5.1. Classical modular sheaves and geometric modular forms. — On X, there is a sheaf w, the
conormal sheaf of A, the universal (semi-)abelian scheme, along its unit section, and w = w; @ Wy .
For any k = (k1, k2, k3) € 73 such that kq > ko, is associated a "classical” modular sheaf,

W' =SymM R ® (detwy7)*? ® wf‘“’.

Denote by ' = (—ka, —k1, —k3), this is still a dominant weight, and k — £’ is an involution. There is
another way to see the classical modular sheaves.

Denote by 7 = Homx 0 (0% ® Ox,w) where O acts by o7 on the first 2-dimensional factor and T
on the other one. Denote 7> = Isomx’o((’)g( ® Ox,w), the GLy x GL;-torsor of trivialisations of w
as a O-module. There is an action on 7 of GLy x GL; by g-w = wo g~ L.

Denote by 7 : T — X the projection. For any dominant ~ as before, define,
W = 1. O« [K],

the subsheaf of k’-equivariant functions for the action of the upper triangular Borel B < GL2 x GL;.
As the notation suggests, there is an isomorphism, if k = (k1, k2, k3),

T O [K] =~ Sym™ %2, ® (det wyr )2 @ whe.

Definition 5.2. — Recall that X is the (compactified) Picard variety of level K = K,KP?. The global
sections HY(X,w") is the module of Picard modular forms of level K and weight x. If D denotes the
boundary of X, the submodule H°(X,w"(—D)) is the submodule of Picard cusp-forms.

In the sequel we will be interested in the case K, = I, the Iwahori subgroup.

Remark 5.3. — There is a more general construction of automorphic sheaves w®1-*2:52" given in

[Har84], they are independant of 7 as sheaves on the Picard Variety, only the G-equivariant action (and
thus the action of the Hecke operators) depends on 7. Thus, we will only use the previous definition of
the sheaves. We could get more automorphic forms by twisting by the norm character (which would be
equivalent to twist the action of the Hecke operators).

5.2. Local constructions. — Let G be the p-divisible group of the universal abelian scheme over
Y < X. Later we will explain how to extend our construction to all X. G is endowed with an action of
O, and we have that his signature is given by,

p'r:]- q'r:2
pa'r:2 qa"r:1

which means that if we denote wg = wg,or ® wa,r, the two pieces have respective dimensions p,, = 2

and p, = 1. Moreover G carries a polarisation ), such that X : G —> GP+(?) is O-equivariant.
The main result of [Herl5], see also [GN17], is the following,

Definition 5.4. — There exists sections,
hay, € H (X ® O/p, det(we )27 ") and ha, € H'(X ® O/p, (wa.. )27 V),

such that IE; is given by (the determinant of) V2,

v v 2
wa,r — wg)o‘r - wép,‘r)7
and hﬁa;JT is given by a division by p on the Dieudonne crystal of G of V2, restricted to a lift of the
Hodge Filtration wgp .

Remark 5.5. — 1. These sections are Cartier divisors on X, i.e. they are invertible on an open and
dense subset (cf. [Herl5] Proposition 3.22 and [Wed99)).
2. Because of the O-equivariant isomorphism A : G ~ GP»(?) and the compatibility of ha, with
duality (see [Herl5], section 1.10), we deduce that,

—_—

ha,(G) = ha,(G”) = ha,(G'”)) = ha,(G).
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Thus, we could use only Ha\g: or }E and define it in this case without using any crystalline
construction. We usually denote by #ha = ha, ® ha,,, but because of the this remark, we will

only use }/1;1; in this article (which is then reduced, see the appendix).
3. We use the notation @ to denote global sections, but if we have G/ Spec(Oc,/p) a p-divisible

—_—

O-module of signature (2,1), we will also use the notation ha,(G) = v(ha,(G)), where the
valuation v on Oc, is normalized such that v(p) = 1 and truncated by L.

Definition 5.6. — We denote by X the p-ordinary locus of X = X ®o O/p, which is {r € X :

—_—

ha,(G;) is invertible}. It is open and dense (see [Wed99)).

Let us recall the main theorem of [Herl6] in the simple case of Picard varieties. Recall that p still
denotes a prime, inert in E, and suppose p > 2.

Theorem 5.7. — Let n € N*. Let H/Spec(Opr), where L is a valued extension of Qp, a truncated
p-divisible O-module of level n + 1 and signature (p; = 1,p,r = 2). Suppose,
1
Then there exists a unique filtration (socalled "canonical” of height n) of H[p™],
0c HY c HY, < H[p"],

T

by finite flat sub-O-modules of H[p™), of O-heights n and 2n respectively. Moreover,

ha,(H) <

2n

1
deg,,(H2,) + pdeg, (H2,) > n(p +2) - ’; ~ha. (H),

and
2n
pet—1
21 ha,(H).
In particular, the groups H and H_ are of high degree. In addition, points of H coincide with the kernel

of the Hodge-Tate map O o] rn— ,f;:ll has (H) and H]_ with the one 0fozH[pn]7UT7n_ p;:_ll ha, (H)" They

also coincide with steps of the Harder-Narasihman filtrations (associated respectively to T and o7) and are
compatible with p°-torsion (s < n) and quotients.

deg, (H7) + pdeg,.(H}) = n(2p+1) —

Definition 5.8. — Let H/Spec(OL,) as before, with n = 2m. Then we can consider inside H[2m] the
finite flat subgroup,
K, = Hgm + Hg:“

It coincides, after reduction to Spec(Op /1) (the residue field of L) with the kernel of F?™ of H[p*™]
(see [Herl16], section 2.9.1).

Recall that we denoted X/ Spec(Q) the (schematic) Picard surface. Denote by X" the associated
rigid space over I, there is a specialisation map,
sp: X" — X,
and we denote by X°"¢ — X" the open subspace defined by sp_l(yord).
Let us denote, for v € (0,1],

X(v) = {z € X" : har(x) = v(ha,(G;)) <v} and X(0) = X,

the strict neighbourhoods of X ord The previous theorem and technics introduced in [Farl0] (see [Herl6]
section 2.9) implies, if v < 41),1%1, that we have a filtration in families over the rigid space X (v),

0c H'c H}. < G[p"].

A priori, this filtration does not extend to a formal model of X (v), but as X is a normal scheme, we
will be able to use the following proposition.
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Definition 5.9. — For K /Q, an extension, define the category 2A0m of admissible O -algebra, i.e. flat
quotient of power series ring O << Xj,..., X, >> for some r € N. Define 912(0m the sub-category
of normal admissible O -algebra.

Proposition 5.70. — Let m be an integer, S = Spf R a normal formal scheme over O, and G — S
a truncated p-divisible O -module of level 2m + 1 and signature (p;r = 1,p,r = 2). Suppose that for all
r € 8™, ha, (v) < gms=r. Then the subgroup K, = H*™ + H™ < G[p*™] of S entends to S.

4p27n71 .
Proof — As we know that K, coincide with the Kernel of Frobenius on points, this is exactly as
[ATIP15], proposition 4.1.3. O

6. Construction of torsors

6.1. Hodge-Tate map and image sheaves. — Let p a prime, inert in E, and O = Op ,, a degree 2
unramified extension of Z,. Let K be a valued extension of E,. Let m € N* and v < 41)2%. Let
S = Spec(R) where R is an object of MAdm/Ok, and G — S a truncated p-divisible O-module of
level 2m and signature,
pr=1 g =2

{ Por = 2 Qor = 1
where 7 : O —> O is a fixed embedding. Suppose moreover that for all z € S, ha,(z) < v.
According to the previous section, there exists on S"% a filtration of G[p®™] by finite flat O-modules,

0c H?>™ c H?™ < G[p*™],

of O-heights 2m and 4m respectively. Moreover, we have on S a subgroup K,, G[p?m], finite
flat of O-height 3m, etale-locally isomorphic (on S"%) to O/p*™O @ O/p™O, and on S™, K,, =
HZ™ + HZMp™).

2m

i1

Proposition 6.1. — Let w,, wy, € v(Og) such that w,r < m—=L vandw, < 2m — B Then,

p?—1
the morphism of sheaves on S 7 : wg — wk,,, induce by the inclusion K,, < G, induces isomorphisms,

Tr P WG, rw, — > WK, 7w, and Tyr: WG,o1,wer T WK, , 0T, wer

Proof — If G/Spec(O¢) (C a complete algebraically closed extension of Q,), the degrees of the
canonical filtration of G assure that,

2m 4m __ 1

-1
deg,, (G[p™]/Hy}) = pgilv and deg (G[p*™]/HZ™) > 2",
g

p*—1

and there is thus an isomorphism,

Walp™],mw, > WH? 7w,

and also for o7 and G[p?™]. But there are inclusions H™ = H2"[p™] < K,,, € G and H?™ c K,,, =
G such that the composite,

WGoTwer = WKy ,0T,wer — > WH™ oTw5r >
is an isomorphism, which implies that the first one is. The same reasoning applies for 7. We can
thus conclude for S as in [AIP15] proposition 4.2.1 : Up to reducing R we can suppose wg is a free
R/p*™*+1-module, and look at the surjection ayr : R — WG or = WK,, 07w, it is enough to prove
that for any (z1,2) in ker o> we have x; € p* R, but as R is normal, it suffice to do it for R,, and
even for ]?i;, for all codimension 1 prime ideal p that contains (p). But now ]?i; is a complete, discrete
valuation ring of mixed characteristic, and this reduce to the preceding assertion. O

Proposition 6.2. — Suppose there is an isomorphism KL (R) ~ O/p™O @ O/p*™O. Then the cokernel of
the o1 -Hodge-Tate map,
HTcp o7 ®1: K (R)[P"] ®0 B — wic,. 07,

is killed by p%, and the cokernel of the T-Hodge-Tate map,
HT o . ®1: KD (R)[p"]®0 R — wk,, 7\
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is killed by pPQvi—l.

Proof. — This is true for G/Spec(O¢) by, [Herl6] Théoréme 6.10 (2),with the previous proposition

(because ;{"_vl < 1 — v, already for m = 1). For a general normal R, we can reduce to previous case

(see also [AIP15] proposition 4.2.2) : up to reduce Spec(R), we have a diagram,

~

R? R?

HT,, ®1
KnD (R)[p"]®o R ———— Wk, .or

and Fitt'(7) (which is just a determinant here) annihilates the cokernel of +y, and it suffices to prove that

ptv ptv
p:LI € Fitt' (7). But as R is normal, it suffice to prove that pPPLl e Fitt' ()R, for every codimension
1 prime ideal p that contains (p). But by the previous case, we can conclude. The same works for 7. [

Proposition 6.3. — Suppose we have an isomorphism K2 (R) ~ O/p™O @ O/p?*™O. Then there exists on
S = Spec R locally free subsheaves For, Fr of wa,or and wa, r respectively, of ranks 2 and 1, which contains

ptv v 2m am _
PP lwg or and pr*—1wa ;, and which are equipped, for all we, < m — ppgi_ll and w, < 2m — pp2_11 v,

with maps,

HTyr 0, : K2(R) — For ®r Rw,., and HT,, :KE(R) — F, ®r Ru,,

which are surjective after tensoring KL (R) with R over O.
More precisely, via the projection,

K5 (R) —» (H™)P(Rk),
we have induced isomorphisms,
HTo"nwaT : Krg (RK) ®o RwaT - ]:0'7 ®r Rw(,-rv

and
HTT,wT : (HEW)D(RK) ®o qu— — F. ®nr Rw,-

Proof. — This is the same construction as [AIP15] proposition 4.3.1. To check the assertion about the
isomorphism with H72_m, it suffices to show that the map HT, ,, factors, but it is true over R, (as the
canonical filtration is given by kernels of Hodge-Tate maps) for every codimension 1 ideal p, and it is
moreover surjective, so it globally factors and is globally surjective, but the two free R, -modules are
free of the same rank 1, so it is an isomorphism. O

Moreover the construction of the sheaves JF is functorial in the following sens,

Proposition 6.4. — Suppose given G,G' two truncated p-divisible O-module such that for all = €
879 ha,(G,),ha,(G) < v, and an isogeny,
¢:G— G
Assume moreover that we are given trivialisations of the points of K2 (G) and KE(G'). Then ¢* induces
maps
¢r FL— F!

T

* . !
and ¢o‘r . ]:U-,- > ]:o"ra

that are compatible with inclusion in w, reduction modulo p* and the Hodge-Tate maps of K1

Proof. — Once we know that ¢ will send K2 (G) inside K2 (G’) this is straightforward as F; corre-
sponds to sections of wg 7 that are modulo p*? generated by the image of HT>. But K, is generated by
the subgroup H™ and H2™ each begin a breakpoint of the Harder-Narasihman filtration HN,,, (G[p™])
and HN, (G[p*™]) respectively, and thus by functoriality of these filtrations, ¢ sends each subgroup for
G inside the one for G’ and thus sends K,,,(G) inside K,,(G’). O
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P21
p?—1
previous propositions. Let R € O — 920m and S = Spf(R). In rigid fiber, we have a subgroup of

K, [p™]/S™9, H™ < K,,[p™] which induces a filtration,

6.2. The torsors. — To simplifiy the notations, fix w = w; = wsr < Mm — v to use the

0 < (Hy/HP(Rk) = K,)(R),
of cokernel isomorphic to (H™)P(R).
Suppose we are given a trivialisation,
VOO OO ~ K(R),
which induces trivialisations (first coordinate and quotient),
Gor - (HI/HMP(Ric) ~ Ofp™0 and b, : (H2™)P(Ric) ~ O/p*mO.

Let Gr,r — S be the Grassmanian of locally direct factor sheaves of rank 1, Fil! For © For. Let
Grt_ — Gry, the G2 -torsor of trivialisations of Fil' 7,, and .7-_57/]_:’111 Fyr. Let also Gr — S the
G, -torsor of trivialisations of F.

Definition 6.5. — We say that a point of Gror, Grit, or Grt, (Fil' F,,, P{™, P§™, PT) is w-compatible
with ¥, ¥y, if

L Fil' For ®r Ru = HT o o (H2/HI)P (R) ®0 Ru),

2. P{TT ®R Rw = HTUT,w O(waT ®O Rw)a

3. PQUT ®r Rw = HTUT,w 0(1/)7 ®o Rw),

4. PT ®R Rw = HTT_’w 0(1/).,- ®() Rw)

We can define the functors,

~om ~ R—2m — SET
onw A —— {w — compatible Fil'(F,, ®r A) € Gro,(A)},
. R-m — SET
oTw A > {w — compatible (Fil'(F,, ®r A), P], PJ) € Gri (A)},
. R—2om — SET

A +—— {w — compatible P7 € Gr}(A)}.

The previous functors are representable by formal schemes, affine over S = Spf(R), and locally iso-
morphic to,

(pw%l(o 1 ) Xpt(0n) SPE(R)  for 3Wyryy, 1+ p“B(0,1) for IW7,

and

14+ p»B(0,1 -
( pw%(ofl) ) 1 _|_pw%(07 1) ) X Spf(Ok) Spf(R) for JQ:H::‘r,u)

We also define J20, = jﬂﬂj’w X g JQU;_@. The previous constructions are independent of n = 2m
(because Fr, F,, are).

Let T° = Respz, Gm x U(1) the torus of U(2,1) over Z, whose Z,-points are O* x O". Its scalar
extension T' = T° ®, O is isomorphic to G}, and Grt = Grf x Gr} — Gr = Gr; is a T-torsor.
Denote ¥ — Spf(O) the formal completion of T" along its special fiber, and ¥, the torus defined by,

Ty (A) = Ker(T(A) —> T(A/pUA).

Then 3211; —> JW,r 4 is a Ty -torsor.
Denote by ZWg 1 1, IWT. IWE

T, W) oT,W?

IWZ, T the generic fibers of the previous formal schemes.



FAMILIES OF PICARD MODULAR FORMS AND AN APPLICATION TO THE BLOCH-KATO CONJECTURE. 15

7. The Picard surface and overconvergent automorphic sheaves

7.1. Constructing automorphic sheaves. — Let us consider the datum (E,V,9,0p,A = O%,h)
the PEL datum introduced in section 2. Let p be a prime, inert in £ and G the reductive group
associated over Z,. We fix K¥ a compact open subgroup of G(A%) sufficiently small and € = G(Z,)
an hyperspecial subgroup at p. Let X = Xk»¢/Spec(O) the (integral) Picard variety associated to the
previous datum (cf. [Kot92],[Lanl3],[LRZ92]).

Let K/O[1/p] be a finite extension (that we will choose sufficiently large) and still denote X =
X@K =X X Spec O SpeC(OK).

Denote by A the universal semi-abelian scheme, X" the rigid fiber of X, X ord the ordinary locus
and for v € v(K), X (v) the rigid-analytic open {x € X" : ha,(x) < v}. Denote also X —> Spf(Of)
the formal completion of X along its special fiber, % the admissible blow up of X along the ideal
(}E,p”) and X(v) its open subscheme where (ﬂ;,p”) is generated by ha,.

Lemma 7.1. — The formal scheme X(v) is normal.
Proof. — As X (v) is smooth, thus normal, and EZL; is reduced, this follow from the
Lemma 7.2. — Let A€ Ok — Adm such that Ag is normal and A7 is reduced. Then A is normal.

Proof — Denote, for all z € Ay,

va(z) =sup {neZ:ny"z e A} and |z|g = 7TI_(UA($).

Then we can check that | f+g|a < sup(|f|a, |g|a) and that |f™]|4 = | f]". Indeed, WI_(UA(f)f € A\riA.
Thus, as A/mx A is reduced, (WI_(vA(f)f)” € A\mk A and thus v4(f™) = nva(f). For this norm, we
have that

A={,’E€AK:|$|A<1}.
Now let us verify that A is normal. Let z € A™"™, in particular, x € A%°™™ but as Ag is normal,
x € Ai. Now write, for a; € A,0 <i<nanda, =1

"+ ap_ 12"+ + a1 = —ag.
Then sup; <;<,, |2 @p—i|a = |ao|la <1, thus [2™]4 = |z|} <1, and |z|a < 1. Thus z € A. O

O

Letn =2m e N* and v < 21)2,,%. In general unfortunately A[p™] will not be a finite flat (because
it has a non-constant toric rank on the boundary of X), but up to cover X by an etale affine covering,
A will be approximated by a Mumford 1-motive, which preserve A[p"], and we can thus suppose that
locally on X we are given a truncated p-divisible O-module G of level 2m + 1, and signature (2, 1) that

coincide with A[p?™*1] over Y (as in [Str10]).
By the previous sections, we have on X (v) a filtration of G by finite flat O-modules,

0c H™ < HZ = Gp*™],

locally isomorphic to O/p*™O and (O/p*™©)2. Moreover, the subgroup K,, = HZ™ + H2"[p™]
extend to X(v) by proposition 5.10, and over X (v) is locally isomorphic to

O/p*™O @ O/p™O.
Definition 7.3. — We denote,
Xl (me) = ISOrnX(l)),pol (Kan O/pmo @® O/p%no),

where the condition pol means that we are looking at isomorphisms 1) = (t1,12) which induces an
isomorphism "in first coordinate”,

11 = (V1) (mm e (HJ/HMP =~ O/p™0O,
such that (v1.1)” = ((¢1,1)(®))~", and such that the quotient morphism,
Vo1 =1/ (V1) ymyp + (HE™P — O/p™ O,
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is zero.
Remark 74. — The map 1), ; is automatically an isomorphism. Moreover,
(11)P - Ofp™O — HIL/HI X (HI/HI P,
where the last morphism is induced by A, the polarisation of A.
Denote by B,, the subgroup of GL(O/p™O @ O/p*™O)) of matrices,
(67"
0 d
We can map O* x O! (diagonally) to B,,.

)< ooy (O%gsg)x )

such that a=! = a(?) ie. a € (O/p"O

Denote also,
ot o
B00<ZP) = < 0 O* )

which surjects to B, and that we can embed into GLy X GL; (even in its upper triangular borel) via,

0 b or(a) o7(b)
0o d ) o7(d)

7(d)
We denote by 1), and 1), the inverses of the induced isomorphisms,

tor 1 Ofp™O = (HJL/H")P
and the quotient,

Y = w_l/waf : O/p2no = (Hfm)D

We also denote X;(p?™)(v) the normalisation of X(v) in X1 (p*™)(v). Over X1(p*™)(v), we have by
the previous section locally free subsheaves of Ox, (,2m)(.,)-modules F;, ;- of wg,r and wg o together
with morphisms,

HTT,w Ow,,.[pm] . (O/me) Ko Oxl(pzrm)(v) = ]'-T ®@K OK/pw,

HTJT,w Owa'T : (O/pmo) ®o O.‘{l(pQW)(v) — For ®(’)K OK/pwa
and denote by F22"  the image of the second morphism, it is a locally direct factor of Fyr ® Ok /p",

oT,w
and passing through the quotient, we get a map,

HTGT,w o w‘r [pm] : (O/pmo) Ko O}fl (p™)(v) — (-7:07' ®OK OK/PM)/(}_;:?”U,)
Using the construction of torsors of the previous section, we get a chain of maps,
3%, — I8, 1(P*™) (v) = X(v).
Moreover, 7 is a torsor over the formal torus ¥,,, 7o is affine, and we have and action of O* x O!
and B,, on X1(p*™) over X(v). Denote by B the Borel of GLy x GL;, B its formal completion along
its special fiber, and B,
B.,(A) = Ker(B(4) — B(A/p" A)).
We can embed ¥ in 8 (which induce an embedding ¥,, < B,,) and O* x O' in T, via
o7 (b)
(a,b) € O x O —> or(a) €.

such that the action of O* x O' on X;(p*™)(v) and via T on Gr* preserve I, (over X(v)). More
generally, the action of By, (Z,) on X;(p?™)(v) (and thus X;(p*™)(v)) and via B on GrT preserve
W,

Let k € W,,(L). The character r : O* x O — O extend to a caracter,

k(0% x OHYT, — OE@;,
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which can be extended as a character of,
k1 (0% x OB, — O%Gm,
where 4, < B,, acts trivially, and even as a character,
ki B(Z,)By — O5Gp,
where U(Z, )4, acts trivially. Let us denote 7 = 73 0w 0 ;.

Proposition 7.5. — The sheaf 7,Oyy+ (] is a formal Banach sheaf, in the sense of |AIP15] definition
A.121

Proof — We can use the same devissage as presented in [AIP15] : denote x° the restriction of & to
% Then (Wl)*O:mm [£°] is an invertible sheaf on J2J,,. Its pushforward via 7o is then a formal
Banach sheaf because 7y is affine, and pushing through 73 avec taking invariants over By (Z,)/p" =

By, 4O 5qy+ [£] is a formal Banach sheaf. O
Definition 7.6. — We call ol := T Ogqp+ [k] the sheaf of v-overconvergent w-analytic modular

forms of weight x. The space of integral v-overconvergent, w-analytic modular forms of weight ~ and
level (outside p) KP, for the group G is,

M (%(v)) = HO(X(v), wl}]).

Remark 7.7. — Unfortunately it doesn’t seem clear how to define an involution k — &’ on all W
which extend the one on classical weights, and thus we only get that classical modular form of (classical,
integral) weight < embeds in overconvergent forms of weight ...

5oy > W' > w and k € W, (L), and thus

7.2. Changing the analytic radius. — Let m — oS

k € W, (L). There is a natural inclusion,
W, — IWL,
compatible with the action of (O x O')%B,,. This induces a map 1w’ — 1’} and thus a map,
M (%(v)) — ML (%(v)).

Definition 7.8. — The space of integral overconvergent locally analytic Picard modular forms of weight
K, and level (outside p) KP, is,

MU(E?) =l ME(X(0)):

w
v—0,w—00

7.3. Classical and Overconvergent forms in rigid fiber. — Denote X+ (2m)(v) the quotient of
X1(p?™)(v) by U,, < B, which is isomorphic to,
1 o/pmo O/pmo)*  opmo
( 1+ p™mO/p*™O ) - ( (O/p*™O) x > ’

Let also denote ij+(p2m)(v) the corresponding rigid space. Over the scheme X, we have the locally
free sheaf wyq = w4 rPwa o+, which is locally isomorphic to Ox (—BOE(, with the corresponding action of
O. Denote by T the scheme Hom x 0 (0% ®Ox,w¢) of trivialisation of w as a Ox®z,0 = Ox@Ox-
sheaf, denote 7* its subsheaf of isomorphisms, it is a GLy x GL;-torsor over X, where g € GLy x GL;
actson T* by g-¢ = ¢og L. For k € XF(T) a classical weight, denote by w" the sheaf 7, O7x[r'],
where 7 : T —> X is the projection and k — &’ the involution on classical weights. In down-to-earth
terms, k = (k1, k2, 1) where k1 > ko and

w" = Sym" k2 wa,or @ (det wG,UT)®k2 ® (det wGJ)@l.

We have defined X (v), which is the rigid fiber of X(v). Denote by Tqn, 7.5, (GLa x GL1)4y the

analytification of the schemes T, 7, GL,, and Ty, Mx-g, (GL2 x GL1),;4 Raynaud’s rigid fiber of the
completion along the special fibers of the same schemes. As 7> /B is complete, 7,7, /Ban = T,5,/Brigs
over which there is the diagram,
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7:">1'<g/UTig 7;>T<L/Uan

o A

7:’>i<g/B7”i9

where f is a torsor over Uy;5/Byig = Trig (the torus, not to be mistaken with 7;;4) and ¢ a torsor over
Tsn (same remark).

Definition 7.9. — Let k € W,,(K). We denote by w! the rigid fiber of /! on X (v). It exists by
[AIP15] Proposition A.2.2.4. It is called the sheaf of w-analytic overconvergent modular forms of weight
k. The space of v-overconvergent, w-analytic modular forms of weight « is the space,

H (X (v),w)).

The space of locally analytic overconvergent Picard modular forms of weight x (and level KP?) is the
space,
MI(X) = lm HO(X(0),wi).

v—0,w—00

The injection of Oy ,)-modules 7 @ For © wa = wa,r DwAa or is an isomorphism in generic fiber,
and this induces an open immersion,

IWaw = T/ Brig % x ) X1(0*™)(v).
We also have an open immersion,
IW’QJ’_U = Ton/Uan X x(v) X1 (p2m)(v)~

The action of B,, on X1(p?™)(v) (or X1(p?™)(v)) lift to an action on 320, (or ZW,,) because being
w-compatible for Fil' . only depend on the trivialisation of K2 modulo B,,. Similarly the action of
U, lifts to J20;" and ZW,. We can thus define ZW? and ZW;} " the respectives quotient of ZW,, and

IW:) by B, and Un, which induces open immersions,

IW,, < Tr5/Brig X x(o) X(v) and  IWE? < T [Uan X x () X1+ (p2m) (V).

rig
Proposition 7.10. — Suppose w > m — 1. Then there are embeddings
W0 < (T*"/B)x@) and h: WY < (T*"/U) x (v)-

1 ~
Proof. — Let S be a set of representatives in [, ~ ( 1(790 (g)x ) of I,,/U,, which we can suppose of
the form,
[5] ) x ! 1
, a€(Op™)*,be (O /p™),ce O/p™ .
( plc] [d] (O/p™) (O /p™) /p
Here, [.] denote any lift. Then A is locally (over X (v)) isomorphic to,
1+ p¥B(0,1)
h:[[M | p*B(O1)  1+p“B(0,1) ¥ — (GLy x GLy /U)an
ves 1+p¥B(0,1)

where M is the matrix which is locally given the Hodge-Tate, and correspond to the inclusion 7, @
For € wr ®wyr, and if v € S, then 7 is given by,

ot (b)

~ b
Y= | por(c) o7(a) , if vy = ( )
(a) pc a
p+v
Py
But there exist M’ with integral coefficients such that M'M = pri-tly v , and it is easily

pri-t
checked that M’ o h is then injective if w > m — 1. The proof for the other embedding is similar (and
easier). O
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We could have defined w’' directly, by g, O 10,1+ [£] where g is the composite,
WO S T — X (v)

w

as shown by the next proposition. Remark that X (v) © X7, () (v) via the canonical filtration of level L.
Proposition 7.11. — The sheaf i\ (defined as the rigid fiber of ') is isomorphic to g, O, 0.+ [K].

Proof. — In the rigid setting, we did a quotient by U, to get IW% T, But wil is constructed as
((m2 0 1) O+ [K°])(—K)B7, and the action of U,, on (2 o m1)xOpp+ [kY] is trivial and it thus
descend to X,,+(p2m)(v) and is isomorphic to the xY-variant vectors in the pushforward of Ozo.+-

O
Proposition 7.12. — Fork € X, (T") and w > 0, there is a restriction map,
w?((v) - wﬁ;t

induced by the inclusion TW " < (T"/U). Moreover, locally for the etale topology, this inclusion is
isomorphic to the following composition,

w—an Te€SQ w—an
Vi <o Vo g o Zan,

Proof. — Locally for the etale topology, w” is identified with algebraic function on GLg x GL; which
are invariant by U and varies as ' under the action of T, i.e. to V. But a function f € wa/T is locally
identified with a function,

7(a)(1 +p*B(0,1))
fid p“B(0,1) 7(b)(1 + p*“B(0,1)) ,a€ 0 be 0"} — L,
or(b)(1+p*B(0,1))
which vary as x’ under the action on the right of T(Z,)%,,. As &’ = (k1,k2,k3) € X4 (T) we can
extend f to a x’'-varying function on

Gm B(0,1)
Ipw = { pr(Oa 1) Gm },
Gm
extending it "trivially” ; i.e.
T U 1 0 T u
f pYz Y =f pPzzt 1 0 y—pYzu
t 1 t
1 0
= 2P (y — pUzu)F2ths f PPzl 1
1
Under this identification, locally for the etale topology w” | is identified with Voo™ O

8. Hecke Operators, Classicity

As explained in [AIP15] and [Bral6], it is not possible to find a toroidal compactification for more
general PEL Shimura varieties (already for GSp,) that is preserved with all the Hecke correspondance,
but this can be overcome by looking at bounded section on the open variety. For the Picard modular
variety, there is only one choice of a toroidal compactification, and thus this problem doesn’t appear,
but we will keep the general strategy (and thus we won’t have to check that the correspondances extend
to the boundary). Thus, instead we will define Hecke operators on the open Picard Variety Vr, ;) of
Iwahori level, and as bounded section on the open variety extend automatically to the compatification
(see [AIP15] theorem 5.5.1, proposition 5.5.2, which follows from a Theorem of Lutkebohmert), we show
that Hecke operators send bounded functions to bounded functions, and thus induces operators on
overconvergent locally analytic modular forms.
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8.1. Hecke operators outside p. — These operators have been defined already in [Bral6], section 4.
We explain their definition quickly, and refer to [Bral6] (see also [AIP15] section 6.1) for the details.
Let ¢ # p be an integer, and suppose ¢ f N, the set of places where K, is not maximal. Let v €
G(Q¢) n End OE%(O%,Z) x Q/, and consider,
C"/ =7 w(p)>

the moduli space of isogeny f : A} — Aj such that,

1. fis Og-linear, and of degree a power of /.

2. f is compatible with polarisations, i.e. f*As is a multiple of A;.

3. f is compatible with the KP-level structure (at places that divides V) (remark that f is an isomor-

phism on T, (A;) when ¢ # £ is a prime).
4. f is compatible with the filtration given by the Iwahori structure at p.
5. The type of f is given by the double class G(Z;)vG(Z¢).

Remark 8.1 — The space C doesn’t depends on 7, only on the double class G(Z;)vG(Zy).

We could similarly define C'; without Iwahori level at p (i.e. for Y(z,)k») without the condition that
f is compatible with the filtration given by the Iwahori structure at p. In our case, this Iwahori structure
at p will always be the canonical one, and thus f is automatically compatible as it sends the canonical
filtration of A; in the one of As.

Denote by p; : C;, — Y the two (finite) maps that sends f to A;. Denote by C,(p") the fiber
product with p; of C., with Y1 (p")(v) — V(v) Ss Viw(p)(v), where s is the canonical filtration of
A[p]. Denote by f the universal isogeny over G (p"). It induces an O-linear isomorphism,

p;(]:‘r EB]:UT) —’pik(}-7'®]:o-r)-

In particular, we get a B(Z,)®B,,-equivariant isomorphism,

—~+ - —~
F* 05 IW g 1y oy ) — PIIW w130, o) (0) -

We can thus form the composite morphism,

n 5 n 7! n
HOQ1(0")(0), Ogzg) 25 H(C, (0") (0), 9Oy ) 0o HO(CL(0") (0), 9 Oy
Tr(

8 HO D (p")(0), Oy

As f* is an isomorphism, it send bounded functions to bounded functions, and we thus get the propo-
sition,

Definition 8.2. — Let k € W,,(K) a weight. We define the Hecke operator,
T, : Myt — Myt

v,w?
as the restriction of the previous operator to the bounded, k-equivariant sections under the action of
B(Z,)®B . It induces an operator,
T, : M~ — M*T

Definition 8.3. — Define H to be the commutative Z -algebra generated by all operators 7', for all
¢y Np and all double classes «. These operators commutes on overconvergent forms, and thus H acts
on them.

8.2. Hecke operator at p. — We will define a first Hecke operator at p, U,. Define C' the moduli
space over K which parametrize data (A, \,i,7m, L) where (A, \,i,1) € Xk (v) and L < A[p?] is a
totally isotropic O-module for A of rank p* such that

Llpl®@ H; = A[p]) and pL® H,, = Alp].

As remarked by Bijakowski in [Bij16], the second condition is implied by the first one and the isotropic
condition. We then define two projections,

P1,p2: C— XKa
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where p; is the forgetful map which sends (A, \,4,m, L) to (A, \,i,7, L) and py sends (A, \,i,7, L) to
(A/L,N,i,n'). To compare the correspondance with the canonical filtration we will need the following
lemma.

Lemma 8.4. — Letp > 2 and G be a p-divisible O -module of unitary type and signature (2,1). Let H be
a sub-O-module of p-torsion and of O-height 1. Then the two following assertions are equivalent,

1 Deg, (H)>1+p—3,

2. ha-(G) < 1 and H is the canonical subgroup of G[p] associated to T.
Let H be a sub-O-module of p-torsion and of O-height 2. Then the two following assertions are equivalent,

1. Deg, . (H)>p+2—1,

2. ha-(G) < 1 and H is the canonical subgroup of G[p] associated to o.

In both cases we can be more precise : if v = 1 + p — Deg_(H) (respectively 2 + p — Deg,,.(H)) then
ha,(G) <.

Proof — In both cases we only need to prove that the first assumption implies the second, by the
existence theorem of the canonical filtration (ha,(G) = ha,,(G)). Moreover, we only have to prove
that ha,(G) < 3, because then G[p] will have a canonical filtration, and in both cases, H will be a
group of this filtration because it will correspond to a break-point of the Harder-Narasihman filtration
(for the classical degree, as we only care about filtration in G[p]). Let us do the second case, as it is the
most difficult one (the first case can be treated similarly, even using only technics introduced in [Farll]).
Let v = 2 + p — Deg,. (H). We can check that deg, . (H) > 2 — v, thus deg_ (H”) < v, and thus for
alle > 1—v,if E = G[p]/H,
WGP gr.e = WED grec-

But then the cokernel of ag ¢ ® 1 is of degree ;;2%1 Deg, . (E) (it is a Raynaud subgroup of type
(p---p)), and the following square is commutative,

Gpl(Ox) ——— E(Ok)
QG oT1,e QF oT,e

WG[p)P,oT,e WED or.e

thus in particular deg Coker(a g, or,®1) = deg Coker(agp),or,®1). But according to proposition 5.25
hag 7 (G) s
of [Herl6], we can check that the image of ag[y) - is always included inside up »*-1 Fp2+p »” Oc¢/p c

WapP,or =~ Oc/p for some u € OF. Rewriting the inequality with Deg, (E) = Deg,,(G[p]) —
Deg,, (H) we get,

pP-1

min(ha,(G), o

) < 2+p7 DegoT(H) =,
butasv<%<1—p%,wegethaT(G)<v. O
Thus, we can deduce the following,

Lemma 8.5. — Let (A, \,i,n, L) as before with corresponding (A, \,i,m) € X(v) and v < Then

A/L € X(v), and A[p*]/L coincide with the group K,(A/L).

1
2(p?+1)°

Proof. — By hypothesis on L, the map
H; — Alpl/Llp],

]
is an isomorphism on generic fiber, thus Deg_(A[p]/L) > Deg,(H}) > 1+ p—v. Thus by the previous
lemma, we get that, ha,(A/L) < v and moreover A[p|/L[p] coincide with the first canonical subgroup
associated to 7. Moreover, we deduce that deg A[p]/L > 2 — v. Now consider the composite map,

H7, — A[p’]/L — (A[p*)/L)/(A[p)/Llp] = Q — 0.
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Because H}_ is sent inside A[p]/L[p], we get the factorisation,
ng/H;T - Q
This is a generic isomorphism by the second hypothesis on L, and thus Deg,(Q) > Deg,. (H2_/H..).
But by construction, H2_/H_}_is the canonical subgroup (for o) of A/H}_and thus Deg, (HZ2 /H! ) >
p + 2 — Ha, (A/HL,), and Ha,,(A/H}) > p?Ha,,(A) (this is [Herl6] proposition 8.1), and this
implies that deg Q > 3 — p*v. Using the exact sequence,
0 —> A[pl/L[p] — APp*]/L — Q — 0,

we get that deg A[p?]/L > 5 — p?v — v. A similar argument also shows that deg K;(A/L) > 5 —
(p? + 1) ha, (A/L). But using Bijakowski’s proposition recalled in [Herl6] Proposition A.2, we get that
if 2(p? + 1)v < 1, then A[p?]/L = K1(A/L). O

Lemma 8.6. — Suppose v < ﬁ. Let G/ Spec(Oc¢) be a p-divisible group such that ha,(G) < v, then
K1 = G[p?] coincide over (90/1021%2 with Ker F? = G[p?]. In particular,

ha, (G/K1) = p” ha-(G).
Proof — This is Appendix B. O

Proposition 8.7. — Letv < ﬁ. The Hecke correspondance U, define by the two previous maps preserve
X (v). More precisely, if y € pa(py *({2})) where x € X (v), theny € X (v/p?).

Proof — This is the two previous lemmas as (A/L)/(A[p?]/L) = A. O

Denote the universal isogeny over C' by,

m: A— A/L,

which induces maps w41, - LR wa,r and W/, or Zom, WA, 7. We define
%\; :p;4 G,);L —)p>1k ajz
by T =T, DT by 7%, = 7, and T*,, sends a basis (e1,e2) of wa/p or to (%71'*6177'(*62). This
is an isomorphism, and we can check the following,

We will need to slightly change the notation as in [AIP15], Proposition 6.2.2.2.
Definition 8.8. — Denote by wy = m — p;;"__l
as the subspace of 7 /U,y (over X;(p™)(v)) of points for a finite extention L of K consisting of
(A, n, Fily,, P{7, P§™, P7) such that there exists a polarised trivialisation ¢ of K satisfying,

1. Fil,; is (wo, ¢)-compatible with H™,

2. PlaT =4ai, HTO‘T,U}Q (’(/)(61)) + az.1 HT(TT,wo ('L/)eg) (mOd pwo]:cfr)a

3. PJ7 = az,2 HTUT,wo (7/)(62)) (mOd PO For + Fﬂm’)’

4. Py = tHT, y, (1(es)) (mod p™F,),
where a1 1 € B(1,p"""),a29 € B(1,p">2),t € B(1,p""), az,1 € B(0,p">").

v and for w = (w11, we,1, W22, W, ), define I)/VSJ’+

2m
P —

1 /
ST V- Denote w' = (w1,1, w21 + 1, w22, W ).

Let w as before, with wy 1, w22 <m —1 —
Proposition 8.9. — The quotient map,
~-1
™ P Ton/Uan — 05700/ Uan
sends p’l"IV\/&Jr to p’Q“IVV?U’,Jr (i.e. improves the analycity radius)

Proof — Let x = (A,%n,L) be a point of C. Let (e1,e2) be a basis of KL (p™O/p*™Oe; @
O/p*™Oey = KP) and denote by (€}, €5) a similar basis for A/L such that if 21, x5 and 2, 25, denote
the dual basis then 77 : K;;LD — K2 in these basis is given by

(")
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Let (Fil/7w/) € pi X JUan. As 7P is a generic isomorphism on the multiplicative part, it in enough
to check the proposition on F,,. Suppose 7*(Fil',w') = (Fil,w) € p} IWO *, which means (on the
oT-factor),

1
Eﬂ-*wll € al,l HTUT,w(el) + (1271 HTUT,w(eQ) + pwg‘/—';ﬂ';
T*wh € ago HT gy 0 (e) + pU0 Fpp + Fil' .
But then,
7T*’LU/1 € pal,l HTUT,w (61)+pa2,1 HTUT,w(62)+pr+1]:oT = al,l HTUT,w (7TD€/1)+PCL2,1 HTUT,w(ﬂ-Deé)"'pwUJrl]:aT;
and thus, as pF < 7*F’,
w/l € al,l HT’LU,O’T<€/1) + pa272 HTw,O’T(e/Q) + pwu]:lv
wh € ag o HTyy o (eh) + Fil' 4po=t F.

As wg 2 < wp — 1 we get the result. O

27n_1
v. We can then

Suppose v < and define wgf = g*IWi, [k]. Suppose w <m — 1 —

1
2(p>+1)°
look at the following composition,

) P1

HO (o)), 2 HO(Cpeosl) T HO(C, prsth) s HO(0), o),

where wj ; = w + 1 (remark that if & is w + 1-analytic, there is an isomorphism between g IV k]
and wﬁﬂ; L)

Remark 8.70. — The normalisation of the Trace map is the same as in [Bij], the renormalisation of 7*
giving a factor pk2.

Definition 8.71. — Suppose v < 5 QH) The operator U, is defined as the previous composition on
bounded functions precomposed by H®(Y(v),w?l) — Ho(y(v/pQ),w;T). In particular it is compact
as HO(V(v), wil) = HOV(v/p?), wy) is.

Proposition 8.12. — Let L be a finite extension of K, and x,y € X (v)(L) such that y € px(py*(x)), and
let K be a w-analytic character. Then U, is identified with 0, i.e. there is a commutative diagram,

(7)1

(WZIT)y (qu/wz
Y w—an 6 Y w—an
0,k’,L 0,x’,L

We can also define an operator S, by considering the two maps,

P1,p2 ¢ XIw(p) - Xlw(p)
defined by p; = id and p2(A, Fil(A[p])) = (A/A[p],p L Fil(A[p])/A[p]). The map ps correspond to
multiplication by p on w and the universal map 7 : A — A/A[p] over Xp,,(,) induces a map,
= piTen — Ton-

Define 7* = ;1)7T* and consider the operator,

K P* K ;T\’E_l K
HO(XIw(p)vwa) — HO(XIw(p)vpgwa) - HO(XIw(p)vwa)‘

The map 7* preserve the Hasse invariant (as A[p™]/A[p] ~ A[p™]) and sends the canonical filtration

if it exists to itself (if v < ﬁ). In concrete terms, on the classical sheaf w™ < w™f, if we write

k' = (k1,ko,k3) € Z® (and thus k = (—kg, —k;, —ks3)) the previous composition corresponds to a
normalisation by p~*17F2=F3 of the map that send f(A4,dz;) — f(A, pdz;).
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Definition 8.13. — Define also the Hecke operator S), to be the previous composition. S, is invertible
as p is invertible in 7.

We define the Atkin-Lehner algebra at p as A(p) = Z[1/p][U,, S*]. It acts on the space of (classical)
modular forms too.

Classicaly it is also possible to define geometrically operators U, and S, at p on classical modular
forms of Iwahori level at p, and they obviously coincide with ours through the inclusion of classical
forms to overconvergent ones. It is actually proven in [Bijl6] that these Hecke operators preserve a strict
neighborhood of the canonical-yi-ordinary locus of X7, given in terms of the degree.

Remark 8.74. — Because of the normalisation, the definition of the Hecke operator slightly differs
with the one by convolution on automorphic forms. The reason is that the Hodge-Tate or automorphic
weights does not vary continuously in families. This is already the case in other constructions. Let us
be more specific. Let f € H(Xy, x,w") a classical automorphic form of weight x = (k1, k2, k3) and
Iwahori level at p. To f, as explained in proposition 2.6 is associated a (non-scalar) automorphic form
® (and a scalar one ¢y whose Hecke eigenvalues are the same as the one of ®f). The Hecke action
on f and @ is equivariant for the classical (i.e. non renormalised) action at p, more precisely at p
if we denote S, and U, the previous (normalised operators) the classical one are Sf,lass = p|k|Sp and
U;lass = ph2 Up. The operators Sgl‘”s and U;l‘”s corresponds to the two matrices,

p p?

P and p € GU(2,1)(Qp).
p 1

Their similitude factor is in both cases p> = N(p). Let f € H°(X[y x,w"™) be a classical eigenform
that is proper for the Hecke operator U, and S), of respective eigenvalues 1, A, then ¢ has eigenvalues
for the corresponding (non-normalised) Hecke operators at p, p*2 i and pFrkatks )\

8.3. Remarks on the operators on the split case. — When p splits in F, the Eigenvariety for
U(2,1)g is a particular case of Brasca’s construction (see [Bral6]). Unfortunately as noted by Brasca,
there is a slight issue with the normalisation of the Hecke operators at p constructed in section 4.2.2.
of [Bral6], where there should be a normalisation in families that depends on the weights, as in [Bij16]
section 2.3.1 for classical sheaves (without this normalisation Hecke operators do not vary in family).
More explicitely on the split Picard case, we have 4 Hecke operators at p (Bijakowski only consider

two of them, which are relevant for classicity), denoted U;,7 = 0, ..., 3, following [Bij16], section 2.3.1
(allowing ¢ = 0 and ¢ = 3). The normalisations are the following on classical weights,
1 ~
Up = I%Uo
U, = U,
1 ~
V2 = LU
p 2
1 ~
U3 = pkl +k2 3

as we choose a splitting of the universal p-divisible group A[p*] = A[v*] x A[0™] and A[v*] =
A[v®]P, where v coincide with 7, through the fixed isomorphism C ~ Q,; thus G = A[v™] has height

3 and dimension 1, and modular forms of weight k = (k1 > ko, k3) € Z3_ are sections of,

Sym* %2 oo @ (det wep )2 ® w%k3.

8.4. Classicity results. — In this section, we will prove a classicity result. As in [AIP15], this is
realised in two steps. First show that a section in M is actually a section of W’ over X (v) (this is

called a result of classicity at the level of sheaves), then shows that this section extends to all X7, but
this is done in [Bij16].
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If n is big enough, there is an action of I,» < GLy x GL; on IW%’"‘ which can be derived as an
action of U(g) on Ozy0.+ denoted by *. As in section 4, let £ = (k1,k2,7) be a classical weight, and
we denote by d,, the map,

feOor > XPmhatl oy g
which sends w’' to wq(ffl’klﬂ’rﬁ.

Proposition 8.15. — Let & = (k1,ko,7) be a classical weight. There is an exact sequence of sheaves on
X(v),

’

0 W UJ:ZT de qungfl,k1+1,r)T.

Proof. — This is exactly as in [AIP15] Proposition 7.2.1 (we don’t need assumption on w as VKO, T s
isomorphic to analytic functions on 1 ball only and Jones theorem applies). O

Proposition 8.16. — On "' we have the following commutativity,
Upod, =p "t"14, 00U,

In particular, if HO(X (v),w!)<F1=*2+1 denote the union of generalised eigenspaces for eigenvalues of slope
smaller than ky — ko + 1, and f € HO(X (v),ws)<F=F241 then f € HO(X (v),w" ).

Proof. — We can work etale-locally in which case by the previous results on w’! locally the first part
reduces to section 4. Now, if f is a generalised eigenvector for U, of eigenvalue A of slope (strictly)
smaller than k; — ko + 1, then d,, f is generalised eigenvector of slope Ap~*17*2=1 which is of negative
valuation, but this is impossible as U, (and etale-locally 9) if of norm strictly less than 1. Thus d,.f = 0
and f is a section of w". O

The previous result is sometimes referred to as a classicity at the level of sheaves. Moreover, we have
the following classicity result of S.Bijakowski, [Bij16]

Theorem 8.77 (Bijakowski). — Let f be an overconvergent section of the sheaf W™, k = (k1 = ko, k3),
which is proper for U, of eigenvalue . Then if,

3+ ’U(Oé) < ko + k3,
then f is a classical form of weight k. and level KP1I.

9. Constructing the Eigenvariety

In this section we will construct the Eigenvariety associated to the algebra H ® A(p) and the sets
of overconvergent modular forms ), ]; In order to do this, we will use Buzzard’s construction of Eigen-
varieties, and we need to show that the sets M, (and a bit more) are projective. The method of proof
follows closely the lines of [AIP15], but as this case is simpler (because the toroidale compactification
is) we chose to write the argument in details.

9.1. Projection to the minimal compactification. —

Definition 9.7. — Let X ™ be the minimal compactification of Y as a (projective) scheme over Spec(O).
There is a map

n: X — X¥,
from the toroidal to the minimal compactification. Denote X%, the rigid fiber and X *(v) the image of
X(v)in X% . If v € Q this is an affinoid as X7, is (det w is ample on the minimale compactification).
Denote also by D the boundary in the toroidale compactification X, and by abuse of notation in

X1(p?™) and X1 (p*™)(v).

The idea to check that our spaces of cuspidal overconvergent modular forms are projective, is to
push the sheaves to X*(v) which is affinoid and use the devissage of [AIP15] Proposition A.1.2.2. But
we need to show that the pushforward of the family of sheaves m;‘jjo’un (—D) is a small Banach sheaf. In
order to do this, we will do as in [AIP15] and prove that the pushforward of the trivial sheaf has no
higher cohomology, and we will need to calculate this locally.
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9.11. Description of the toroidal compactification. — Let V = O3, with the hermitian form <, > chosen
in the datum. For all totally isotropic factor V', we denote C(V /(V')) the cone of symmetric hermitian
semi-definite positive forms on (V/(V')1) ®z R with rationnal radical. Denote by € the set of such V",
and

c= ] cwivHh.

V’e€ non zero

Remark 9.2. — The subspaces V' are of dimension I (if non zero), and C(V/(V')*) ~ R,.

Fix 1) level N structure,
YN (Op/NOg)* ~V/NV
and v of level p>™,
Y Op/p*™e; ®p™Or/p* ey < V /p*™V.

Let I' = G(Z) be the congruence subgroup fixing the level outside p, and T'y (p*™) fixing ¥x and
1. Suppose that IV is big enough so that I' is neat. Fix S a polyedral decomposition of C which is
I'-admissible : on each C(V/(V’)1) = R, there is a unique polyedral decomposition and thus there is
a unique decomposition S and it is automatically I" (or I'; (p°™))-admissible.

Recall the local charts of the toroidal compactification X. For each V' € € non zero, we have a
diagram,

My My &
By
Yg

where Yz is the moduli space of elliptic curves with complex multiplication by Of of principal level
N structure, denote by £ the universal elliptic curve, then By = Ezt!(€,G,, ® Of) is isogenous to
'€, and is a G,,-torsor, My, —> By is a Gy, -torsor, it is the moduli space of principally polarised
l-motives, with 1y -level structure, and My — My~ , is an affine toroidal embedding associated to
the cone decomposition of C'(V'/(V')*), locally isomorphic over By to G,, = G,.

Over By we have a semi-abelian scheme of constant toric rank,

O—>Gm®ZOE—>C~¥V/—>5—>O.

Denote by Zy the closed stratum of My ,.

Recall that X is the toroidal compactification of our moduli space Y (it is unique as the polye-
dral decomposition S is), as defined in [Lar92] or [Lanl3| in full generality, and X* is the minimal
compactification. X is proper and smooth and X* is proper. Moreover we have a (proper) map,

n: X — X*.

Moreover, 7 is the identity on Y. As sets, X* is a union of ¥ to which we glue points corresponding
to elliptic curves with complex multiplication, one for each component of D, the boundary of X, and
over each z € X*\Y, n~1(x) is a CM elliptic curve.

Denote by /\7\//\0 the completion of My~ , alors the closed stratum Zy . On X there is a strat-
ification indexed by €/I" (the open subset ¥ corresponding to V' = {0}). For all non zero V’, the
completion of X along the V' stratum is isomorphic to m, as I'y, the stabilizer of V’, is trivial
: V! '~ O so T'yvy < Of, which is finite as E is quadratic imaginary, and thus because I is neat,
Ty, = {1}.

As the Hasse invariant on the special fiber of X is defined as the one of the abelian part of the
semi abelian scheme, we can identify it with the same one on My ,, which comes from the special
fiber of Yy» ~ Yg. Denote by )V, X the formal completion of Y, X along the special fiber. We have
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defined X(v) — X as an open subset of a blow up, denote by 9)(v) the inverse image of 2), and we
will describe its boundary locally. Denote

- g the formal completion along p of Yy .

- 9 g (v) the open subset of Vg (v) along I = (p¥, Ha,) where [ is generated by Ha., but as every
CM elliptic curve is p-ordinary, Yp(v) = Yp.

- By the formal completion of By.

- Similarly, My, My 5, v

Proposition 9.3. — The formal scheme X(v) has a stratification indexed by /T, and the stratum corre-
sponding to V' is isomorphic to 3y if V' is non zero, and Y (v) if V' = {0}. For all non zero V' € € the

completion of X(v) along the V' stratum is isomorphic to My , (completion along 3v).

Proof. — We complete and pullback the stratification of X. The analogous result on X is ok since we
can invert the completion along p and the stratum. If V' # 0 it is simply that the boundary of X is
inside the p-ordinary locus. For V/ = 0 the stratum is the pull back of Q) inside X(v), i.e. Y(v). O

We used the space X1 (p?™) in the previous sections, we would like to describe its boundary.
Let € be the subset of V' € € such that Im(¢)) < (V')*/p?>™(V')t. The (unique) polyedral
decomposition previously considered induce also a (unique anyway) polyedral decomposition on

[T cwivnh,

V’e€’ non zero

which is T'y (p*™) admissible.
For V’ € € non zero, decompose,

0 — VI — (V)P — (V)2 (V" + 2" (V') ) — 0,

and denote W the image in (V')L/(V' + p*™ (V")) of 4(O/p*™ @ p™O/p™). This is isomorphic
to O/p™. Indeed, as (V')* contains ey, p™es modulo p*™, (V')*/p?*™ = O/p*™(e1,ez). Then
V' = V'/p®™ is totally isotropic inside, i.e. generated by ae; + bea where p™|b (totally isotropic) and
a € O* (direct factor). Thus the image of ¢ is generated in (V') /(V' + p?>™(V')1) by the image of
e1 = a~'bey which is p™-torsion.

We denote by,
Yy the rigid fiber of )y,
H,,, v+ the canonical subgroup of level m of the universal elliptic scheme €y~ over )y,
Y1 (p™)y- the torsor Isomy,, ((Hm)V/)D, W), and vy~ the universal isomorphism,
21(p™) the normalisation of Yy~ in Y1 (p™)v,
There is an isogeny ¢ : By —> &y, and if we denote i’ : Ey» — Ey//H,, v, set,

B1(p")v(v) = Byr X4,¢,i0 Evr/Hy v

6. Denote M (p™)v/, M (pP™)v',6, 31(P™) v, the fibered products of the corresponding formal
schemes with B, (p™)y+ over By .

AR

Proposition 9.4. — The formal scheme X1(p*™)(v) has a stratification indexed by &' /T'1(p*™), for all non

zero V', the completion of X1(p*™)(v) along the V'-stratum is isomorphic to the completion My (p*™)y+ »
along 31 (p*™)y.

Proof — This is known in rigid fiber, with the same construction, but the previous local charts are
normal, and thus coincide with the normalisation in their rigid fiber of the level I'-charts. Thus
My (p*™)v+,» is the normalisation of My~ , in My (p*™)y+ ,. But the completion of My (p*™)y

—V —V
along 31(p*™)y+, coincide with the normalisation of My, = X(v) inside M;(P*™)yr, =
Vv
Xi(p™)(v)

O
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9.2. Minimal compactification. — Let X* be the minimal compactification of Y of level I'. As a
topological space, it corresponds to adding a finite set of points to Y, corresponding to CM elliptic
curves. X* is also stratified by €/T". Let T € X*\Y a geometric point of the boundary, it corresponds
to a point x € Yg.

Using the previous description of X, we can describe the local rings of X*. Let V' € € non zero.
Over By, My is an affine G,,,-torsor, and we can thus write,

My = Specg L,

where L is a quasi-coherent Op,, -algebra endowed with an action of G, that can be decomposed,
L= 6—) L(k).
keZ

Vi

For all k, L(k) is locally free of rank 1 over By+. Denote By.z the completion of By along the fiber
over . We have the

Proposition 9.5. — X* is stratified by €/T" andn : X — X™* is compatible with stratifications. Moreover,
forall V', X3, is isomorphic to Yy and for all T € X3, a geometric point,

Oxiz = | [ H(Byrz L(K)),
keZ

where Oxx 7 is the completion of the strict henselisation of Oxx atX.

Proof. — This is Serre’s theorem on global sections of the structure sheaf on proper schemes (as 7 is
proper and X* is normal), the theorem of formal functions and the previous description of X. O

The Hasse invariant ha, descend to the special fiber of X* and we can thus define X* the formal
completion of X* along its special fiber and X*(v) the normalisation of the open subspace of the blow
up of X* along (p¥, ha,) where this ideal is generated by ha,.

Proposition 9.6. — For all V' € € the V' -strata of X*(v) is Qv (v) (and Yg if V' is non zero).

Proof. — This is known before the blow up, and thus for ¥V’ non zero as the boundary is contained in
the p-ordinary locus. But for V/ = 0 this is tautologic. 0

9.3. Higher Cohomology and projectivity of the space of overconvergent automorphic forms. —
We will look at the following diagram,

X1(p")(v)

N A

X (v)

Proposition 9.7. — Let D be the boundary of X1(p*™)(v). Then for all ¢ > 1,
an*0x1(1)2m)(v) (—D) =0.

Proof — 1t is enough to work locally at T a geometric point of the boundary of X*(v), and by the
theorem of formal functions,

— ()
(1O (D) = W 0 (D))
—1

We will thus show that the right hand side is zero. But the completion X 1(;277)(1))” @ is isomorphic

to a finite disjoint union of spaces of the form Ml(?ﬁﬁ)vz’gy for § a geometric point in Yg. Denote by
M, this completed space. As

Mo = Spec%l@‘// (S;F)O‘C(k))a
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and thus the morphism,
My — B1(p™)v,
is affine, we have the equality,
Hq(MU7 O(_D)) = 1_[ Hq(%l(an)VH [’(k))v
k>0

(the product is over k£ > 0 as we take the cohomology in O(—D)). But for k£ > 0, £(k) is very ample

on the elliptic curve B1(p™ )y, and thus H1(B(p™)y+, L(k)) = 0 for all ¢ > 0. O
Theorem 9.8. — Form >l two integers, we have the following commutative diagram,
X)) ———— X, (0" ()

X*(U)l X*(v)m

and the following base change property is verified,
7% ()il (= D)) = (m)aroly [ (= D).

In particular, n*mfvoT(fD) is a small Banach sheaf on X*(v). The same result is true over X*(v) x W (w)°

for

O.unT

(7 x 1)4to7,

w

(—D).

Proof. — We can just restrict to [ = m — 1, but as inductive limit and direct image commute, and as the
O,un Oung . 0,un 1. s . o . .
kernel oy, ,, T mz’mjl is isomorphic to mZ)’l T which is itself a direct limit of sheaves with graded

pieces isomorphic to Ox, (,m)/7 (see corollary C.5) and thus by the previous proposition we have the

announced equality. We can thus use [AIP15] Proposition A.1.3.1 which proves that (7 x 1)*mg°’“”7 is
a small formal Banach sheaf (Recall that 7 is proper). O

Proposition 9.9. — Let w > 0. Denote 20(w)® = Spf(A). Then,

M e = HO(X*(0) x W(w)?, (n x Vsl " 1(=D))

w

is a projective A[1/p|-Banach module. Moreover the specialisation map, for k € W(w)°,

M e BO(X* (v), nwt (—D)),

v,

is surjective.

Proof. — This is proved exactly as in [AIP15], Corollary 8.2.3.2. Let us sketch the ideas. Fix (L(;)15;>r
a (finite) affine covering of X*(v), and for 2 = (41,...,4s) € {1,...,7}° denote {; the interesection

L[il .. il“ Then,
Moo = HO(84 x 20(w)°, (7 x 1)x0f " T(=D)),

is isomorphic to the p-adic completion of a free A-module (i.e. is orthonormalisable). This is essentially
Corollary C.5 and topological Nakayama’s lemma. But then, as X *(v) is affinoid, the Cech complex

after inverting p is exact and thus (JAIP15] Theorem A.1.2.2) provides a resolution of A/, KON cusp by

v,w
the M; o[1/p], and thus M{ff;untcusf’ is projective. For the surjectivity assertion, fix p, the maximal
ideal of A[1/p] corresponding to x and consider the Koszul resolution of A[1/p]/p.. Tensoring this for
each 7 with n*m’*o‘mT(fD)(ili) gives a resolution of 7,10 (—D)(4;). This gives a double complex
where each column (for a fixed index of the Koszul complex) is exact. But each line (for a fixed ¢ non
trivial) is also exact by the previous acyclicity, and thus we have the following bottom right square,
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0,un
[Tisisr @™ T (Us)

[Tisis, @™ (U) —— 0

W (X (v) — W (X (v))
0 0
which proves that 7, is surjective. O

Proposition 9.710. — Denoie Spm(B) = W (w). Then the B-module
HO(X(v) x W(w),wy 1(=D))

) w

is projective. Moreover, for every k € W(w), the specialisation map,

u

H(X(v) x W(w), o}, 1(=D)) — H°(X(v),w!(~=D))
is surjective.
Proof. — We can identify the B-module,
M = HO(X(v) x W(w),wt" (= D)),

with (Ml’i(;unT’C“Sp ®ap1/p) B(—+""))P. But now B, is a finite group, and B is of caracteristic zero,
thus M’ is a direct factor is a projective B-module, and is thus surjective. Moreover, as B,, is finite, the
(higher) group cohomology vanishes, and the specialisation map stays surjective. O

9.4. Types. — Let K be a compact open subgroup of G(A%). Let Ky = K{I where I < G(Q,) is
the Iwahori subgroup. Fix (J, V) a complex continuous irreducible representation of K, trivial at p
and outside a level [V, it is of finite dimension and finite image, and thus defined over a number field.
Denote K ¢ K its Kernel.

Definition 9.71. — The space of Picard modular forms of weight x, v-overconvergent, w-analytic, of
type (Ky,J) is,

Homp, (J,H*(Xw),wit)).
The space of overconvergent locally analytic Picard modular forms of weight x and type (K, J) is then,

MEERD Homp, (J, lim HO(X(v),wth).

v—0,w—00
Remark 9.12. — In the beginning of this section we made the assumption that the level I', outside p,
is big enough ("neat”). But using the previous definition we can get rid of this assumption by taking
K ? big enough to have the neatness assumption, and take J the trivial representation to descend our
families for any level outside p, as the following proposition shows.

Proposition 9.13. — The space
MDA = Homp, (J, HO(X (v) x W(w),wi " T(=D))),

cusp,v,w

is a projective Oyy(,,) -module, and the specialisation map is surjective.

Proof — Suppose K(N) = K < K° = Ker(J) is neat (outside p, up to enlarging it). Then we have
shown that, in level K,

H(X(v) x W(w),w}, " 1(=D)),
is projective, and that the corresponding specialisation map is surjective. We can thus twist the K /K
action by V; and take the invariants over J; as K;/K is finite, the space if a direct factor inside

HO(X(v) x W(w),ws " T(—D)) ® V§ and higher cohomology vanishes. O
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Remark 9.74. — The same argument applies when p splits in E, for the spaces of overconvergent
modular forms defined in [Bral6], [AIP15]. In particular we can construct families of Picard modular
forms with fixed type when p is unramified.

9.5. Eigenvarieties. —

Theorem 9.15. — Let p be a prime number, unramified in E. Let VW be the p-adic weight space of U (2, 1),
as defined in section 3 when p is inert, it is a 3-dimensional ball over Q, when p splits. Fix (K, J) a type
outside p, K < Ker J a neat level outside p, and let S be the set of places where K is not compact maximal
or p. There exists an equidimensional of dimension 3 eigenvariety € and a locally finite map,

w:E— W,

such that for any k € W, w™(k) is in bijection with eigensystems for T° ®z A(p) acting on the space of
overconvergent, locally analytic, modular forms of weight v and type-level (K 7, J) (and Iwahori level at p),
Sfinite slope for Up.

Proof — 1If p is split this is a particular case of the main result of [Bral6] (taking into account the
previous remark and the normalisation of the Hecke operators). If p is inert, this is a consequence of
Buzzard-Coleman’s machinery ([Buz07]) using for all compatible v, w (W (w), Méqﬁ};{z}ﬂ”, Up, HNP ®
A(p)) and glueing along v, w. O

9.6. Convention on weights. — As in [BC04], we set as convention the Hodge-Tate weight of the
cyclotomic character to be -1. Fix an isomorphism C ~ Q,, compatible with the inclusions £ < C that
extend 7, and denote 7, 0, the p-adic places at p inert corresponding to 7o, cTo. If p is split, we will
insted call v, 7 the places corresponding to 7., cTy, but in this section we focus on p inert, even if a
similar result hold with v, v.

Let us recall the different parameters that are associated to an algebraic automorphic representation
7 of GU(2,1) that we will need, following partly [Skil2]. There is A = ((A1, A2, A3), Ag), the Harrish-
Chandra parameter, there is ¢ = ((¢1,co,¢3),¢o), the highest weight of the algebraic representation
which has the same infinitesimal character as 7, in the discrete series case and (co, ¢{)) is the parameter
at infinity of @y the conjugate of the central character of m. There is k = (ki1, k2, k3) the classical
weight such that 7 appears in H°(X g, w") appears (if it exists) and there are the Hodge-Tate weights
((hT, kT, hT), (RY™,h3™,h7)) of the Galois representation of G associated to 7 by Blasius-Rogawski
or Skinner. Let us explain how they are related.

First denote p,, the half-sum of the positive non-compact roots and p. the half-sum of the positive
compact roots (see [Goll4], Section 5.3). We have then for i = 1, \; = (¢ + pn + pc)i, and (¢, ¢) is
the infinite weight of the dual of the central character. The calculation of Harris and Goldring gives
(—ks, k1, k2) = A+ pp — pc (forgetting the Ao factor here, it is because we only considered 3 parameters
in the weight space). The Hodge-Tate weights of the Galois representation associated to m depends of
course on the normalisation of the correspondance, but take the one of Skinner, [Skil2| section 4.2,4.3
and after theorem 10, (up to a sign as the cyclotomic character has weight -1), we get,

((h1,h3,h3), (RTT, h37,hST)) =
((mco—c1,—co—ca+1,—co —cg +2),(—cy + c3,—ch + ca + 1, —ch + 1 + 2)).

Remark 9.16. — Let f € H°(X,w") be a classical form. To f is associated ®; an automorphic form,
with equivariant Hecke action, cf. section 4.2.2.

Before going further, let us remark that a (algebraic) representation m of GU(2,1) is equivalent
to a pair (7%,1) of 7¥ a (algebraic) automorphic representation of U(2,1) (the restriction of 7) and
a (algebraic) Hecke character of GU(1) = Resg/gG,, (the central caracter of 7) which extend the
central character of 7° (see section 10.4). To an algebraic (nice) 7 is associated a (non-necessarily
polarized) Galois representation p,, but also a pair 7°, )., and to 7¥ is associated a polarized Galois
representation, which will be what we will need. Thus from Skinner’s normalisation, removing the
central character of 7, we get the following proposition (we could for example directly use [CH13]).
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Proposition 9.17. — Let k = (ky, ko, k3) € Z3 and f = H°(X,w") which is an eigenvector for the Hecke
operator outside p. Denote |k| = ki + ko + k3. Let m be the automorphic representation corresponding to f
(i.e. a irreducible factor in the representation generated by ® ¢ of section 2.2).

Suppose 7o, is a (regular) discrete series of Harrish-Chandra parameter \, then

A= ((k1,ka — 1,1 — k3), |k])

(see [Goll4] section 5) with ki = ko > 2 — k3. Denote by pr sk the p-adic Galois representation associated
to m by Skinner, [Skil2|. Then pr si; satisfies the following essentially self-polarisation,

~ —[k|—2
Pfr,sm' >~ var,sm‘ QCcyer @ Py,

where € is the cyclotomic character, 1) is a finite Hecke character, and if w, denote the central character of m,

Waw? is of the form N~1Flqp,

Then, the T-Hodge-Tate weights of pr si; are,
(/{iz + 1,2+ k‘l,kg, + k1 + kz),

and the oT-Hodge-Tate weights are,
(2,/€2 + ks, k1 + ks + 1).

To ° = Ty (2,1 is associated a polarised continuous Galois representation p verifiying,
c o AV
pﬂ' - pﬂ' )

of T-Hodge-Tate weights (—k1,1 — ko, ks — 1) and (thus) o7-Hodge-Tate weights (1 — ks, ko — 1, k7).

Proof. — The calculation of X in terms of « is exactly [Goll4] Theorem 5.5.1. Remark also that we can
calculate in terms of x which are the discrete series by Harish-Chandra Theorem ([Knal6] Theorem
6.6), and we find, k1 > k2 > 2 — k3. Thus, the calculation of the Hodge-Tate weights of the Galois
representations associated to 7 are [Skil2], under Theorem 10, with the previous calculation of ¢ in
terms of A\. The representation p, is given by pmsmp;—:(l). In terms of the 7-Hodge-Tate weights of
P, discrete series corresponds to hy < hy < hs. O

Denote Z < & the set of characters corresponding to regular (i.e. wo(2) < w1(2) < —2—wj3(z) € Z3)
classical modular forms (recall that if f is classical of weight (k1, ko, k3), w(f) = (—ka, —k1, —k3)). For
each z € Z, there exists f a classical form, which determines II an automorphic representation of
GU(2,1) (generated by ®; defined in subsection 2.2). Such a IT correspond to a packet, to which by
work of Blasius-Rogawski [BR92], Theorem 1.9.1 (see also for generalisation to higher dimension unitary
groups and local global compatibilities the work of many authors, in particular [Bel06a, CHI13, Skil2,
BGHT11]) is associated a number field £, and compatible system of Galois representations,

pzx G — GL3(E; )), VA € Spm(Og, ),

satisfying local global compatibilities (see for example [Skil2], where the association is normalized by
the previous proposition (the Hodge-Tate weight of the cyclotomic character being —1) and the previous
proposition for a normalisation suitable to our needs). In particular, denote S the set of prime of E
where Ker(J)PI is not hyperspecial, and if £ a prime under A, denote S; the set of places of E dividing
A. Then p; , is unramified outside SS;.

We have the classical proposition, which is one reason why eigenvarieties are so usefull (see for
example [BCO9] proposition 7.5.4),

Proposition 9.18. — Let p be unramified in E. 1o each z € Z, denote p,, the (p-adic) polarized representation
associated to z by proposition 9.17. There exists a unique continuous pseudocharacter

T:Ggs — Ok,

such that for all z € Z, T, = tr(p.). Moreover there is a finite order self-polarised character,
V:Gps — Ok,

such that the pseudocharacter T satifies T+ = T ® 1, where T+ (g) = T((rg7)™!) forall g € Gg.
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Proof — Z is dense in £ by density of very regular weights in W and the two classicity results (8.16
and 8.17). We only need [Che04] Proposition 7.1 to conclude, the hypothesis (H) there being verified by
the Frobenius classes in S. The polarisation assumption follows from the case of z € Z by density. [

10. Application to a conjecture of Bloch-Kato
Let E be a quadratic imaginary field, and fix an algebraic Hecke character,
x:AL/E* — C*,
such that, for all z € C*, x(2) = 2%2°, for some a,b € Z. Call w = —a — b the motivic weight of x.
We are interested in the Selmer group H } (E, x), which parametrises extensions U,

0—y—U—1-—0,

which have good reduction everywhere ((BK90, FP94], [BC09] Chapter 5).
Associated to x there is also an L-function L(Xx, s), where s is a complex variable, which is an
meromorphic function on C, which verifies a functional equation,

A(x, s) = e(x, s)A(x* (1), —s),

where A(p, s) is the completed L-function, a product of L(p, s) by a finite number of I'-factors.
The conjecture of Bloch-Kato (more precisely a particular case of) in this case is the following equality,

dim H}(E, x) — dim(x)? = ord,—o L(x*(1), s).

The conjecture is more generally for a Galois representation p of the Galois group G of a number field,
but in the previous case we have a special case by the theorem of Rubin on Iwasawa Main Conjecture
for CM elliptic curves,

Theorem 10.1. — Suppose that x is polarized and of weight —1, i.e.
Xt =xl
where X (2) = x~!(czc), and c € G induces the complex conjugation in E. Then,
ords—o L(x, s) # 0 = dim H{(E, x;) > 1.
Remark 70.2. — Under the previous polarisation assumption, we have L(x*(1), s) = L(x, ).

Definition 10.3. — To stick with notations of [BC04], denote k the positive odd integer such that
Xo(2) = ST (iie. kK =2a—1=1—2b). We suppose k > 1, ie. a > 1 (which we can always
suppose up to changing x by x¢, which doesn’t change either the L-function nor the dimension of the
Selmer group).

10.1. Endoscopic transfer, after Rogawski. — Let yo = x|.|~/? the unitary character as in [BCO04].

We will define following Rogawski [Rog92] an automorphic representation of U(2, 1), by constructing
it at each place.

10.1.1. If?¢ is split in E. — Write £ = vT and the choice of say v induces an isomorphism U (2, 1)(Qy) 0
GL3(Qg). Let P = M N be the standard parabolique of GL3(Q,) with Levi M = GL3 x GL;. Define,

— A
X0,¢ : < b > € GLy x GL{ — Xo,g(detA),

trivially extended to P, and denote by ind —n%(X0¢) the normalised induction of Yo ¢. Then set,

' (x) = iy ind —n g (Xo).

If x¢ is unramified, then so is 7} (). Fix in this case K, a maximal compact subgroup of U(2,1)(Qy).
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10.1.2. If L is inert or ramified in E. — In this case denote T' = Of x Op, the torus of U(2,1)(Qy),
and consider the following character of T,

a
Xe b — xe(a),
-1

trivially extended to the Borel B of U(2,1)(Q¢). Then the normalized induction ind —ng(z’l)((@[‘)(?@
has two Jordan-Holder factors, one which is non tempered that we denote by 7}’ (x) and the other one,
which is square integrable, that we denote by 77 (), [Rog92].

If ¢ is inert and xo, is unramified, 7} () is also unramified (Satake) and we can choose K, a
maximal compact for which 7} () has a non zero fixed vector.

If ¢ is ramified and X ¢ is unramified, there is two conjugacy classes of maximal compact subgroup,
but only one of them, denoted K (called very special) verifies that 7}’ () has a non-zero fixed vector
under K whereas 73 () has none.

10.1.3. Construction at infinity. — As in the inert case, let 77y (x) be the non-tempered Jordan-Holder

factor of ind _ng(Q,l)(R) (2).

Then we have the following proposition, following Rogawski,

Proposition 10.4 (Rogawski). — Suppose a > 1. Then the representation,
/
T (x) = @7 (x) ® 7y (),
¢

is an automorphic representation of U(2,1). If moreover L(x,0) = 0, it is a cuspidal representation. Iis
Galois representation (associated by the work of [LRZ92] or sec also [BCO4] section 3.2.3 and Proposition 4.)

Prn(x)p - GE — GL3(Q)) verifies,

Prn(x)p = (1 ®Xp ®X;J>_)

Moreover, its T-Hodge-Tate weights are (— X5, —£21 0) = (—a,1 — a,0).
10.2. Accessible refinement (at p) for 7"(x). — In order to construct a p-adic family of modular

forms passing through 7"(x), we need to construct inside 77'(x)’ a form which is proper for the
operator U, previously defined. Strictly speaking, U, is defined for GU(2, 1), and when p is inert, U,
is associated to the operator of the double Iwahori classe /U;I where,

U, = D

1
This class is not in U(2,1)(Qp), but p~'Us is. Fix T < B < U(2,1)(Q,). As p is unramified, we
have as representation of 7/T° (T a maximal compact in 7)), for 7 a representation of U(2,1)(Q,) an
isomorphism, see [BC04],
= (mp) T ® 65"

Thus to understand how the double coset operator Uy in the Iwahori-Hecke algebra acts, we only need
to determine the Jacquet functor (7, (X))~ as a representation of T". If p splits, this is computed in
[BCO4] (and [BCOY] in greater generality), so suppose that p is inert.

n

Proposition 10.5. — Let X be the (unramified) character of the torus T of U(2,1)(Q,) defined by,

a

e — xp(a).
-1

Denote by w € Wy(2,1y(q,) =~ Z/2Z the non trivial element and X" the corresponding character of T
X" = x(w - w)). Then the unique admissible refinement of 7 (x) is given by X, i.e. ) (X)Nn = )?“%5,13/2.
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Proof. — Denote for the proof G = U(2,1)(Q,). According to Rogawski we have ind —nG(¥)** =

{ 7,2} and (ind —nG(X))% = { )?5113/2, )?“’5)13/2} by Bernstein-Zelevinski’s geometric lemma. Follow-

ing [BC09], denote for o € W S(X°) the unique subrepresentation of ind —n%(¥?) (this induction is
non split by [Key84] for example). It is also the Jordan-Hélder factor that contains )}‘75}3/2 inside its
semi-simplified Jacquet functor. Thus S(X) = 72 or S(X) = 7). And as changing Y by X" exchanges
the subrepresentation and the quotient in the induced representation, S(Y) # S(X™). So the proposi-
tion is equivalent to 7r12, = S(X). Let us remark that it is announced in [Rog92], as 7’ is said to be the
Langlands quotient, but let us give an argument for that fact. We can use Casselman’s criterion for 7>

([Cas95] Theorem 4.4.6). For A = T*Plt = G,, c B,
AT\A(0)A;s = {Diag(w, 1,27 ) 1z e Z\L, = pZy},
and thus,
Va € pZy, |8y (Ding(x, 1,2 7)| = [x(@)] = Ixo(@)la]* < 1,

as xo is unitary, and thus )25]13/2 is an exposant of r%(7?) and 72  ind —nG(X) ie.
() = X"05".
O

When p is split, the calculation is done in [BC04] and we get the following up to identifying an
unramified character of 7(Q,) ~ (QX)3,

’4
T(@p) - C
v [
' T2 — 1 (1) Ya(w2) s (3)
z3

with the triple (¢1(p), ¥2(p), ¥3(p)).

Proposition 10.6 (Bellaiche-Chenevier [BC04|,[BC09]). — Ifp = T, the accessible refinement of wy) ()
are given (with identification with GL3(Q),) using v) by

- o=1,(1,x5(), xo(p))
- 0=(3,2),(xs(p), 1, xu(p))
-0 =(3,2,1), (xy (p), xo(p), 1)

Proof — Indeed, the Langlands class associated to 72 (x) is (X3 (p), 1, Xv(p)) which corresponds, up to
a twist of the central caractere by (x)™! to the class (1, (xi(p))~", |p|) which in turn is associated by
Satake (up to twist by z2~'|.|'/2) to the unramified induction studied in [BC09] Lemma 8.2.1, n = 1,m =
3and 7 = x§ = X, (which satisfies the hypothesis of [BC09] 6.9.1), thus L(m,|.|'/?) = (x*(p))~".
The refinements are then given by the Lemma 8.2.1. O

10.3. Coherent cohomology. — In order to associate to the automorphic representation 7" (x) a
point in the Eigenvariety constructed in section 8, we need also to show that 7™() appears in the
global sections (over X) of a coherent automorphic sheaf. The full calculation is made in Appendix D.
Here we give an alternative proof on the case a > 1, which corresponds to a regular weight, as the case
a = 1 will correspond to a singular weight (and for a = 1, w2 is a non-holomorphic limit of discrete
series). Thus suppose a > 1. According to Rogawski [Rog90] Proposition 15.2.1, the (regular) parameter
¢ = ¢(a,b,c) = p(a,a—1,0) (see [Rog90] pl76, x corresponding to x,) we already know that,

. . Y C ifi=1,3
H (9,K77Toc(X)®]:¢)_{ 0 otherwise

for F4 the representation of U(2, 1)(IR) of highest weight (¢ — 1,a — 1,1), and

. y C ifi=2
H'(g, K, 7T§;(X)®}-¢) = { 0 otherwise
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in particular the system of Hecke Eigenvalues of 7" () appears in the first etale cohomology group of a
local system associated to Fs, H}, (X, F,). Using the Hodge-decomposition for H', (X, ), we know
that there exists a coherent automorphic sheaf Vy such that,

HY (X, Fy) = HY(X, V) @ H(X, Q% ® V).

We thus need to show that the system of Hecke eigenvalues appears in the last factor. But, denote I the

opposite induced representation ind —ng@’l)(R) (x¥), so that ™ is the subrepresentation of I and 7>

its quotient. Writing the long exact sequence of g, K -cohomology associated to

2

-
0—> 7% —> T —> 72 — 0,

we get that H(g, K, 77 ®.7:qf) =H' (g, K,I® Ve ). Using Hodge decomposition for this, we get that,
Hompg (p™ ® Fp,mly) = Homg (p™ ® .7-"¢,7),
and using Frobenius reciprocity we can calculate the last term as,
Homrnx (p™ ® Fy, (Xo0)TnK),
and as we know F, we can calculate its restriction to 7' n K, we get,
(Fo)rak =17 @ @2 %,
where,

thel e eTnK=U()xU(l) —> tFe.
4

We can also explicitely calculate that by conjugacy, 7' n K acts on p* by 1®te™! and on p~ by 1@t Le.

Remark 70.7. — This is because of our choice of h. If we change h by its conjugate, then the action
on p* p~ would have been exchanged, and 7" () would be anti-holomorphic (but we could have used
X¢ instead of y in this case, 7" (x¢) would have been holomorphic).

As XPrx = t2e=1 we get that,

Homg (pt ® Fy,T) = C and Homg(p~ ® Fy,1) = {0}.

Remark 70.8. — Changing x by x¢ invert the previous result, as predicted by the Hodge structure, so
we could have argued without explicitely calculating these spaces.

Proposition 10.9. — Ifa > 1, the Hecke eigensystem corresponding to 7" () appears in HO(X, Q' @ V),
where Vy = Ox @ Ly and Ly is the local system associated to }'g. More generally, and more explicitely, for

a = 1, the Hecke eigenvalues of 7" () appear in the coherent sheaf w(®12~%),

Proof. — Using Matsushima’s formula and the Hodge decomposition, for the local system LL, associated
to F;', we can write, [Yos] Theorem 4.7

H(X,Ly ®Q") = @ m(r, ) Homg (p*, 700 ® ),
and m(7",T") is non zero for our choice of I, and the previous calculation shows
Hompg (p*, 7l ® Fy ) = C.

For the general case, this is Appendix D.
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10.4. Transfert to GU(2,1). — From now on, denote by G = GU (2, 1) the algebraic group over Q
of unitary similitudes (relatively to (E3,.J)). It is endowed with a morphism v, and there is an exact
sequence,
0— G1 — G- Gy,
where G; = U(2, 1) is the unitary group of (E3,J).
Let T' = Resg/q G, be the center of G, Nm : T'— G,,, the norm morphism, and T its Kernel;
the center of G;. We have the exact sequence,

1—>T'—>TxG — G,

where the first map is given by A — (A, A71).

Let 7; be an automorphic (resp. a smooth admissible local) representation of G1(Ag) (resp. of
G1(Qp) or G1(R)), of central character x; of . Let y be a character of T (local or global) that extend
X1, we can thus look at the representation,

(2,9) € T x G1 — x(2)m1(9),

of T x G;. We can check that it factors through the action of T! and gives a representation of a

subgroup of G.

Proposition 10.10. — The automorphic representation © of U(2,1) given in proposition ?® has as central
character w equal to the restriction of X to E'. We can extend w as an algebraic Hecke character & of T' by the
algebraic character & = N2, where N is the norm of E. Thus, there exists an automorphic representation
7 of G such that for { a prime, unramified for xo, (7j)%¢ = (%‘)K‘ (where K, — G(Qp) is the hyperspecial
(respectively special if ¢ ramifies in E) subgroup) and the Galois representation associated to 7" by [BR92]
Theorem 1.9.7 (or [Skil2]) is (with the normalisation of [Skil2]),

(lexa® XJ_)Y(_Z)’) = (XD wWeyet ®1)(—3).
Moreover (7))" = (%\ZL)I.

Progf. — To calculate w, we only need to look at 7, for all place p, and we can use that 7, =

ind —ngL3(Q”) (xo) for split p’s, and 7} < ind —n for p = 00 and inert or ramified p’s.

The character & extends w. Once we have extended the central character of 7™, the existence of a
7™ is unique and assured by [CHTO08] Proposition 1.1.4 (as 2 + 1 = 3 is odd). More precisely,

U3)(Qp)  ~w
2 R)

T (29001) = &(2)7"(g1);
where g = zggg; is written following the decomposition G(A) = T(A)G(Q)G1(A).

Denote by V), the space of 7, (and thus of 7). And I = GU(2,1)(Q)) the Iwahori subgroup, and I;
its intersection with U(2,1)(Q,). As if M € I, then M = B (mod p), up to multiply by an element of
T € T(O), suppose that TM = U (mod p). In this case ¢(TM) =1 (mod p), thus, as p is unramified
in E, there exist 7" € T(Z,) such that ¢(T"TM) = 1 and thus M = T~ Y(T"T'M) € T(Z,)I. Thus, as
we can write,

a ae™! e
e = 1 e e hT(Zp),
N(e)a! ea* e
we get that,
fo ={ze V;fl YAeT(Qp) N I,&,(N)z = 2},
but as T(Q,) n I = (’)E; Id and W, is unramified, VpI = Vpll. The assertion for K, follows the same
lines and is easier. 0

Remark 70.7. — We could have lifted the central character of 7" simply by x, in which case the
resulting representation would have been a twist of the previous one, but as we only used three variables
on the weight space, which means that we don’t allow families which are twists by power of the norm of
the central character, only one choice of the lift of the central character gives a point in our eigenvariety.
We can check that the Hecke eigenvalues of T appears in H%(X,w"), with

k= (a,1,2 — a).
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How can we find the power of the norm and the coherent weight ? First, as Hodge-Tate and coherent

weights vary continuously on &£, and m appears as a classical form of £ (proposition D.2), according
to proposition 9.17 and proposition 9.18, the polarised Galois representation associated to 7 () is,

1Ox® X,
thus (—k1,1 — ko, k3 — 1) = (—a,0,1 — a) up to order. This let us 6 possibilities for  :

L (a,1,2—a)

2. (a—1,1,1—a)

3. (a,a,1)

4. (0,1+a,2—a)

5. (0,a,1—a)

6. (a—1,1+a,1)

but as for classical points (as 7}\5()()) k1 = ko, and a > 1, this eliminates the three last possibilities
(and the second when a = 1). But then, we know that the lowest K -type for 7" () is of dimension a
by restriction to U(2) and the calculation of Appendix D, proposition D.2, which makes only the first
coherent weight possible when a > 1. When a = 1, the first and third weights are the same. Another
possibility is also to find the infinitesimal character of 7™ () (using for example [Knal6] Proposition
8.22), and that n = (—kg, k1, k2) is the highest weight character of V4 p.—p. in the notations of [Goll4]
(paying attention to the dual). Then to find the corresponding power of the norm, note that |x| must

be equal to the opposite of the power of the norm of the central character of m by the calculation
before proposition 2.6 and conventions on weights (see section 9.6 about (cg, ).

10.5. Refinement of representations of GU(2,1)(Q,). — Let G = GU(2,1)(Q,). Consider in
C.(I\G/I,Z[1/p]) the double classes,

U, = P and S = P
1 p
The caracteristic functions of Sf and Uy are invertible in C.(I\G/I,Z[1/p]) and denote by A(p) the
sub-algebra generated by the characteristic functions of Uy, S; and their inverses.
Proposition 10.12. — Forr a smooth complex representation of G, we have a natural C[A(p)]-isomorphism,

al — (WN)TO ®5§1.

Let 7 be a smooth admissible representation of G, such that 7 is a subquotient of the (normalised)
induction of an unramified character i of the torus 7" of G. For example this is the case if 7 is
unramified, or if 7! # {0} (by the previous equality and adjonction beetwen Jacquet functor and
induction for example).

Definition 70.13. — Following [BCO09], an accessible refinement of 7 is a ¢ € W such that W&}f isa

subrepresentation of 71'%0 (equivalently if 1/)‘76;1/ 2 appears in 7).

Another way to see it is that a refinement is an ordering of the eigenvalues of the Frobenius of
LL(r), the Weil representation associated by local Langlands to , and it is accessible if it appears in
the previous sense in 7! (or W%O).

For GU(2,1) when p is split, GU(2,1)(Q,) ~ GL3(Q,) x Q) and % is an unramified character of
Q%. The local Langlands representation associated to m = 71 ® 14 in this case is LL(m;) ® 14 which

has eigenvalues (11 (p)1,(p), V2(p)4(p), ¥3(p)Y4(p)) and an ordering of this eigenvalues is given by
an element of &3 = War, = WaL, x gL, - Of course, a priori not all refinement are accessible (m;,, will
be an example).
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When p is inert, W ~ Z/27Z, and a character of T = (Rest2 /Qp Gyn)? is given by two characters
(Xla XQ), bY,

e sa,e € Q) — xa(a)xa(e).
N(e)a !

The non trivial element w € W acts on the character by w - (x1,%x2) = (xi;Xx2(x1 © N)). Thus a
refinement in this case is simply given by 1 or w.

Remark 70.74. — In terms of Galois representation, the base change morphism from GU(2,1) to
GL3 x GL; send the (unramified) Satake parameter x1,x2 (if x2 is unramified, it is trivial on El) to
the parameter ((x1,1,X; "), X1X2) (see [BR92] Theorem 1.9.1 or [Skil2] section 2), whose semi-simple
class in GL3 associated by Local Langlands has Frobenius given by

xz2(p)
x1(p)x2(p)

x2(p))x3 (p)

In the inert case, say 0 € Wy is a refinement, then the action of U, on the o-part of 7r]7\ﬂ,O is given by
X9 (p)2x3 (p), the action of s is given by xJ(p)x3(p). In particular, the action of A(p) (through 7'/T°),
and actually of U, or uy = U,S5,, 1 on ! determine the refinement.

This is also true (and easier) if p splits.

As we normalized our Galois representation p, so that they are polarized, i.e. forgetting the central
character, the previous class does not directly relate to the Frobenius eigenvalues of p, but rather of
the one of p, gi;. But as the link between both only differ through the central character of m, it is
straightforward that the Frobenius eigenvalues of (a crystalline) p, are given by (¢1,1,%7), when p is
inert, and v; is given (if unramified) by the action of the Iwahori-Hecke double class

b

p—l

which corresponds to U,,S, ! (see next subsection). In the split case, an unramified character of the torus

of GL3 x GL; gives Frobenius eigenvalues (p1)1(p)t4(p), pi2(p)tha(p), ptbs(p)ha(p)) for (crystalline)
P ski and (¥1(p), Y2(p), ¥3(p)) for pr, which relates to operators U;_1/Us (see next subsection).

Thus, using the previous definition of Refinement, local global compatibility at p, we can associate to
II = 7, ® X, T¢ an algebraic regular cuspidal automorphic representation of GU(2,1) of level KNPJ
a representation pr , together with an (accessible) ordering of its crystalline-Frobenius eigenvalues for
each choice of a character in 7T]€ under A(p), such that

Proposition 10.15. — The automorphic representation 7" (x) of GU(2,1) constructed by proposition 70.70
as only one accessible refinement at p if p is inert, it is given by,

w#1leWg,

which correspond to the ordering ((x*(p), 1, x(p)), x(p)) or (1, x(p), |p|). If p = Dv is split, there are three
accessible refinement, given by,

- 0 =1,((1, x5 (p), xo(P)), xo(p)) which corresponds to (x.,(p), 1, |pl).
- 0=(3,2),((xs (), 1, xv(p)), xv(p)) which corresponds to (1, x,(p), |pl)-
- 0=(3,2,1),((xs(p), xv(P), 1), Xv(p)) which corresponds to (1,|p|, x.(p))-

We denote o the unique refinement in the inert case, and the refinement denoted (3,2,1) in the split case.

Proof. — The action of u; on 7™(x), as been calculated in a previous section. O
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10.6. Modular and Classical Hecke Operators. — In order to understand how the refinements vary
on the Eigenvariety, we need to explicite the link between Hecke operators (at p) constructed in section
8 and classical Hecke acting on automorphic forms, as above. Here we work at Iwahori level at p and
identifies matrices with the corresponding Iwahori double classes. If p is inert in E, the Atkin-Lehner
algebra we consider at p is generated by the two (so-called classical) operators U7 and S, described

above. If p is split in F, we consider the Atkin-Lehner algebra A(p) of GL3(Q,) x Q) (see [BC09]
section 6.4.1.), it is generated by the Hecke operators, up to identification of £ ® Q) W Qp x Qp,
p p p p

(pIs,13), ( D , ( 1 ), ( 1 ) D ), (I3, pl3),
1 1 1 1

that we denote respectively US, Uy, Us and US (c stands for classical in the sense "not normalized").
If we use %, to identify GU(2,1)(Q,) with GLs xGL1(Q,) then this operators identifies respectively
with,

p p

(pl?np)? ( p ap)a ( 1 7p)7 (I3ap)7
1 1

In section 8 we defined Hecke operators modularly, U, and S, in the inert case, and Brasca-
Bijakowski defined Uy, U1, Uz, Us in the split case (see remark in subsection 8.3). These Hecke operators
have been normalized and correspond to the above Iwahori double classes, so that we have the following
result.

Let IT = 7o, ® X), m¢ be an algebraic, regular, cuspidal automorphic representation of GU(2,1) of
level KNP whose Hecke eigenvalues appear in the global sections of a coherent automorphic sheaf (of
weight ) and f € I n H°(X,w") an eigenform for H = H™P ® A(p), such that, if p is inert,

Upf =p ™USf and S,f =p Fi-hehegey
and if p splits,
Uof =p ®USf ULf =Uif Usf=p MUSf Usf=p " "Usf,

where the action of the double classes U, Sy and U is given by convolution on 7,

Proposition 10.16. — Suppose p is inert, [ is a classical automorphic form of classical weight k =
(k1, ko, ks) of Iwahori level at p (ie. f € H°(X1y,w")), eigen for the action of H ® A(p), and denote
A, 1 the eigenvalues of f for Uy, Sy respectively.

Let 11 be a irreducible factor of the associated automorphic representation (generated by ® ). Then H{D #

{0} and thus the algebra A(p) acts on 11 with US of eigenvalue p*> \ and S5 of eigenvalue plFlp.

Proof. — To prove the statement, we remark that the association f — ® is Hecke equivariant for the
classical Hecke operators Uy, S, acting on f. But we defined the Hecke operators Uy, S), geometrically

by U, = p~F2 U, and S}, = p Ik ‘S; to make them vary p-adically. Thus we get the result. O

Using the previous refinements for representations of GU(2, 1), we can prove the following result on
density of crystalline points on the Eigenvariety £ of theorem 9.15,

Proposition 10.17. — Suppose p is inert. Let x € E(F). There exists a neighborhood V of © and a constant
C > 0 such that for all classical points y € V, if |wa(y) + ws(y)| > C, then py is cristalline and of
Hodge-Tate weights (w2(y) — 1, w1 (y), —ws(y) — 2).

In particular crystalline poinis are dense in E by classicity propostion 8.76 (as we can also assume w1 (y) —
wa(y) > C) and theorem 8.17 (as we can moreover assume —2w1 (y) — ws(y) > C).

Proof — Denote by F}, F» the two invertible function of £ given by the eigenvalues under

p p
U, = D and S, = D
1 P
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The valuations of F}, F5 are locally constant on £, and thus there exists V' a neighbourhood of x where
these valuations are constant. As y corresponds to a f a classical form of (p-adic) weight w(y) and level
K proper under 1 ® A(p), we can look at II an irreducible component of the representation generated
by ®, which is thus algebraic, regular, and its associated representation p, doesn’t depends on II as
it only depends on the eigenvalues of % on f. As II, the p-th component of II is generated by its
I-invariants, 11, is a subquotient of the induction ind —n%(Q,)(t) for some unramified character v
(prop 6.4.3 of [BC09] and the adjontion property of induction). We need to show that I, is unramified,
but II, appears as a subquotient of indz (1)), which has a unique unramified subquotient, it suffices to
prove that ind (1) is irreducible, which happens in particular when |11 (p)| # p! when p is inert (cf.
the key result of Keys, see [Rog90] 12.2).

In the inert case, we have that if w = (—ka, —k1,—ks) if f is of automorphic classical weight
(k1, ko, k3), then by proposition 10.16

V7 (p) = p TR FL(y)/Fa(y),

for a certain choice 0 € Wgy (see subsection 10.5 for example), but as the valuation of Fy, 5 are
constant on V/, there is a constant C such that if |k1 + k3| > C, II,, is unramified. Thus, by local-global
compatibility at p for II (cf. [Skil2] Theorem B), p,, is crystalline. O

Remark 70.78. — 1In the split case, the same proposition is true under the assumption é(w(y)) :=
min; (|Jw; (y) — wit+1(y)|) > C, as the same proof of proposition 8.2 of [BC04], together with classicity
results of [BPS16] and [Bral6] Proposition 6.6, Theorem 6.7 applies.

10.7. Types at ramified primes for Y. — In order to control the ramification at £| Cond (), Bellaiche
and Chenevier introduced a particular type (Kj, Jy), which we can slightly modify to suit our situation.

Proposition 70.19. — Let ¢| Cond(x) a prime. There exists a compact subgroup K, of GU(2,1)(Qy) and
a representation J; of K, such that,

L. HOIHK[(J[, ’/T?(X) ® (XO,Z o det)) #* 0;

2. For all smooth admissible representation m of GU (2,1)(Qy) such that Hompg,(Jg, w) # 0 and for all
place v|l, there exist four unramified characters 1, Pa, @3, ¢4 : B} —> C* such that, the Langlands
semi-simple class in GLs x GL1 corresponds to,

L(mg,) = (61 ® d2 ® ¢3x0  Paxp )
or to the (unpolarized) Langlands class in GLs,
L(7p,) = ¢p1dax0 ® ¢101x0 ® d304.
Proof. — Let (K, J{) be the type defined by Bellaiche and Chenevier in [BCO4]. If £ = vy vz is split,

let K, be the subgroup of matrices congruent to

, €

o * *
o * %
<@ o+ *

modulo ¢™, the ¢-adic valuation of Cond(x). Let J; be the representation that sends the matrices
in Ky to X(Ll;l (y)X0,0, (€). As every matrix in GU(2,1)(Q¢) = GL3 x GL1(Q¢) can be written as
M = XU where U € U(2,1)(Q¢) = GL3(Q¢) and A = (1, ) is in the center, we can check that
Hompg, (J¢, T} ® X0,0, © detfl) # 0.

Now if Hompg, (Jg, ) # 0) then HomK?(J?, Tu(2,1)) # 0 when restricted to U(2, 1) = GL3 thus by
[BCO04] we have the conclusion up to a character. But as K’ = (Idx GL1)n K} ~ Z}, TR = X(;,'})l Y
where ) is an unramified character, and thus,

L(rgw) = ¢19x0 @ d2thx0 @ 3.
If ¢ is prime, denote K, = ng Kg and define J; by,

Je(AM®) = xe(N) 72T (MP).
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As OE@ NnK° c O}Eg, this is well define because the central character of J,? is up to an unramified
character equal to x, *. Moreover, Homp, (J¢, 73 () ® (Xx0,c 0 det) # 0 as it is the case for (KY, J?) by
[BCO04] or which sends back to Blasco [Bla02], and the central character of 77() is equal to x¢ (up to
a unramified character).

Conversly, if 7 is a representation of GU (3)(Q¢) such that Hom, (J¢, 7) # 0 thus Hom o (J2, mMu Gy @) #
0 and thus L(7(3)) = ¢1 @ ¢2 @ gnggl by [BC04], and its central character corresponds to X, up to
an unramified character, and we thus get the result on the Langlands Base change of 7. O

11. Deformation of 7

By proposition 10.19, we can find for every ¢| Cond(x) K¢ a subgroup of GU(2,1)(Q;) and an
irreducible representation J; such that

Homp, (Je, 77 (x) ® (xo,e © det)) # 0,

and for all 7y of type (K¢, Jy), its base change to GL3(E,), for all v|¢, gives the representation (nor-
malised as in proposition 9.17), Theorem 9.18)

L(mep,) = ¢1Xy - @© ¢2 @ b3,

where ¢; : B — C* are unramified characters.

11.1. Choosing the level. — Up to choosing compatibly places at 00 and embeddings of Q,2, we can
make x : Ggp — @, the p-adic realisation of x at p, have 7-Hodge-Tate weight —a = f% and thus
X 7-Hodge-Tate weight a — 1 = k—;l

Let N = Cond(x), suppose p # 2, p |N, and is unramified in E. Define Ky = [ [, K by,

L. If ¢ is prime to pN, K, is the maximal compact subgroup defined previously such that 7" as

invariants by K, (hyperspecial at unramified ¢, very special otherwise)

2. If ¢ = p, K, is the Iwahori subgroup of GU(2,1)(Q)).

3. If /| N, Ky is the type as defined before.

We then set,
J =) Je ® (xo, 0 det),
N
as representation of K.

By construction of Ky, there is ¢ € 77 (x)%7, an automorphic form, eigen for %™? and of character
under A(p) corresponding to the refinement o of proposition 10.15 and which is associated a classical
Picard modular form f € HY(X[,w") (by proposition D.2 or proposition 10.9 if a > 1) which is eigen
for A(p), whose eigenvalues for .A(p) corresponds to the refinement ¢ too (with the normalisation
explained in proposition 10.16), and k = (a, 1,2 — a).

Thus, setting wg = (—1,—a,a — 2) (corresponding to automorphic weight (a,1,2 — a)), to f is
associated a point zo € & such that w(z) = wo and p3g,; = Ye 3 (1@x®x"), and with normalisation
of proposition 9.17, /

Py =1@x@®x,
which is of Hodge-Tate weights (—a,0,1 — a).

11.2. A family passing through f. — As we have normalized the pseudocharacter T' of proposition
9.18 in order to have the "right" representation at g (corresponding to 1@ x @ x*), the map w from the
eigenvariety gives the p-adic (automorphic) weight, and not a priori the classical automorphic weight
nor the Hodge-Tate weights of 7', thus we will normalize this map accordingly.

The 7-Hodge-Tate weights of 1 @ y @ x* are given by (—a,0,1 — a) =: kg. Let F//Q, be a finite
extension such that f is defined over F.

Proposition 71.1. — Ifp is inert, there exists,
1. A dimension 7 regular integral affinoid Y over F, and yo € Y (F),
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2. a semi-simple continuous representation,
pr(y) : Gal(E/E)n, — GL3(K(Y)),

satisfying pjk(y) ~ pr(y), the property (ABS) of [BCO4|, and tr(px (v))(Gal(E/E)) < Oy,
3. A F-morphism, h = (hy,ha, h3) : Y — A® such that ho = 0, h(yo) = Ko.
4. A subset Z < Y (F) such that w(Z) < ko + (p — 1)(p + 1)°Z3,,, (i.e. the weight are regular)
5. A function Fy in O(Y)* of constant valuation.
such that,

1. For every affinoid ) containing yo, X N Z is Zariski dense in Q.
2. Forall z € Z v {yo} p3® is the Galois representation associated to a cuspidal (algebraic) automorphic
representation I1 of GU (2, 1) such that

Homg,(J,ms) # 0.

Py =1®XDX
4. For z € Z, (p5%)q, is crystalline of T-Hodge-Tate weights hi(z) < hao(z) < hs(z), and its 7-
refinement given by F is,

(phl—hs(z)ﬂ(z), Lphs—hl(Z)Ffl(Z)).
In particular,
Depya(p3®)2" 70" 0P 2 0,

T

5. In yo, the refinement is,
(X (), 1, Xp(p))-

Proof. — Recall that p is inert here. The modular form f corresponds to a point zy € £, the Eigenva-
riety defined in Theorem 9.15, associated to the type (K¢, J). Let B < B(wg,r) < W be the closed
subset defined in the same fashion as in [BCO04] by,

0 { e T3

w3 — 2we = 3a — 2

Thus wg € B. Define X to be an irreducible component of £ ®y B containing z ;. We get wp : X —
B which is finite (if r small enough) surjective. We can thus look at the universal pseudo-character
T on £ and compose it with Og — O(X). Applying lemma 7.2 of [BC04], we get an affinoid Y,
regular of dimension 1, Yo € Y and a finite surjective morphism m : Y — X such that m(yo) = zy

and there exist a representation p : Gg —> GL3(K(Y)) of trace Gg AR Ox —> Oy satisfying
(ABS). At yo, the representation p;° is given by 1® x ® x*t. The map h is given as follow. First, denote
v = (v1,va,v3) = (we, w1 +1,—1—w;3) and h is given by composition of with m of the map v (the shift
of w) of &, it is still finite and surjective on B, and for every y € Y such that m(y) = xy, h(y) = Ko. In
terms of automorphic weight (k1, k2, k3) the previous map is given by (—k1,1 — k2, k3 — 1), and thus
gives the Hodge-Tate weights for regular discrete series. In terms of Hodge-Tate weights, the equations
(1) giving rise to B are

hy =0
(2) {2h1+h3—1—3a

Denote by,
Z={heBnro+(p—1)(p+1)>2Z>°™: —hy < C,hg >’
|h1 — h3| > C”},

where C” > 0 is bigger than the bound given (up to reducing r and thus B) in proposition 10.17 for
crystallinity, C” is the boung given by classicity theorem 8.17, and C' is the bound given in classicity at
the level of sheaves, proposition 8.16 (remark that hy is constant). Then Z is strongly Zariski dense in
B. Then Z := k™ !(Z) < Y(F) contains only classical (and regular) points by proposition 8.16 and the
classicity result of Bijakowski (theorem 8.17). Moreover they are all crystalline by proposition 10.17. It
is strongly Zariski dense by flatness (thus openness) of x. Let us define F';. The action on a point
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associated to modular form f - of (classical automorphic) weight (k1, k2, k3) associated to 7 that is a

quotient of inde(g) (1) - of the operator

~1
UpS,
which corresponds up to a normalisation by W = pF1*ks to the classical Iwahori double coset
(7 P
P p = 1 ;
1 p!
corresponds to
PR (p),
where 1) = (11,12) is a character of (O*)? and o the refinement of f associated to the ac-

tion of A(p). Indeed, the eigenvalue of U, coincide with p~*21)7(p)2y)S and the one of S, with
p~Fr k2= ks g (p)ehg (p). Thus, U,S,* has eigenvalue p** 5349 (p) = p"s~"1pip7 (p). Thus, we set
F the function on £ given by p_lUpSp_l. We have that p"1 ="} = 47 (p). The property (2) comes
from the construction of the eigenvariety £. Part (3) is the calculation of the Galois representation
associated to 7" (). Part (4) is local-global compatibility at £ = p ([Skil2] as recalled in section 9.6)
and proposition 10.17 as the eigenvalues of the crystalline Frobenius »? coincide with 17 (p).

The last assertion is the calculation made in proposition 10.15.

Proposition 11.2. — Ifp = vU is split, there exists,
1. A dimension 1 regular integral affinoid Y over F, and yo € Y (F),
2. a semi-simple continuous representation,

pr(v) : Gal(E/E)ny — GL3(K(Y)),

satisfying pé}(y) ~ pr(v), the property (ABS) of [BCO4], and tr(px (v))(Gal(E/E)) c Oy,
3. A F-morphism, h = (hy,ho, h3) : Y — A® such that hy = 0, h(yo) = Ko.
4. A subset Z < Y (F) such that w(Z) < ko + (p — 1)(p + 1)°Z3,,..
5. Three functions Fy, F, F3 in O(Y') of constant valuation.

such that,

1. For every affinoid ) containing yo, 2 N Z is Zariski dense in ().
2. Forall z € Z v {yo} p3° is the Galois representation associated to a cuspidal (algebraic) automorphic
representation 11 of GU (2, 1) such that

Homg, (J,ms) # 0.

Py = 1@ XD
is crystalline of Hodge-Tate weights hy(z) < ha(z) < hs(z), and
(phl(z)Fl (Z)aph2(Z)F2(Z)7phS(Z)F?)(Z))

is an accessible refinement of p3°.
5. In yo, this refinement is (= (p), xo(p), 1).

4. Forze Z, (%)

v

Proof. — As the proof is almost the same as [BC04] and we chose to details the inert case, we will just
sketch it. Choose z  the point in € associated to 7" () and the accessible refinement (xz (p), x»(p), 1).
Denote by B < W the closed subset defined as in the inert case by

ko = 1
(3) {le—kg=3a—2

and choose X an irreducible component of £ xy, B containing xs. Apply lemma 7.2 of [BC04], and
get Y regular and yo and a representation,

p: Ge,np — GL3(Oy),
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such that p= = p. Denote h as in the inert case (v = (—ki,1 — ko, k3 — 1)), and idem for Z (classicity
at the level of sheaves is given by [Bral6], 6.2, and classicity by Pilloni-Stroh [PS12] or (in greater
generality) [BPS16].). The four Hecke operators living on &, U;,7 = 0, ..., 3 are normalized as in 8.3,
then set for i = 1,2, 3,
F,=U; U

By subsection 10.6, and local-global compatibility at v (with the fact that v coincide with 7,), h; are
the Hodge-Tate weights of (p. )|, and the normalisation of the Hecke Operators recalled in 10.6 assure
that (p/i F;); is a refinement at v for all classical forms. O

11.3. Constructing the extension. —

Proposition 11.3. — If p is split, then pr (v is absolutely irreducible.
If p in ineri, then we are in one of the following two cases :

L pr(y) is absolutely irreducible.
2. There exists a two dimensional representation v — p such that r iy is absolutely irreducible and,

X
T,Zj—( XJ_)

Proof. — The split case is easier, and is done as in [BC04] Proposition 9.1, but unfortunately (not as
in the split case), when p is inert the refinement autorises a 2-dimensional subrepresentation and a
1-dimensional quotient. Focus on p inert, the split case can be treated similarly as [BC04| Proposition
9.1. Suppose we are not in the case where pg (y) is irreducible. We can thus find a 2-dimensional
subrepresentation 7 < p (if 7 is one dimensional, take the quotient and apply (.)*, as p= = p). Suppose
that r is reducible. Take z € Z, as the valuation a; of F} is constant, we can calculate it at yy and we
get, from p" "3 Fy (yo) = x5 (p),
a1 = 2.

But if 73° is not irreductible, this means, following Rogawski’s Classification recalled in [BCO04], section
3.2.3, and the fact that the representations associated by Blasius-Rogawski are irreducible, that z is
either endoscopic-tempered of type (1,1, 1), endoscopic non tempered or stable non tempered. In the
case endoscopic non tempered, looking at the Arthur parameter at infinity, the Hodge-Tate weights
verifies k1 = ko or ko = k3, which is not possible by choice of Y and Z. In the stable non tempered
case, the Hodge-Tate weights are (k, k, k), which is not allowed in Z. So we need to check that z is not
endoscopic of type (1,1,1). But in this case, this would mean by weak admissibility for p5° (which would
thus be totally split) that,

{h1 —h3 + a1,0,hg —h1 — a1} = {h1 — h3,0,hg — hi},

but the previous equality is impossible for |h; — h3| > 1. Thus z € Z is endoscopic, tempered, of type

P . P T . . ss 1
(2,1), and r is irreducible. By weak admissibility, and the previous calculations, 77 has to be x— @ x. .

11.4. Good reduction outside p. —

Proposition 11.4. — In case when p is split or p is inert and previous case 1), denote p' = pr(yy ® (X;;)*l.

Let v| € # p be a place of E. Then,
L Ifv | Cond(x), then py vy and p' are unramified at v.
2. Ifv| Cond(x), then dimK(y)(p’K(Y))I'“ = 2.

In case 2), denote v’ = 1ic(yv) ® (x5) "' Let v| £ # p be a place of E. Then,

L Ifv | Cond(x), then ri(yy and v’ are unramified at v.
2. Ifv| Cond(x), then dim gy (') = 1.

Proof. — After all the constructions, this can be deduced as in [BCO4]. First there exists g € Oy such
that g(yo) # 0 and PK(Y) has a (’)yg stable lattice. Denote p the representation valued in Oyg, and
for all y € Spm(Oy,) = Y (g7 '), py the reduction at y. In case 1), as px(y) is semi-simple, p. is
semi simple for z € Z’, an cofinite subset of Z n Y (g~ !). But now, for z € Z', p, = p3° is the Galois
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representation associated to a regular automorphic representation II, of GU (2, 1). In case 2), rx(y) is
semi-simple, thus for all z € Z’, still cofinite in Z, 75° = r, < p3°, and,

. I, : s
dim g (yy '™ = dimg vy (o' 1

)

and dimg(y)(p’ )Iv is related to the ramification of a (tempered endoscopic of type (2,1)) automorphic
representation of GU(2,1). Thus, to show the result, we only need to control ramification at v of (the
base change of) II,.

If v / Cond(x), by construction of the eigenvariety and choice of the maximal compact, (IL,), has
a vector fixed by K. We can thus conclude as if ¢ is unramified, K is hyperspecial and if ¢ ramifies,
Ky is chosen very special and [BCO04] proposition 3.1 gives the result for the base change. Now by
local-global compatibility (for example [Skil2]), p5° (and thus 7, in case 2) is unramified at v.

If v| Cond(x), by construction II, has type (K¢, Jy ® X(Ié o det), and thus by proposition 10.19 the
local langlands representation associated to (II.), is ¢1 @ ¢2 @ ¢p3x0,¢ for three unramfied characters
¢;. Thus, by local-global compatibility again, there exists I/, a finite index subgroup of I, such that
p-(I}) = 1. Thus, (¢')(I}) = 1. But up to extend scalars, p|, is a finite representation 0 of I, /I,

defined on F" a finite extension of F. Thus, pj ®p F" is well defined, semi-simple, and evaluating the
trace, we get,

1@1@ () "), = (o), ® F)ye ~ 0.
We thus get the result. 0

11.5. Elimination of case (2). — We want to prove that pg(y) is always irreducible, and thus prove
that case 2. when p is inert can never happen. Thus suppose we are in case 2. (thus p is inert).

Proposition 71.5. — There exists a continuous representation 7 : G —> GL3(F') such that T is a non
split extension of X by x,

_ X *

T ( X )
verifying,

L. dimp(F®X)" =2 ifv f Cond(y).
2. dimp(F®X)" > 1 ifv| Cond(x).
3. Dipisr(F)? =X () £ 0
Proof. — We sketch the proof as we will detail a bit the argument in proposition 11.7. First, by Ribet’s

Lemma (see [Bel03] Corollaire 1 or [Che03] Appendice, Lemma 3.1 and [BC04] Lemme 7.3) there exists

a g # 0 € Oy and a Oy,(y-lattice A stable by 7 (y) such that 7 := 7y = X X*L is a non split

extension. Then, condition 1. and 2. follows from the proposition 11.4. For condition 3., we can use the
analog of Kisin’s argument as extended by Liu, [Liul2], as in the proof of the next proposition, as for
all ze Z,

2___h 2___h
-Dcris,'r(rz)dJ =Pt = Dcris,r(pz)¢ =P #* 0
as shown by proposition 11.3. O

Denote by 77/ = 7 ® (X;‘)_l = 7 & Xp, which is an extension of 1 by x,X, = wp (the cyclotomic
character).

Lemma 11.6. — The representation v’ is crystalline at p.

Proof. — Recall that p is inert. Then as X:{ is crystalline, it is enough to prove that 7 is crystalline. But
Vi Dcrys,T(V)‘f:“ is left-exact, thus,
. 2= . 2_ 2_,
dlmF DC”’yS,T(p)[P v < dlmF Dcrys,T(T)w “ + Dcrys’-,—(l)w u-

But Dcrys77(l)¢2=“ = 0 thus DCTy(gvT(T)w:“ # 0. As Dipys - is left-exact, because 7 is extension of
le by x, we have,
Derys,r(Xp) © Derys,r (1),
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but on Derys +(Xp) ¢ acts as x(p) = up~!, thus this line is distinct from Dcrys’r(r)‘f:“ and thus
Derys+(r) is of dimension 2. But because of the action of @, Depys(r) is a K ®z, F-module of
dimension 2, i.e. 7 is crystalline. ]

Thus 7’ gives a non zero element in H}(E, wp) but by [BC04] Lemme 9.3, which is a well-know
result, H} (E,wp) = {0} thus 7’ must be trivial, which gives a contradiction. We are thus in case where
PK (v is irreducible.

11.6. Good reduction at p. — Suppose p inert. The result for p split is analogous to [BC04] Proposi-
tion 9.3. Denote u = x*(p).

Proposition 71.7. — There exists a continuous representation p : Gy —> GL3(F) such that,

1. For all place v of E not dividing p, we have,
(a) dimp(p ® (x;) ") = 2 ifv| Cond(x).
(b) dimp(p ® (x;) ") =3 ifv  Cond(x).
2. Deris, (ﬁ)“’zz“’ is non zero.
3.9 ~xp ® X; @ 1 and one of the two assertions is true :
(a) Either p has a subquotient v of dimension 2, such that r*~ ~ r and r is a non trivial extension
of Xy by Xp-
(b) Eitherp ~ p; p has a unique sub-representation v of dimension 2 and a unique subquotient o
of dimension 2, with r1 a non trivial extension of 1by x,, and ro a non trivial extension oij;
by 1, and ri ~ ry.

Proof. — Denote by O the rigid local ring of Y at gy, a discrete valuation ring of residual field F,
denote L its fraction field, and p; the representation which is the scalar extension of p to L. As
L =1®xp (—BX; which are pairwise distincts characters, we can use also [BC04] proposition 7.1, the
analog to Ribet’s theorem, to find A — L3 a lattice stable by p;, such that the reduced representation
P = Pa satisfies condition (3)(a) or (3)(b). The condition (i) is true by what preceed. We can argue as in
[BCO4] to get (ii), but we will need a generalisation to G i if p is inert. Fortunately what we need is in
[Liul2]. As in [BC04] Lemma 7.3 there is an affinoid ¥ D Q 3 yo such that pr, as a Oq-stable lattice
Ag such that p,, , = p. Denote p = py,,. Let thus 7' < () the points that are in Z c Y, in €, and
such that p, is semi-simple (it is a cofinite subset of Z N (2 as pg(q) is semi-simple (irreducible)). By
choice of Z, we have that for all z € Z/,

2__hqy(z)
Derys(p2)® ~P 73 2 0,

As p is polarized, its o7-Hodge-Tate weights are h°(z) = (—h3, —h2,—h1). Set hX = (h;, hy_;) €
F. x Fyr = K®q, F. Thus (, p, (hf);, F1, Z) is a weakly refined (polarised) p-adic representation of
Gk of dimension 3 in the sense of [Liul2] Definition 0.3.1. To verify (f) of [Liul2] Definition 0.3.1, recall
that over the weight space ) we had an universal character Y = x1 x x2 : 0% x Ol — O(W)*, and

as W is regarded over K, we can split x1 ®Z; T 0% ®z; 0> — OW)* as (x1,7, X1,07)- Then, set,
P = X17X10r 1 OF — OOW)%,

whose derivative at 1 is —h; + h3 and for every x € Z3, corresponds to the character,

re O 7(x)or(x)he.

Thus, the character,
0% L OW)* — O(B)* — O()*,
has the desired property (f).
Denote p' = p® 1)~ (where 1 is precomposed by product of the two Lubin-Tate characters of K,

G — K*). Thus g’ as xI< = (0,0) as smallest Hodge-Tate weight. In Particular by [Liul2] Theorem
0.3.2, Qs = Q. But then by theorem 0.1.2 applied to S = €, k, n big enough, and p’, we have that,

2__
Dl (pl)? = ~ D& (o)

crys\yo
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(see remark 3.3.5 and corollary 1.5.4 of [Liul2], as 0 is the only negative Hodge-Tate weight(?) of o/,
corollary 1.5.4 applies), and D;fen(pglo)r # 0.

Thus Depys - (pglo)"DZ:F1 # 0 which means

2

2_ (o) _
Dcrys,f(pyo)w PR Dc'rys,f(pyo)w “#0.

O

11.7. Elimination of case (a). — We can do as in [BC04], and as we eliminated case 2. of proposition
11.3. Suppose we are in case (a), there is thus a subquotient r of p such that 7+ ~ r and 7 is an extension
of x;‘ by xp. Denote by ' = r ® (XIJ;)_l = 7 ® Xp, which is an extension of 1 by x,Xp = wp (the
cyclotomic character).

Lemma 71.8. — The representation r' is crystalline at p (at vy, ve|p is p is split).

Proof. — The split case is identical to [BC04], lemma 9.1. Suppose p is inert. Then this is identical to

lemma 11.6. O
Lemma 11.9. — The representation v’ is unramified at every place w } p.
Proof. — This is exactly identical to [BC04] Lemme 9.2. O

Thus by [BC04] Lemme 9.3, r must be trivial, which contradicts Proposition 11.7 3)(a).

11.8. Conclusion. — We are thus in case 3)(b), with 71 a non trivial extension of 1 by .
Lemma 71.70. — 1 is crystalline at p (if p is inert, at vy, v2|p if p splits).

Proof — Again, if p splits the proof is identical to [BC04] Lemme 9.4, thus suppose p inert. As 71 ~ 7y,
we only need to prove that 3 is crystalline. Because Dcrys,.r(-)“’2:“ is left-exact, we again have,

. ga— 2= . 2= . =
dimpg Dcr‘ys,T(p)@ Y < dimp Dcrys,T(TQ)Lp Y+ dimp Dcrys,T(Xp)Lp “.

AS Derysr(xp)? =" = {0} and dimp Depys ()9 =% # 0, we have dimp Depye - (r2)? =% # {0}.
Moreover,

Derys,r(1) € Depys,r(12),

by left-exacness of D¢,y », which gives a line where 2 acts as 1 # u. Thus there are at least two
different lines in D.yys -(72) which means this is 2-dimensional and by existence of ¢, ry (thus r1) is
crystalline. O

Theorem 11.71. — The representation 1 gives a non-zero element ofH}(E, Xp)-

Proof — We only need to prove that r; has good reduction outside p. But then as p in unramified
outside p Cond(x), by proposition 11.7, we only need to check v| Cond(x). We have shown in the proof
of Proposition 11.4 that there exists an open subgroup I, < I, such that pT 1, factors through I, /I,

and phw =101 (Xj;)r]}v Thus r{w is then of dimension 1. O

Dn [Liul2] the convenction of the Hodge-Tate weights is opposite to ours, there the Hodge-Tate weight of the cyclotomic
character is 1.
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Appendix A. Calculations on the weight space

In this appendix we explain a bit more the structure of the weight space ¥V defined in section 3. W
is represented by a disjoint union of ((p + 1)(p? — 1)) 3-dimensional open balls over O. Indeed (if p # 2)

0% = (Fye)* x (1 +pO),

which induced, up to the choice of a basis of O over Zj,, an isomorphism,
Homion (0%, Gn) ~ (Z/(0? ~ 1)Z) x By(1,17),
where B>(1,17) is the open 2-dimensional ball centered in 1, of radius 1. And, as a Z,-module
O~ 8§ x Ly,
where S is a finite group of cardinal p + 1.
Proof — We have the exact sequence,
0— O — 0 ¥ zx o,

(surjectivity is given by local class field theory for example). Reducing modulo p, we have the surjectivity

of Fp2 Nm FF,,. We thus have the diagram,

1
0—— {zeOtiz=1 (modp)}*>1+p0N*m>1+pr

0 o! 0~ . 0
0——— {zeF,:ar+l =1} FX, — ™, Fx 0
0 0

The application Nm! = 14+ pO — 1+ pZ,, is surjective ; indeed, for all z inside 1+ pZ,, because Nm
is surjective, there exists © € O such that uu” = 1 + pz (denote by o the conjugation, and ® reduction
modulo p). We deduce that w € { z € F2 : 2P™! = 1}. We then set v’ = u/[u], where [.] denote
the Teichmuller lift. Then v’ € 1 + pO and (v')(v')” = wu’/([u][@]) = wu/([@P*']) = 1 + p=.
The second equality is because [.] commute with Frobenius. (We could also prove the surjectivity by a
method of successive approximations). The map O' — {z € Fj2 : zPT! = 1} is also surjective : for
all z € {x € Fjo : 2P = 1}, [z][z]7 = [2P*!] = [1] = 1. Thus, up to choosing a base of O over
Zy, we can with the logarithm identify 1 + pO to Z7; this assure that {z € O' : 2 = 1 (mod p)} ~ Z,
(because logarithm exchanges trace and N'm) O

In particular,

Homont (0", Gy) = [ [ Br(1,17).
S

Thus, W is isomorphic to a union of (p+1)(p* — 1) open balls of dimension 3. There is also a universal
character,

R THZy) — Ly[[TH(Zp)]]-

The following lemma is essential,

Lemma A.1. — Every weight k € W(K) is automatically locally (Q,— )analytic.
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Actually we can be more precise,
Lemma A.2. — LetU < W a quasi-compact open, then there exists wy such that ki) is wy -analytic.
Proof. — 1t is [Urbll] Lemma 3.4.6. O

We will construct W(w), an open subset of WV containing the w-analytic « (it is an affinoid). Set
w €]ln — 1,n] N v(Q,). We define it this way, following [AIP15]. First set 20(w)° to be Spf O <<
S1, 82,53 >> where K is a finite extension of (Q,, containing an element p* of valuation w. Define T,
the subtorus of T the formal torus associated to 7T, given by,

Tw(R) = Ker(T(R) — T(R/p"R),

for any flat,p-adically complete O -algebra R. Denote X the coordinates on ¥, so that 1 + p“ X/ =
1+ X; on ¥, and define the universal character,

Ty x W(w)? — G
(1+p“ X}, 1+ pP X5, 1+ p¥ X5, 81,82,8) — [[o,(1+puX;)S®

Then define W(w)? to be the rigid fiber of 2J(w)° and finally, W (w) to be the fiber product,

Oun
: _2
K w2

0
|44 X Hom,ont ((14p0) x (14+pO)1,Cx) W(w)”,

where the map W(w)? — Homeont (1 + pO) x (1 4 pO)*',CX) is given by,

wt 527

(14 pa;)?

o

(s1,52,83) — (1 +p"z1,1 4+ p w2, 1 + p'a3) —

i=1

Then we can write W = J,,~, W(w) as an increasing union of affinoids.

Appendix B. Kernel of Frobenius

Proposition B.1. — On the stack BT(Oz,l),pol and X, the Cartier divisor ha., is reduced.

Proof — This is [dG16] Theorem 2.8, which can be proved by considering the deformation space at a
point. Unfortunately we can’t use the result of [Herl5] because of the polarisation (but a similar proof
works). O

Proposition B.2. — Let G/ Spec(O¢) be a p-divisible O-module. Suppose ha,(G) < ﬁ, and let Ky the
first Frobenius-subgroup of G (see theorem 5.7). Then

_1_ _1_
K1 Xspec(0c) Spec(Oc/p?r?) = Ker F? Xspec(0c/p SPec(Oc/p2?).

Denote, for K/Q,2, by X/Spf(Ok) a (smooth) presentation of BTS@J)J,O[/ Spf(Ok) (which is
smooth, see for example [Wed01]) and for v € v(K), X(v) is the open subset of the blow-up along
I, = (p¥,ha,) where I, is generated by ha,. As X is smooth and ha, is reduced, X(v) is normal and
its special fiber (modulo 7) is reduced.

Take v = ﬁ and K a totally ramified extension of Q, of degree ﬁ (so that v(7rg) = ﬁ)

Then over X (v), the rigid fiber over K of X(v), we have a subgroup K; < G[p?], and by the
proposition 5.10 this subgroup extend to a subgroup over X(v). Now, over X(v) ROk /rx = X(v)®k K
the rigid fiber of X(v), we have two subgroups, K; and Ker F’2, which coincide on every point (by
[Herl6] section 9 or the very proof of the proposition 5.10) but as X(v) ® O /7K is reduced, K; =
Ker F? over X (v) ® O /mx. As every Oc-point of BTal),pol gives a point of X, we have the result
using G[p"] for r big enough (bigger than 3 is enough).

Corollary B.3. — Let G as in the previous proposition, but suppose ha,(G) < ﬁ. Then ha,(G/K7) =
2
p*ha, (G)
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Proof — Recall that ha, = ha,, and ha, is given by det(V?) without any division. By the previous
proposition, the map G[p?] — G[p?]/K; coincide modulo 7, with the map G[p?] L G[p2]#".
Thus, there is an isomorphism modulo 7x : det(w(g/k, )P or) = det(wgg,w) which identify (modulo
7x) hag, (G/K1) with hay, (G)®P°. Thus we get,

1 1
. 2 L R L
inf{p~ ha(G), 2p2} inf{ha,(G/Ky), 57 }.

As p? ha, (G) < ﬁ, we get the result. O

Appendix C. Devissage of the formal coherent locally analytic sheaves

2
Let x € W(w) a caracter and ° its restriction to W(w)?, and w < m — B ;”_*11

p
X1(p*™)(v) the sheaf " T defined as,
C*ij$ [ROL where ( : jﬂﬂz X (me)(U)'

Denote on

If we set 7 : X1 (p*™)(v) —> X(v), then the sheaf 10" of overconvergent forms is given by,

(mato, 1) () 0%,

w

where (—)(—+') denote a twist of the action of B(Z,)®B,, and (—)Z®)T+ means taking invariants.
Remark that after the twist, the action of B(Z,)®B,, factors through B,,.
Consider the projection "in family”

¢ x 1:3W x Ww)® — X1 (p*™)(v) x W(w)?,

and denote
KOG

1wl (€ % 1)xO5954 wan(uwyo[©
the family of sheaves over X1 (p*™)(v) x 20(w)°.

Let Spf(R) a small enough open in X;(p?™)(v). Recall that we denote by 1 the univeral polar-
ized trivialisation of K7, denote ey, ez a basis of O/p™ O @ O/p*™O, e{” = HTyru(e1),e3" =
HT,: w(e2),e” = HT; ,(e2) the images of this basis in F,/p*, F,/p". Denote f77, fg7, f7 a lift of
this basis in F,, F.

With this choices we can identify jﬂﬁzl SpE(R) with matrices,

0,un]
Y

1 1+ p3(0,1)
pvB(0,1) 1 X 1+ p“B(0,1) | xspr(ox) SPE(R).
1 1+ p¥B(0,1)

Denote X the coordinate in the 3x3 matrix and X7, X5, X3 the coordinates of the balls in-
side the column. Thus, we can identify a function f on jﬁﬂ:;lspf(m to a formal series in
R << X(),Xl,X27X3 >>.

Now, let k% € 20(w)?, then f € mZOT if it verifies,

f(XOa AXla )‘X27 AX?)) = (KO)/(A)JC(XO; X17X27 X3)7 Ve T’UJ(R)
In particular, we deduce that there exists a unique g € R << X >> such that,
f(Xo, X1, X2, X3) = g(Xo)r" (X1, X2, X3),

and thus there is a bijection mZ,OT ~ R << X >>. The same hold in family,
Lemma C.1. — For all f € ml’fjoyu”(R@OK << 51,852,855 >>), there exists a unique g € R <<
S1,82,83, Xo >> such that,
F(Xo, X1, Xo, X3) = g(Xo)(5%™) (1 + p* X1, 1 + p¥ Xo, 1 + p“ X3).
This decomposition induces a bijection

i T(RROK << 1,8, 85 >>) = R << S1,5, 53, Xo >> .

w
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Lemma C.2. — Let 7 be a uniformiser of Or. Then,
KOun((l + pri)) €l +n0k << 51,852,853, X1, X9, X3 >>.
Proof. — The calculation is made is [AIP15] Lemma 8.1.5.3. O
Corollary C.3. — Denote mi::mr the reduction modulo ofmﬁ,omT. Then the slzeafroq"i;mT is constant on
(X1(p™) x W(w)®) x Spec(Ok /) : it is the inverse image of a sheaf on X1 (p*™) x Spf(Ox /7).
Let f¢7, f97, f™ be an other lift of the basis image of HT, .. Let
1+p¥a; pPas
P = pVas 1+pYay
1 +p“as

be the base change matrix from f to f and X' the coordinates on jﬂﬂi‘ SpE(R) relatively to f.

Lemma C.4. — We have the following congruences,
Xo=X,+a3 (modp"),
X1 =X{+ar (mod p");
Xo =X} +ay4 (mod p"),
X3=X,+as (mod p").

Proof — Indeed, as seen inside 7.*n/U,n, we have that the two systems of coordinates verifies,
P(I3 +p* X)U = I3 + p* X/,
where U € GLy x GL; is a unipotent matrix of the form I3 + p*’ N, N upper triangular nilpotent and,

X1
X=1 Xo Xo
X3

Thus, write P = I3 + p¥ Py, then I3 + p¥“(Py + X + N) = I3 + p¥ X’ (mod p?*). O
We can thus deduce the following corollary for the family of sheaves,

Corollary C.5. — Let K° € W(w)(K). The quasi-coherent sheafo® """t on X1 (p*™) x W(w)° is a small
Banach sheaf.

Proof — We just have to check that on X1(p*™) x 2 (w)? x Spec(Ok/m) the sheaf ij;mT is an

0,un
inductive limit of coherent sheaves which are extensions of the trivial sheaf. Write mfu‘l T2 the

subsheaf of sections that are locally polynomials in Xy of total degree smaller than . This makes sense
"t

0,u
globally by Lemma C.4, and moreover, mZJ’l is the inductive limit over 7 of these sheaves. But then,

KON > KOUTE > p_
w,1 w,1

10 (mod )w is isomorphic to the trivial sheaf. O

Appendix D. Non tempered representations and (g, X' )-cohomology

We are interested in calculating the (g, K)-cohomology of the representation 7™ () defined in propo-
sition 10.10 to show it appears in the global section of a coherent automorphic sheaf on the Picard
modular surface.

We have the following theorem of Harris ((Har90] Lemma 5.2.3 and proposition 5.4.2, [Goll4] The-
orem 2.6.1)

Theorem D.1. — Let 1 = T, @ 7y be an automorphic representation of U(2,1) of Harrish-Chandra
parameter \, and that HO(q, K, 7o, @ V') # 0, then there is a U(2,1)(As) equivariant embedding,

7Tf - HO(X’ VA\;‘pn_pc)7

where V', _, is the automorphic vector bundle associated to the representation V, of K = K.
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Thus we only need to calculate the (q, K')-cohomology of 7™ (), and even the one of the restric-

tion of the representation to SU(2,1). Fortunately we can explicitly do so, rewriting the induction
SU

ind —n’g (2’1)(R)(XOO), as a space of function, and determining the quotient corresponding to 7" ().
In [Wal76], Wallach calculated all the representations of SU(2,1)(R) using this description of the in-
duction. As explained in [Wal76] p18l, the induction space ind —ngU(Q’l)(R) (x) corresponds to X"
with A = (a — 1)A; + (—a)Ag (which is thus reducible). The shift by —A; — As is due to the nor-
malisation by the modulus character in the induction. Its discrete series subobject corresponds to one
of the discrete series DX described pl83, and its quotient corresponds to the non-tempered represen-
tation (T, 5, Z,_5) (defined pl84, and the fact that it appears in the said induction is Lemma 7.12).
As the name doesn’t suggests, T, _, - which coincide with the restriction of 7" (x)s to SU(2,1)(R),
will be holomorphic (but we can exchange holomorphic and anti-holomorphic by changing the complex
structure of the Picard surface).

Proposition D.2. — Let (0,V,) = Sym® ' ®det™ : M ~— Sym® ' (M)®det(M) = the representation
of U(2) = SKy < SU(2,1)(R). Then

H°(q, K%, T, ,QV,Y) #0.

To show the previous proposition, denote

1
Jo = 1
-1
the hermitian form of signature (2, 1) used in [Wal76]. Denote
1 1
V2 V2
P = 1
1 1
V2 V2

the base change matrix (so that PJyP = J, P=p1= P). In this new presentation, the complex
structure is given by h' = PhP, i.e.,

W

h:z2eCw z e Uy, (R).

Wl

In this form, the Lie algebra of Uy, (R) is given by,

iag b ¢
g={| —b ieo f | a0,€0,l0€R}.

c f ilo
using the action of h’(i) we can decompose g = £ + p with
0 0 ¢
p={ 0 f |, co,a0€R}.
c f 0

Extending scalars to C, we can further decompose, pc = p™ @ p~, where conjugacy by 2/(2) on p™ is
given by z/Z and Z/z respectively. Explicitely, p~ is generated by

X" =N"®i—-N"®1 and YV T=M"®i—-M ®1,

0 1 0 1
N~ = 0 Nt = 0

o
o = O O

o%—‘
o~ o <9

Mt = 0
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and p7 is generated
XtT=N'"®i+ N ®1 and YT =M"®i+M ®1.

To calculate the action of p~ on our representation, we use the following formula for a matrice X
and feg:

X f = (5 ep(tX) o fico,

As Z_, is a space of holomorphic functions, we get the following exponentials for the matrices
M* N*:

1 0 1 0
exp(tM™) = cht isht exp(tM*) = cht sht
—isht cht sht cht

cht isht cht sht

exp(tN~) = 1 0 exp(tN™T) = 1 0
—isht cht sht cht

and the actions of the matrices M+, N* is given by,
d d
N*f = ~(a= s + (5 - 1) + T

N~ f = —i(a—2)zf +i(z1 +1)j—f+zz1z2(jf2
M+f:_(a_2)5f+m%fl+( 1)55—2

M~ f=—i(la—2)zf + Zzlzzdfiil +i(z” + 1)dii2

We deduce that the action of p~ is given by,

_ Z1 .
Y = —2i——
(7)) -2t

— Z1 _ ﬂ
X f<22>——2221

and

and the action of p* by

d d
Y*f < Iy ) = —2i(la— 1)z f + 222’122df + 2172di2
and
d d
X*f ( 2 ) = —2i(a—1)z7f + szlz'gd—f + 2272d;1

As Z_, is defined as the quotient a completion of the quotient of holomorphic polynomials in variables
Z1, Z3 by the subspace of polynomials of degrees less of equal than (a—2), HO(p~, Z,_,) = (Z}_,)P =°
is identified with homogeneous polynomials in Z7, Z3 of degree a — 1.
As for a representation 7 of K, we have,
HYq, K.V ®V;) = (Hi(p~, V)@ V)"
(cf. [Har90] 4.14), we have that H%(q, K, Z," ; ® V¥) # 0.

Remark D.3. — Using a slightly more precise calculation for U(2,1) instead of SU(2,1), we could
show that for U(2,1),

Ho(q7 KOO7 ﬂﬂ(X) ® Vv(a,l,?—a)) #* 0>
in particular, the Hecke eigenvalues of 7" (x) appears in the global sections over X, the Picard modular
variety, of the automorphic sheaf w(®1:2-9)
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