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Abstract. — In this article we give a construction of eigenvarieties by geometrically interpo-
lating coherent automorphic sheaves of (PEL) Shimura varieties and their global sections. The
new feature is that we particularly study the case of an empty ordinary locus, and thus use a
replacement of the canonical subgroup in this situation. We specifically take into account the
case of small primes and use this particular construction at a specific endoscopic point to prove
new cases of the Bloch-Kato conjecture for characters of an imaginary quadratic field.
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1. Introduction

Families of automorphic forms have proven to be a great tool in number theory in the
last 30 years. Their construction dates back to Hida, [Hid86], who first constructed fami-
lies of ordinary modular forms (for the group GL2). This construction was then improved
by Coleman in the 1990’s, for overconvergent, finite slope, modular forms and rigid spaces
over Qp (whereas Hida was able to construct his families integrally). One great and yet
surprising achievement was the construction soon after by Coleman and Mazur of one
rigid space, the Eigencurve, which parametrizes all possible families of overconvergent,
finite slope modular forms, i.e. gluing all the families previously constructed.

Before motivating the construction of this spaces, let us say that these constructions
have seen many generalisations in different directions. First dealing with level outside p
and quaternion algebras by Buzzard [Buz07], or for other algebraic groups, like unitary
groups, compact at infinity by Chenevier [Che04], and to more general groups by [AS08]
and [Urb11] using families of (generalised) modular symbols. More recently, [AIP15] have
been able to construct families and eigenvarieties for Siegel modular forms using families
of automorphic sheaves on the Siegel moduli space. These families of sheaves live in the
rigid world, they are Banach sheaves on certain strict neighborhoods of the ordinary locus,
that interpolates (in some sense) the classical automorphic vector bundles. This strategy
has been extended by [Kas04, Bra13] in the case of Shimura curves, [ABI`16] for Hilbert
modular forms, and [Bra16] for PEL Shimura varieties for which the ordinary locus in non
empty.

These spaces are particularly interesting ; through their local properties (see for exam-
ple [BC09] and [CH13] for applications to the Bloch-Kato conjecture, and to constructing
Galois representation associated to automorphic representations), but also for their global
geometry (see [LWX17] and the application to the parity conjecture), which remains com-
pletely mysterious in general.

In all cases, the construction goes by constructing huge Banach spaces M together
with an action of a (commutative) Hecke algebra T containing a distinguished compact
operator U . With this data, if M is a projective Banach space, we can construct following
[Col97b] a rigid space E which parametrises Hecke eigensystems for T acting on M ,
for which the eigenvalue for U is non-zero. In [AS08] and [Urb11], these spaces M
are the sections on Shimura varieties of p-adic overconvergent modular symbols, which
interpolate the etale cohomology of these varieties. In [AIP15] and its generalisations, one
first construct varying Banach automorphic sheaves ωκ:, where κ is a p- adic weight, and
take the sections of these sheaves on strict neighborhoods of the ordinary locus. These
spaces interpolate the coherent cohomology, but are constructed on PEL Shimura varieties
(one needs the moduli interpretation), and need the non emptyness of the ordinary locus.
Indeed, one central tool to construct ωκ: is the theory of the canonical subgroup and its
overconvergence (see [Lub79, Far11] for example). In this article, we mainly remove the
ordinariness assumption. Let pG,Xq be a PEL Shimura datump1q, and p a prime. Our
main result is the following

p1qWe exclude factors of type D
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Theorem 1.1. — Suppose thatG is unramified at p, and letKp be a level outside p, hyperspecial
outside a finite set of primes S. Let I be a Iwahori sugbroup at p and K “ KpI . There exists
rigid spaces E and W , called respectively the eigenvariety and the weight space, together with a
locally finite map

w : E ÝÑW,

and T “ HSp b Appq ÝÑ OpEq such that, for all κ P W , w´1pκq is in bijection with
the eigenvalues for the Hecke algebra T acting on weight κ, overconvergent, locally analytic
modular forms for G which are finite slope for some U P Appq. Here Appq is a (commutative)
Hecke algebra at p and HSp is the unramified Hecke algebra for G outside Sp. E and W are
equidimensional of the same dimension. Moreover there is a Zariski dense subset Z Ă E such
that all z P Z coïncide with a classical Hecke eigensystem in the previous identification.

Actually, we can only construct families at unramified primes, but we can weaken a bit
the assumptions on G and p, by only constructing deformations in the directions of primes
above p which are unramified for G, see remark 2.1. We also have more information on
the geometry on E over W , namely for example there is a covering pUiqi of E such that
wpUiq is an affinoïd open in W , and every irreducible component of Ui surjects via w onto
an open of W . Compared to previous constructions of Eigenvarieties (e.g. using modular
symbols), the main interest is that we automatically have a broader class of classical points
on E , namely those which appear in global sections of coherent automorphic sheaves (with
finite slope at p). In particular, automorphic representations which are holomorphic at
infinity (but not necessarily discrete series) and finite slope at p can be deformed by our
construction (compare with [Urb11] 5.5.1). This is particularly interesting to deform the
Arthur points (an endoscopic point) which we study in the second part of the article in
the case of Up2, 1q, and more generally for endoscopic points (for example those which
appear in [BC09]), but also for (limit of) discrete series points, for which we would like (for
example) to associate Galois representations, as it is done in [Gol14].

We now explain how we prove this theorem. A first step in generalising the construction
of [AIP15] to the case when the ordinary locus is empty is to find a subsitute for the
ordinary locus and the canonical subgroup. A good substitute is to consider the µ-ordinary
locus (see [Wed99], [Moo04], and also [Bij16]), and the canonical filtration, which exists
on it, and overconverges on strict neighborhoods (see [Her16]). This strategy has been
followed in [Her19] for Up2, 1q when p ą 2. Unfortunately, the results of [Her16] rely on a
stronger hypothesis on p : being big enough (always p ‰ 2 and for a general unitary group
for example the bound can be very large). In this article we choose another strategy to
avoid any hypothesis on p, and use (integral) Shimura varieties with higher (Iwahori-like)
level at p, constructed by normalisation in [Lan16a]. On these Shimura varieties naturally
live flags of finite flat subgroups, and if we restrict to strict neighborhoods of the µ-ordinary
locus (more precisely what we call the µ-canonical locus, see definition 5.13), these groups
behave as the canonical filtration (and actually coincides with it when we know it exists, see
Theorem 5.6). In particular, we can follow the construction of [AIP15] and [Her19] for all
p with these groups, and construct automorphic banach sheaves by introducing level at p.
All of this rely on the fact that we can find a basis of strict neighborhood Xpdeg ě N ´ εq
where our subgroups have high degree, and thus are well behaved.
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In the setting where the ordinary locus is non empty, by results of Fargues [Far11] we
can relate degree and the Hasse invariant. In our situation we also have an Hasse invariant
(by [GN17]; see also [Her18] and Definition 5.11), but we can relate it to the degrees, using
[Her16], only if p is big enough... Thus we chose another strategy : we have a second basis
of strict neighborhoodsXpha ď vq where the (valuation of) Hasse invariant is small enough
(it is invertible on the µ-ordinary locus), and we use these two basis of neighborhoods.
Using the degree function, we can control our (call them canonical) subgroups easily, and
thus as it was already remarked in [Bij16], the action of the Hecke operators. In particular,
we can check that we have an operator U which acts as a compact operator on sections of
our sheaves over Xpdeg ě N ´ εq. Unfortunately, we can’t prove that the global sections
over the opens Xpdeg ě N´εq of the automorphic Banach sheaves are projective, thus we
can’t a priori use Coleman- Buzzard’s construction. On the other basis pXpha ď vqqvą0,
we can’t prove even that our expected-to-be compact operator U (which generalise the
operator Up on the modular curve) will stabilise each neighborhood (and thus worse, that
it acts compactly on sections on Xpha ď vq), but using that Xpha ď vq is affinoïd in rigid
fiber, we can prove that global section of our automorphic Banach sheaves on Xpha ď vq
are projective. Here to be precise we need to work on both the toroïdal and minimal
compactifications of [Lan16a], the toroïdal compactification being needed to construct
the automorphic sheaves, and the minimal to get the affinoïdness result, together with a
result of vanishing of higher cohomology due to Lan, see Appendix A. Thus we need to
relate both these sections on the two basis of neighborhoods. Fortunately we can and do
in section 9 using complexes computing higher cohomology of our Banach sheaves, the
action of the Hecke operators on these complexes, and that we can always intertwine these
opens,

Xpdeg ě N ´ εq Ą Xpha ď vq Ą Xpdeg ě N ´ ε1q Ą Xpha ď v1q Ą Xµ´can,

where ε1 and v1 are chosen small enough. Passing to finite slope parts, and using results of
[Urb11], we get that U acts as a compact operator on the finite slope part of sections of our
Banach automorphic sheaves on any of our strict neighborhoods, and that these spaces are
projective (in a specific sense). Thus we can apply Coleman-Buzzard’s machinery and get
the theorem.

As an application of these results, we can extend the result on the Bloch-Kato conjecture
we had in [Her19], and prove the following. Let E be a quadratic imaginary number field,
and

χ : AˆE{E
ˆ ÝÑ Cˆ,

which is polarised, meaning that χK :“ pχcq´1 “ χ|.|´1. Denote by Lpχ, sq its L-function.
If p is a prime, denote

χp : GalpE{Eq ÝÑ Qp
ˆ
,

the p-adic Galois character associated to χ, and denote H1
f pE,χpq the Bloch-Kato-Selmer

group of χp (see [BC09] chapter 5). Then we prove

Theorem 1.2. — Let p be a prime, unramified in E. If Lpχ, 0q “ 0 and ords“0 Lpχ, sq is
even, then

H1
f pE,χpq ‰ 0.
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In particular we remove the hypothesis that p ‰ 2 when p is inert in E and p ffl Condpχq
that were in [Her19]. Also, a version of the previous theorem is well-known to be due to
Rubin ([Rub91]) but there it is necessary that p ‰ 2 (and p ‰ 3 if E “ Qpi

?
3q, which

we unfortunately also need to assume...). In particular, we get new cases of the Bloch-Kato
conjecture when p “ 2 is unramified in E !

Of course this result relies heavily, as in [Her19], on works of Bellaïche and Chenevier,
[BC04] and [BC09]. As in this last reference, we would like to even construct independent
classes as predicted by the Bloch-Kato conjecture, under some assumption on the geometry
of the Eigenvariety E for Up2, 1q. The idea, as in the proof of the previous theorem, would
be to consider a specific Arthur point y P E (known to exists by results of Rogawski and a
calculation of cohomology in [Her19]), see Propositon 10.21. As this point exists, we can
deduce the previous theorem. Unfortunately, in our situation the motive for this Arthur
point appears in degree 0 coherent cohomology with irregular weight (or equivalently when
a ě 2, not in middle degree Etale cohomology, contrary to the case of [BC09]), we are not
able to choose a refinement that is sufficiently far from the ordinary one for which we can
control the ramification at p (we would need it to be anti-ordinary as in [BC04], but for
us the Hodge-Tate weights are in a different order compared to the refinement) but only a
slightly non-ordinary one, and thus the geometry of E at the Arthur point will account for
a bigger reducibility locus for the deformation of the Galois representation than expected,
and would thus not contribute only to H1

f pE,χpq. We hope to come back on this question
soon.

Acknowledgements. — I would like to first thank Stéphane Bijakowski for many inter-
esting discussions and suggesting to systematically use the degree function instead of the
Hasse invariant. I would also warmly thank Vincent Pilloni for introducing me to this
subject and explaining his recent results on higher Hida theory, suggesting that they could
be useful in the case at hand. Also I would like to warmly thank Gaëtan Chenevier and
Benjamin Schraen for taking time to explain me in details a lot of their knowledge on the
subject. I would also like to thank Fabrizio Andreatta, Christophe Breuil, Laurent Fargues,
Eyal Goren and Adrian Iovita for interesting discussions. I would also like to thank the
referee for its suggestions which, I hope, helped me clarify the presentation.

2. Algebraic groups, Shimura Datum and weight spaces

Let p be a prime and let D “ pB, ‹, V,ă,ą,OB ,Λ, hq be an integral Shimura-PEL-
datum. Let G be the associated algebraic group over Q, i.e.,

GpRq “ tpg, cpgqq P GLBpV bRq ˆR
ˆ| ă gv, gw ą“ cpgq ă v, w ą @v, w P V bRu.

pG, hq defines a Shimura datum. Suppose that the datum is unramified at p (see [Kot92]
or [VW13]). This means that B bQ Qp is isomorphic to a product of matrix algebras over
finite extensions of Qp. We can decompose B “

śr
i“1Bi as a product of simple algebras

and we assume that no factor is of type D (orthogonal), see [VW13] Remark 1.1. As p is
unramified in D, we can also consider G a reductive model at p for G (over Zp).

Every interesting object in this article will decomposed accordingly to the previous
decomposition of B, and we can thus make our construction for each Bi. This simple



6 VALENTIN HERNANDEZ

algebras are classified into 2 types (as we excluded case D), the type A and the type C.
In case C, the construction we are interested in is already made in [Bra16] (which also do
many cases of type A, but not all), and we thus assume for now on that Bi is of type A.

As p is unramified for B (and thus Bi) we can further decompose. Let Fi be the center
of Bi, and F

`
i “ pFiq

‹“1. As we are in case A, rFi : F`i s “ 2. Write p “ π1 . . . πsi the
decomposition of p in primes of F`i . For j P t1, . . . , siu, we say that j (or πj or pBi, πjq)
is in case AL if πj splits in F , and in case AU otherwise (compare [VW13] Remark 1.3).

Remark 2.1. — Actually we can allow a slightly larger class of Shimura datum than the
unramified ones. Suppose that we can write for all i, Bi,Qp :“ BibQp “ Bi,1ˆBi,2 with

Bi,1 “
si
ź

j“1

Mni,j pFi,jq,

where Fi,j{Qp are finite extensions, and such that there is no factor of type D appearing
in BQp . For all j denote again F`i,j “ pFi,jq

‹“1. Let then Sfullp be the set of couples
pi, jq such that p is not ramified in F`i,j and does not ramifies in Fi,j either. When p is
unramified in the datum D, we can take Sfullp to be the set of all pi, jq and Bi,Qp “ Bi,1

p2q.
In general, for Sp Ă Sfullp , we will be able to construct Sp-families of automorphic forms
for the datum D, i.e. we are able to let the forms vary (only) along the unramified primes
of D.

Let T be a maximal torus of G1 “ Ker c Ă G over Zp which we assume to be the
maximal torus of a Borel defined over Zp. We can decompose T (over Zp) according to
the previous decomposition,

T “
r
ź

i“1

si
ź

j“1

Ti,j ,

(remark that if Bi is of type C, we can also decompose according to primes over p).

Definition 2.2. — The full weight space associated to the previous PEL datum is the rigid
space over Qp

Wfull “ HomcontpT pZpq,Grigm q,

which associate to any BanachQp-algebra R the set of continuous characters HomcontpT pZpq, Rˆq.
It is represented by the Banach algebra ZprrT pZpqss.

If Sp is a subset of the couples pi, jq (that we see as places over p) and if we denote TSp
the torus over Zp;

TSp “
ź

pi,jqPSp

Ti,j ,

we can define the (Sp-)weight space

WSp “ HomcontpTSppZpq,Grigm q.

It is also represented by the Banach algebra ZprrTSppZpqss, and when Sp contains all
couples pi, jq, we have WSp “Wfull.

p2qIn which case Fi,j “ {pFiqπj
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On WSp there is a universal character κuniv : TSppZpq ÝÑ ZprrTSppZpqss. We have
the following results,

Proposition 2.3. — The space WSp is geometrically a finite disjoint union of open balls of
dimension the rank of TSp

p3q. Moreover there exists an admissible covering by increasing affi-
noids,

WSp “
ď

wą0

WSppwq,

such that κuniv
|WSp pwq

is w-analytic.

Proof. — See [Urb11] 3.4.2 and Lemma 3.4.6. See [AIP15], section 2.2 for a possible
definition of WSppwq.

We can decompose WSp “
ś

pi,jqPSp
Wi,j according to the decomposition of B. In

the following we will construct families parametrized by WSp , as their construction is
not more difficult than the case of the full weight space, and following construction can
be done on WSp when p ramified at some places of D, but not at other places. To my
knowledge, this is useful mainly for a trick used by Chenevier ([Che09]) to control p-adic
properties of families of Galois representations.

3. Classical coherent Automorphic forms

Associated to pG, hq there is a tower of Shimura Varieties over the reflex field E. If
we assume that p is unramified in D, these Shimura varieties have good reduction at p
when the level at p is hyperspecial (see [Kot92]). Suppose this is the case in this section
(otherwise all we say here remains true after inverting p, and we will explain how to
extends this integrally in section 5). We will describe their integral models as moduli space
of Abelian varieties. Let Kp Ă GpApQ,f q be sufficiently small level outside p. Denote XKp

the functor,
XSph
Kp : S P Sch{SpecpOE,pq ÝÑ tpA, i, λ, ηqu{ „,

that associate the set of quadruples pA, i, λ, ηq modulo equivalence where,
– A{S is an abelian scheme
– ι : OB ÝÑ EndpAq b Zppq is a Zppq-algebra endomorphism.
– λ is a Zˆ

ppq equivalence class of OB-linear polarisation of order prime to p which
identifies Rosati involution and ‹ through i.

– η is a Kp-level structure on A (see [Kot92] section 5, or [Lan13]p4q).
where ι is subject to the determinant condition and the equivalence is by prime to p quasi-
isogeny (see also [VW13] and for all details [Lan13]). As Kp is sufficently small XSph

Kp is
representible by a quasi-projective smooth scheme.

We choose ν a place of E over p, and denote OE,ν the completion of OE through ν
and denote XSph “ XSph

Kp,ν the base change to OE,ν .

p3qThis is the rank of G1 when p is unramified and Sp “ Sfullp
p4qRecall that such a level structure includes a (class of) isomorphism Z{pNZ » µpN for some N , see [Lan13]
Definition 1.3.6.1
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According to the decomposition of B, we can decompose A “
śr
i“1Ai (and the other

datums) as a product of abelian schemes (with additional structures associated to Bi).
Moreover, we can further decompose the associated p-divisible group, writing OBibZp »
śsi
j“1MnipOFi,j q, and using Morita-equivalence,

Airp
8s “

si
ź

j“1

Oni
Fi,j

bOFi,j Airπ
8
j s.

p5q

Moreover for a pi, jq of type AL (i.e. πj “ π`j π
´
j splits in Fi), we can further decompose,

Airπ
8
j s “ Hi,j ˆH

D
i,j ,

such that λ is given by px, yq ÞÑ py, xq, with Hi,j corresponding to π`i,j , which we denote,

by abuse of notation, Arπ`,8i,j s, and ι preserves each factor.
Denote ω the conormal sheaf of A, it is a locally free sheaf on XSph which decom-

poses as previously, and for all pi, jq we get ωi,j “ ωAirπ8j s a locally free sheaf of rank
dimAirπ

8
j s. The Shimura datum

h : ResC{R Gm ÝÑ GR,

induces µ : Gm,C ÝÑ GC (see [Del71, Section 3.7]), which is a cocharacter whose conjugacy
class is defined over the reflex (number) field E. Let P be the parabolic in G1 over E
associated to the cocharacter µp6q and M the Levi of P . T can be seen as a torus in M
and fix a Borel BM of M . For κ P X`pT q a dominant weight for this choice, there exists
a locally free sheaf ωκ on XSph. This sheaf can be described this way. Let

T ˆ “ IsomXSph,OB ppΛ1 bZp OXSphq
_, ωq » IsomXSph,OB pΛ1 bZp OXSph , LiepA{Y qq,

the space of trivialisations of ω, where Λ1 is a OB-invariant OE,ppq-lattice in V1 (where
V “ V0 ‘ V1 under the weight decomposition of µ, see [VW13] p10) and denote π :
T ˆ ÝÑ XSph. This is a M -torsor.

Definition 3.1. — Let κ be a dominant (in M ) algebraic character of T and κ_ its dual,
i.e. ´w0pκq where w0 is the longest element of the Weyl group of M . We see these
characters as characters of BM , extending them trivially on the unipotent. The coherent
automorphic sheaf ωκ is the locally free sheaf over XSph defined by,

ωκ “ π˚OT ˆrκ
_s,

where rκ_s means sections f : T ˆ ÝÑ A1 such that fpgbq “ κ_pbqfpgq for all g P T ˆ
and b P BM which acts on the right on T ˆ.

Let XSph,tor be a toroïdal compactificationp7q of XSph (see [Lan13]) and D its bound-
ary.

p5qArπ8j s is a slight abuse of notation for the Morita-equivalent p-divisible group associated to theMnpOFi,j q-
factor of Airp8s
p6qi.e. corresponding to the parabolic P 1C “ tx P GC| limtÑ8 adpµptqqx existsu of GC
p7qA priori the following definition depends on this choice, however by [Lan13] Lemma 7.1.1.3, this is independant
of the choice of a toroïdal compactification, and in most cases we don’t even need to specify any compactification,
by Koecher’s principle, see [Lan16b] Theorem 2.3
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Definition 3.2. — The space of (respectively cuspidal) modular (or coherent automorphic)
forms of weight κ, and level KpGpZpq is the space,

H0pXSph,tor, ωκq, prespectively H0pXSph,tor, ωκp´Dqq.

Remark 3.3. — The goal of this article is to deform p-adically the previous spaces of au-
tomorphic forms. Unfortunately, we can check that in some cases the duality κ ÞÑ κ1 “ κ_

does not extend naturally to p-adic weights. This is the case for Up2, 1qE{Q when p

is inert in E where T “ OˆE,p ˆ O1
E,p. We can see an algebraic weight, dominant

for M » GL2ˆGL1, as integers pk1 ě k2, k3q. It gives a character of T pZpq via
T pZpq Ă T pKq, for K a sufficiently large p-adic field (containing E), given by px, yq ÞÑ
τpxqk1τpyqk2στpxqk3 and duality (in M ) sends pk1 ě k2, k3q to p´k2,´k1,´k3q. This
does not come from a natural algebraic map on T pZpq. The reason is that the embedding
T ÝÑ M is not rational over Qp. We will overcome this issue by finding a –more or less
– natural way to directly interpolate ωκ without really using a p-adic duality.

4. Local models and Jones Induction result

To construct families of automorphic forms, we will first construct families of automor-
phic sheaves, i.e. we will construct automorphic sheaves ωκ: for κ not only a dominant
algebraic weight but a p-adic one, and these sheaves will interpolate the coherent sheaves
ωκ (actually to be more precise the sheaves ωκ

_

, see remark 3.3). This has been done
previously in analogous settings (see [AIP15, AIS14, Pil13, Bra16, Her19]), and all these
works adapt geometrically constructions that were first developed in the case of compact
at infinity groups (see [Buz07, Che04, Urb11]) using interpolations of algebraic represen-
tations by locally analytic ones. As our sheaves will be modeled on these construction, let
us review the theory. It will be useful in analysing classicity questions in section 8.

4.1. Inductions. — Let us fix some notations. We will be interested in representations of
a p-adic groups attached to µ. The cocharacter µ gives rise to a parabolic in G, and denote
M the Levi subgroup of this parabolic, which is defined over some number field. The group
MQp splits over the couples pi, jq introduced before. As explained in the previous section,
pi, jq of type (C) are ordinary and thus have been treated in [Bra16], thus we focus on type
(A). In this cases, Mpi,jq is isomorphic to a Levi of the group ResF`i,j{Qp

Upni,jqFi,j{F`i,j
.

Denote T ` “ T `
pi,jq the set of embeddings of F`i,j into Qp and T the corresponding

set for Fi,j if pi, jq is understood. Mpi,jq is up to extending scalars isomorphic to some
L “

ś

τPT ` GLpτ ˆGLqτ say over K a p-adic field. The integers pτ , qτ are determined
by µ, the co-character associated to the Shimura Datum pG, hq, and satisfy that

pτ ` qτ “ ni,j ,@τ P T `.

In particular letK a finite extension of Qp such thatM is split, and denote TM its maximal
(diagonal) torus. We can assume that we have a fixed isomorphism : TK ÝÑ TM thus we
have a map T pQpq

ι
ãÑ TM pKq, which splits over the couples pi, jq. For an unramified
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pi, jq P Sfullp , we can moreover assume Tpi,jqpZpq
ι

ãÑ TM,pi,jqpOKq
p8q for some integral

model of Mpi,jq. For now on, we drop the index pi, jq P Sfullp in the notations, thus set
ni,j “ n “ h “ pτ ` qτ . Still denote by L “

ś

τPT ` GLpτ ˆGLqτ an integral model
over OK . Let TM be the maximal (diagonal) torus of L, B the upper Borel, and for each
κ P X`pTM q “ X`pT q, denote the (algebraic, non-normalized) induction,

Vκ “ tf : L ÝÑ A1 algebraic |fpgbq “ w0,Lκpb
´1qfpgq for all g, b P LˆBu.

This is a finite dimensionalK-vector space endowed with an action of LpKq by pg.fqpzq “
fpg´1zq.

The algebraic induction is a local model of the automorphic sheaves ωκ in the sense
that etale locally the later is isomorphic to the former. We will now describe another
representation that will interpolate the previous ones and which will be local models of the
coherent Banach sheaves constructed later in the paper.

Let I “ I1 be the Iwahori subgroup of L, i.e. I “ red´1
pBpOK{pqq where red :

LpOKq ÝÑ LpOK{pq. Denote more generally In the level-n Iwahori, i.e. elements that
are upper triangular modulo pn. We have a Iwahori decomposition I “ BpOKq ˆ N0,
and we can identify N0 with

ppOKq
N Ă ANan, N “

ÿ

τPT `

pτ ppτ ´ 1q ` qτ pqτ ´ 1q

2
.

For any ε ě 0, we define N0
ε as the subspacep9q,

BpN0, εq :“
ď

xPppOqN
Bpx, εq Ă ANan

and for k a p-adic field, denote Fε´anpN0, kq the function that are restriction to N0 of
analytic functions on N0

ε . Now we can define the ε-analytic induction. Let κ P Wpkq
be ε-analytic, and assume κ extends to an ε-analytic weight κK of TKpOKq and write
κ_K : pt ÞÑ κKpw0,Lt

´1w0,Lqq ; this preserves ε-analytic characters of TKpOKq. Then set

V ε´anκK ,k
“ tf : I ÝÑ k : fpgbq “ κ_Kpbqfpgq@g, b P I ˆBpOq, fN0 P Fε´anpN0, kqu.

Denote V loc´anκK ,L
“

Ť

εą0 V
ε´an
κK ,L

and V anκK ,L “
Ş

εě0 V
ε´an
κK ,L

. This spaces won’t be lo-
cal models of our Banach-automorphic sheaves, but they will have the same finite slope
eigenvalues for well chosen κK (in particular algebraic ones).

Recall that we have a fixed pi, jq. Look at the map G1,pi,jqpZpq ÝÑ G1,pi,jqpOKq,
and recall that we have Ppi,jqpOKq Ă G1,pi,jqpOKq with Levi Mpi,jqpOKq » LpOKq “
ś

τPT ` GLpτ ˆGLqτ pOKq. Let P 0
ppτ qτ

be the preimage of Ppi,jqpOKq in the Iwahori
subgroup of G1,pi,jqpZpq. More concretely we can describe it the following way. Choose
an ordering, tpσ : σ P T u “ tpτ , qτ : τ P T `u “ tp1 ď ¨ ¨ ¨ ď p2fu, and let Pppσq Ă GLn
be the standard upper parabolic with (ordered) blocks of size ppi´pi´1qi“1,...,2f`1, where
p0 “ 0, p2f`1 “ n. Choose an presentation of G1 (over pi, jq) such that over Zp this is the
group of matrices with values in O “ Oi,j such that tMJM “ J with J the antidiagonal

p8qBeware that Zp-points of G1,pi,jq, thus Tpi,jq are naturally O “ OFi,j valued matrices. A priori OK Ą

OFi,j (but there is no preferred embedding) but the inclusion is strict.
p9qWe set Bpx, rq “ tz P ANan| vppz ´ xq ě ru with vpppq “ 1 thus 1 R Bp0, 1q Ą pOK .
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matrix with 1’s. Then P 0
ppτ qτ

“ P 0
ppσq

is the intersection of G1,pi,jqpZpq with Pppσq. Denote
I0
ppσq

the Iwahori subgroup of P 0
ppσq

with respect to the standard upper triangular Borel,

and N0
ppσq

the opposite unipotent in I0
ppσq

. It contains T pZpq. For every σ P T , every

matrix M P P 0
ppσq

can be written of the form,

M “

ˆ

Aσ Bσ
0 Dσ

˙

, Aσ PMpσˆpσ pOq, Dσ PMpn´pσqˆpn´pσqpOq.

In particular, we get for each τ P T ` a map,

(1)
P 0
ppσq

ÝÑ GLpτ ˆGLqτ ,

M ÞÝÑ pσpDσq, σpDσqq
,

where σ, σ are the two embeddings over τ P T ` such that pσ “ pτ “ n ´ pσ, pσ “ qτ
and Dσ refers to the previous decomposition.

Denote Ippσq the image of I0
ppσq

via the diagonal morphism φ : P 0
ppσq

ÝÑ
ś

τ GLpτ ˆGLqτ (it is injective on T pZpqN0
ppσq

using that tMJM “ J ). Because

of the Iwahori decomposition of I0
ppσq

, we can write an element of IppσqUpOKq as n0tu

with n0 and t in the image of N0
ppσq

and T pZpq, and consider, for every κ P Wpkq which
is ε-analytic,

V 0,ε´an
κ,k “ tf : IppσqUpOKq ÝÑ k : fpgφptquq “ κptqfpgq @t P T pZpq, u P UpOKq,

fN0
ppσq

P Fε´anpN0
ppσq

, kqu.

Everything makes sense as N0
ppσq

can be seen as a subset of N0 and we can define ε-

analytic functions on it (using BpN0
ppσq

, 1q i.e. balls in ANan Ą N0 centered on points

of N0
ppσq

). It is slightly complicatedp10q, but now V 0,ε´an
κ,k will be local models of our

forthcoming Banach-automorphic sheaves. The point is that on V 0,ε´an
κ,k we really use a

(p-adic) weight for T pZpq and not for TKpOKq. Now if κ P X˚pT q is an algebraic weight,
by scalar extension it corresponds canonically to an algebraic weight of TKpOKq which
we see both as a p-adic weight κ of T pZpq and κK of TKpOKq (then κ is the restriction
of κK to T pZpq).

Proposition 4.1. — Let ε ď 1 and κ P X˚pT q. The restriction map induces an isomorphism

V ε´anκK ,k
„
ÝÑ V 0,ε´an

κ,k .

Proof. — First remark that the map φ (see equation (1)) sends T pZpq in the torus TM
of L but by t ÞÑ w0,Lιptq

´1w0,L as Dσ “ Jpσ
tAσ

´1
Jpσ , thus κ

_
K ˝ φptq “ κptq. In

particular the restriction map is well defined. Moreover as N0
1 “ BpN0

ppσq
, 1q the map

is bijective as restriction to N0
ε (resp. BpN0

ppσq
, εq) is an isomorphism from V ε´anκK ,k

(resp.

p10qAll these constructions are not arbitrary, they come from the analogous geometric situation where G{Zp acts
on trivialisations of a p-divisible group G, and we want to relate it to trivialisations of the Hodge filtration via
HTτ : GD ÝÑ ωG,τ , which is modeled by equation (1).
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V 0´an
κ,k ) to Fε´anpN0, kq (resp. Fε´anpN0

ppσq
, kq) (inverse is given by sending f to n0tu ÞÑ

κ_Kptqfpn
0q).

4.2. Up-operator. — Define for all i ď h
2 an integer,

di “

¨

˝

p´2Ii
p´1Ih´2i

Ii

˛

‚P p´1P 0
ppσq

pKq.

We sometimes see di in GLpτ ˆGLqτ using the previous embedding. Denote for each
σ P T , aσ “ maxppσ ´ ph´ iq, 0q, bσ “ maxpminph´ 2i, pσ ´ iq, 0q and cσ “ minpi, pσq
(thus aσ ` bσ ` cσ “ pσ). This is respectively the number of p´2, p´1, 1 appearing in
Dσ in the previous decomposition for di. We can define an operator δi on V

0,ε´an
κ,k by

δifpjq “ fpdind
´1
i bq where j “ nb is the Iwahori decomposition.

Proposition 4.2. — Let f P V 0,ε´an
κ,k that we see as a function in Fε´anpN0

ppτ q
, kq of

variable pxτk,l, y
τ
m,nq1ďlăkďpτ ,1ďnămďqτ ,τ . Then,

δi :
Fε´anpN0

ppτ q
, kq ÝÑ Fε´anpN0

ppτ q
, kq

f ÞÝÑ ppxτk,l, y
τ
m,nq ÞÑ fppv

τ
k,lxτk,l, p

wτm,nyτm,nqq

where, if we denote τ “ σσ in F , with pτ “ pσ ,

vτk,l “

$

&

%

2 if k ą aσ ` bσ and l ď aσ
1 if pbσ ` aσ ě k ą aσ and l ď aσq or pbσ ` aσ ě l ą aσ and k ą aσ ` bσq
0 otherwise

wτm,n “

$

&

%

2 if m ą aσ ` bσ and n ď aσ
1 if pbσ ` aσ ě m ą aσ and n ď aσq or pbσ ` aσ ě n ą aσ and m ą aσ ` bσq
0 otherwise

In particular,
ś

i δi is completely continuous.

Remark 4.3. — It is not a mistake that f has "as much variables as entries in N0"
instead of N0

ppσq
. The reason is that f is seen as a function (even a locally analytic one)

in a neighborhood of the image of N0
ppσq

pOq in the analytic space associated to N0 (and

not to N0
ppσq

). Indeed, such f can’t be defined on N0 a priori, except if we know that

it is 1-analytic (as the neighborhood of N0
ppσq

of radius 1
p in AN “ pN0qan contains

N0 “ ppOqN .

Proof. — This is a direct calculation on matrices of N0.

4.3. Jones’s BGG and a fiberwise classicity result. — Let P our previous algebraic
group T its torus and B its upper Borel that defines ∆ a set of positive roots. Then for
every dominant weight κ P X`pT q, Jones’s [Jon11] proved the exactness of the following
sequence,

(2) 0 ÝÑ VκK ,k ÝÑ V anκK ,k
d
ÝÑ

à

αP∆

V anα‚κK ,k
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where d is an explicit map (see for example [AIP15] for GSp2g (P “ GLg) and [Bra16] for
a similar case to ours). Then the following proposition is [Bra16] proposition 6.5

Proposition 4.4. — Write κ “ pkσ,iq P X`pT q according to the decomposition P “
ś

τPT ` GLpτ ˆGLqτ “
ś

σPT GLpσ a dominant weight. Set

νσi “ inftkσ,i ´ kσ,i`1 : i ă pσu.

Then,
V

0,ε´an,ăν
κ,k Ă Vκ,k.

(The same proposition is true with V ε´an,ăνκ,k ).

Proof. — The first thing to check is that if f P V 0,ε´an
κ,k is of non-zero slope, then f P V anκ,k

(this reduces to ε ď 1 using Proposition 4.1). But as
ś

i δi is increasing the analytic radius,
by proposition 4.2 we get the claim. Now, we can use Jones’s BGG result as in [AIP15]
Proposition 2.5.1, or [Bra16] section 6.1, and we get the result.

Remark 4.5. — The previous calculation is made completely explicitly for G “

pGqUp2, 1q in [Her19].

5. Integral models

5.1. Isogeny Graphs. —

Definition 5.1. — Fix h P N˚ and n P N˚, and denote Γhn the subset of MnˆhpCq such
that M “ pmi,jq1ďiďn,1ďjďh PMnˆhpCq satisfies,

1. For all pi, jq, mi,j P t0, 1u,
2. For all pi, jq, if mi,j “ 1, then mi´1,j “ 1 and mi,j´1 “ 1 (when defined).

Let Γhn “ pΓhn, vq be the graph whose points are M P Γhn, and there is an arrow from
M “ pmi,jq to M 1 “ pm1i,jq if

tpi, jq|mi,j ‰ m1i,ju “ tpi0, j0qu and mi0,j0 “ 0, m1i0,j0 “ 1.

When n “ 0, define Γh0 as t‹u, and the map π0,1 : Γh0 Q ‹ ÞÑ p0, . . . , 0q P Γh1 . When
n ě 2, we have a natural map,

πn´1,n :
Γhn´1 ÝÑ Γhn

M “ pmi,jq1ďiďh,1ďjďn´1 ÞÝÑ pm1i,jq PMnpCq,m1i,j “ mi,j if j ă n, 0 otherwise.

This map preserves vertices, it is an embedding of graphs.

Remark 5.2. — If n “ 1, the possible matrices are simply given by

Mi “ p1, . . . , 1
loomoon

i times

, 0, . . . , 0q.

They parametrizes the lattices appearing in a periodic lattice chain inside GLhpZpq as in
[RZ96].
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5.2. Some integral models. — Let p be a prime, and let D be an integral Shimura-PEL-
datum as in section 2.

Denote by P “ tpi, vq|v place of F`i u the set of places of G, where Fi is the center of
Bi. Fix Sp Ă tpi, jq|i P t1, . . . , ru, j P t1, . . . , siuu a set of unramified places over p as
in Remark 2.1. With our assumptions on D, for all v “ pi, jq P Sp, v is unramified, and
B bF` F

`
v is split and isomorphic to MnpFvq. Fix S a finite set of places of P such that

S X Sp “ H, and S contains all places such that B doesn’t split or is ramified.
Fix then a compact KS,Sp outside SSp such that Kv is maximal hyperspecial for all

v R S Y Sp.
For all pi, jq P Sp we can associate an integer hi,j “ htOi,j Arπjs in case (AU) and

hi,j “ htOi,j Arπ
`
j s in case (AL). These integers are defined for example by looking at the

characteristic 0 moduli space as explained in section 3 (or could be read directly on G,
and even defined by the integral moduli space of Kottwitz if G is unramified at p). We set
Γn “

ś

pi,jqPSp
Γhi,jn .

Fix once and for all a compact subgroup KS Ă GpFSq and for all v P Sp, consider
KSph
v the maximal hyperspecial compact open subgroup. We will study some covering of

the Shimura variety (seen as a scheme over SpecpKq)

XSph “ XG,K0
, K0 “ KS,SpKS

ź

vPSp

KSph
v .

The Shimura variety associated to XSph has a good integral model XSph
OK over SpecpOKq,

for K{Qp a well chosen finite extension ([Lan13] if Kv is hyperspecial for all v|p, and
[Lan16a] if p is unramified in D for example by normalisation of the hyperspecial level. In
general, we fix any integral model XSph

OK given by [Lan16a]. If Kv is hyperspecial for all

v|p, XSph
OK is smooth).

We will define our base space, and its integral model following [Lan16a]. Let for all
v P Sp, Iv be a Iwahori subgroup at p of GpFvq. Define first its generic fiber,

X “ XG,K ,K “ KS,SpKS

ź

vPSp

Iv.

This space, over some extension K of Qp, classifies quintuples pA, ι, λ, ηS , H¨q modulo
isomorphisms where pA, ι, λ, ηSq is a point of XSph, and H¨ is a full flag of Arvs, for
v P Sp. Explicitly, for every pi, jq as before, H¨ induces,

1. In case pALq, a filtration

0 Ă H1 Ă ¨ ¨ ¨ Ă Hr “ Airπ
`
j s,

by finite flat Oi,j-group schemes such that Hk is of rank pk.
2. In case pAUq, a filtration,

0 Ă H1 Ă ¨ ¨ ¨ Ă Hr “ Arπjs,

by finite flat Oi,j-groups schemes such that Hk is of rank pk and HKi “ H
pσq
r´i.

This Shimura variety with Iwahori level at Sp has a natural integral model over
SpecpOKq. When all the prime v|p satisfies that Kv is parahoric (this is only a condition
outside Sp here), then this is defined by the lattice chain introduced in [RZ96]. See for
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example [Lan13]. In general, this can be seen as explained in [Lan16a], example 2.4 and
13.12. The abelian scheme A and the subgroups Hi,j

k gives rise to isogenies (precisely, we
need to use Zarhin’s trick, see remark 5.5),

A ÝÑ Ai,jk “ A{Hi,j
k .

In particular we get a map,

X ÝÑ
ź

γPΓ1

XSph
OK ,

sending pA, ι, λ, η,H¨q to pA
i,j
k , ι, η, λq (see remark 5.5). Then the integral model XOK is

defined as the normalisation of
ś

γPΓ1
XSph

OK in X . This is a scheme flat over SpecpOKq.

The same thing applies to compatible choices of toroïdal compactificationp11q, and we
get spaces, flat, proper over SpecpOKq (see [Lan16a] Lemma 7.9),

Xtor
OK and XSph,tor

OK .

Remark 5.3. — In the following, we will be interested mainly by A (as opposed to the
collection of all the Aγ ) and the subgroups Hk

i,jrp
`s. Thankfully, there is a "universal semi-

abelian scheme" (more precisely, a degenerating family) on Xtor and its covers extending
A on X . If p is unramified in the PEL datum and we are at hyperspecial level this is
[Lan13] Theorem 6.4.1, in general this is [Lan16a] Theorem 11.2.

But we will need slightly more, as for a semi-abelian scheme G, Grpns need not to
be finite flat. Fortunately, we can find an etale covering U of XSph,tor

OK such that G is
approximated on each open of this covering by a Mumford 1-motive M , i.e. Grpns “
M rpns (see [Str10] section 2.3 (more precisely Proposition 2.3.3.1) and [Lan16a] Theorem
11.2). This etale covering is an isomorphism on the boundary (see [Str10] section 2.4). In
particular, there is a semi-abelian scheme of constant rank rG such that rGrpns Ă Grpns
is finite flat, and such that ω

rGrpns “ ωGrpns. We can thus by pullback find also an etale

covering of Xtor
OK on which we have the finite flat group scheme rGrpns. Thus, the (µ-

ordinary) Hasse invariant or the degree function extends on this covering of XSph,tor
OK , but

we can descend them : see in subsection 5.5.

We have similarly for any n, a Shimura variety with Iwahori level pn, Xtor
0 ppnq, over

SpecpKq, classifying, outside the boundary, pA, ι, λ, ηS , H¨q, with H¨ a full flag of Arpns.
More precisely, we have for all pi, jq,

1. In case pALq, a filtration

0 Ă H1 Ă ¨ ¨ ¨ Ă Hr “ Airπ
`,n
j s,

by finite flat Oi,j-group schemes such that Hk is of Oi,j-rank pnk with cyclic graded
pieces.

p11qIn all the this text, we always assume the rational cone decompositions to be smooth and projective without
further comment
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2. In case pAUq, a filtration,

0 Ă H1 Ă ¨ ¨ ¨ Ă Hr “ Arπnj s,

by finite flat Oi,j-groups schemes such thatHk is of Oi,j-rank pnk with cyclic graded

pieces such that HKi “ H
pσq
r´i.

Once again, by [Lan16a] (here we are in characteristics zero, so this is easier) there is a
natural mapp12q (again, see remark 5.5),

X0pp
nqtor ÝÑ

ź

γPΓn

XSph,tor
OK ,

sending pA, ι, λ, ηS , H¨q to pA{pHk
i,jrp

`sq, ι, λ, ηS , q away from the boundary.
There is moreover a map

X0pp
nqtor

πn,n´1
ÝÑ X0pp

n´1qtor,

given by sending the flag pHk
i,jrp

`s Ă Airπ
`
jsq`ďn to the flag pHk

pi,jqrp
`s Ă Airπ

`
jsq`ďn´1.

In particular, the diagram,

X0pp
nqtor

ś

γPΓn
XSph,tor

OK

X0pp
n´1qtor

ś

γPΓn´1
XSph,tor

OK

πn,n´1 Γn,n´1

is commutative.

Definition 5.4. — Define X0,OK pp
nqtor to be the normalisation of

ś

Γn
XSph,tor

OK in
X0pp

nqtor . It is a proper and flat scheme over SpecpOKq. By normalisation, the map
πn,n´1 extends as a map,

πn,n´1 : X0,OK pp
nqtor ÝÑ X0,OK pp

n´1qtor.

In particular (see also [FC90a] Chap I Prop. 2.7), over X0,OK pp
nqtor we have by

pullback natural isogeny graphs,
pAγqγPΓn ,

such that the Kernel of Airπ8j s ÝÑ Ai,jk,m, is a finite flat, at least away from the bound-

ary, Oi,j-subgroup of Airπnj s of Oi,j-rank pkm. We denote it by Hi,j
k,m, or, if pi, jq is

understood, Hkrp
ms. This makes sense as Hk,m “ Hk,nrp

ms. In the rest of the text, we
sometimes denotes Gpi,jq (or G if pi, jq is understood) the p-divisible group Airπ8j s (or
Airπ

`,8
j s in case AL).

Remark 5.5. — Actually the construction is slightly more evolved as what than been said,
as the abelian varieties Aγ “ A{Hk

i,jrp
`s appearing in the isogeny graph might not be

principally polarized, thus need not to give a map X0pp
nq ÝÑ XSph. But as explained

in [Lan16a] Proposition 4.12 and Proposition 6.1, we have a map to an auxiliary moduli

p12qCone decomposition must be chosen appropriately, but we suppose so, without further comment, as it is
always possible to refine the choices in order to get the compatibility
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problem where A{Hk
i,jrp

`s is modified to be principally polarized by Zarhin’s trick, extends
to the integral model X0,OK pp

nq (all this works on the compactifications), and we can then
deduce the extension of A{Hk

i,jrp
`s itself.

5.3. Results on the canonical filtration and the Hodge-Tate map. —

Theorem 5.6. — Let L be a valued extension of Qp, and G be a truncated level n p-divisible
group over SpecpOLq with action of O and signature ppτ , qτ q.

1. Then there exist at most one sub-O-module Hτ of height npτ such that,

degHτ ą
ÿ

τ 1

minpnp1τ , npτ q ´
1

2
.

We call it the canonical subgroup of height pτ if it exists.
2. Moreover, if two sub-O-modules Hτ , Hτ 1 of respective height npτ , npτ 1 as before exists,
then,

pτ ď pτ 1 if and only if Hτ Ă Hτ 1 .

3. If moreover G is polarized, then Hτ is polarized, i.e.

HKτ :“ pG{Hτ q
D ãÑ GD,

is identified with the canonical subgroup of height qτ of GD .
4. The group Hτ verifying the previous hypothesis is a step of the Harder-Narasihman filtra-
tion of G, it also coincide with the kernel of the Hodge-Tate map,

αG,τ,n´ε : GpOLq ÝÑ ωGD,τ,n´ε,

where ε “ degτ pG{Hτ q.
5. Suppose that Hτ as in 1. exists. The cokernel of the Hodge-Tate map,

αG,τ b 1 : GpOLq bOL ÝÑ ωGD,τ ,

is of degree p
Degτ pGrps{Hτ rpsq

pf´1 . In particular, write ετ 1 “ nminppτ 1 , pτ q´degτ 1 Hτ , then

the cokernel of the Hodge-Tate map is killed by p
Kτ pp‚q`Sτ pε‚q

pf´1 , where

Kτ pp‚q “
f
ÿ

i“1

pf´i maxppσiτ ´ pτ , 0q and Sτ pε‚q “
f
ÿ

i“1

pf´iεσiτ .

Proof. — The first three assertions are Bijakowski’s result, [Bij16] Proposition 1.24,1.25,
1.30 (see for example [Her16] Proposition A.2 for something written for the pn-torsion).
Assertion 4. is proposition 7.8 and 7.7 of [Her16] (appliying 7.8 we get a step H 1τ and by
7.7 Hτ and H 1τ coincide with the Kernel of the Hodge-Tate map). It it sufficient to prove
5. for n “ 1. Remark that our hypothesis for Hτ Ă G implies the same for Hτ rps Ă Grps.
Indeed denote degτ 1 Hτ “ nminppτ 1 , pτ q ´ ετ 1 , and write the sequence,

0 ÝÑ Hτ rps ÝÑ Hτ ÝÑ pHτ ÝÑ 0

which is exact in generic fibre, where pHτ is the schematic adherence of pHτ pOCq in Hτ .
Then pHτ Ă Grpn´1s, and we have,

degτ 1 Hτ ď degτ 1 Hτ rps ` degτ 1 pHτ ,



18 VALENTIN HERNANDEZ

and because pHτ is of height pn ´ 1qpτ and inside Grpn´1s, degτ 1 pHτ ď pn ´
1qminppτ , pτ 1q. Thus,

(3) degτ 1 Hτ rps ě minppτ 1 , pτ q ´ ε
1
τ .

Then denote E “ Grps{Hτ rps. The hypothesis on the degree of Hτ , and thus of Hτ rps
implies

ωHDτ ,τ,ε “ 0

for all ε ă 1 ´ degτ pH
D
τ q, in particular, ε ă 1{2. Using the same devissage of E as in

[Her16], proof of theorem 6.1 implies that

deg CokerpαE,τ,ε b 1q “ deg CokerpαG,τ,ε b 1q “
Degτ pEq

pf ´ 1
.

Using the properties of various degτ 1 , and equation (3) we get the result.

Remark 5.7. — 1. The principal difference of the previous theorem with [Her16] is
that we don’t a priori have the existence of such groups Hτ . In [Her16], up to taking
p big enough to relate the (µ-ordinary) Hasse invariant to the Hodge-Tate map, we
have a condition for the existence in terms of the Hasse invariant. In this article, we
assure the existence by increasing the level at p in the integral model.

2. The bound given in 5 is interesting in general only when p is big enough compared
to ppτ q. If p is small and ppτ q is too big, then it is more interesting to use the bound
given by Fargues ([Far11]) which states that (in full generality) the cokernel of the
Hodge-Tate map is killed by p

1
p´1 . Note that this is because the definition of the

degree which involve taking some determinant.

5.4. Degree function, µ-ordinary locus and Hasse invariants. —

Notations 5.8. — In the subsection 5.2, we fixed a sufficiently big p-adic field K
and we have defined, for ˚ P tH, toru, X˚, XSph,˚, X0pp

nq˚ which are schemes over
SpecpKq, together with X˚OK , X

Sph,˚
OK , X0,OK pp

nq˚ which are integral models over
SpecpOKq. In the following we will need to leave the world of schemes, and we thus define
X˚,XSph,˚,X0pp

nq˚ as the completion of the previous integral models along their special
fibers (we suppress K from the notations). These are thus formal schemes over SpfpOKq.
We define X ˚,XSph,˚,X0pp

nq˚ as the rigid fibers of the integral models. These are rigid
analytic spaces over SpmpKq, and when ˚ “ tor, they coincide with the analytification of
the analogous SpecpKq-schemes.

As usual, fix a couple pi, jq P Sp, and suppress it from the notation. Denote by σ
a Frobenius (at pi, jq), thus T is principal homogeneous for the action of σ. For each
τ P T is associated an integer pτ , and thus a subgroup of height npτ over X0pp

nq,
Hτ Ă G “ Arπ8j s or Arπ

`,8
j s, which is finite flat and killed by pn. We can thus, following

[Bij16], define for each τ a real-valued function,

degpHτ q :
X0pp

nq ÝÑ r0, n
ř

τ 1 minppτ , pτ 1qs
pA, i, λ, η,H¨q ÞÝÑ degpHτ q

and consider
ś

τ degpHτ q. Then we have the following result of Bijakowski [Bij16] Propo-
sition 1.34,
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Proposition 5.9. — The locus where the previous function is maximal in X0pp
nq, i.e.

f´1
ź

j“0

degpHσjτ q
´1ptn

ÿ

τ 1

minppτ , pτ 1qu ˆ ¨ ¨ ¨ ˆ tn
ÿ

τ 1

minppσf´1τ , pτ 1quq,

is included in X0pp
nqfull´µ´ord, the µ-ordinary locus of X0pp

nq .

Remark 5.10. — To be precise, as we have fixed the prime pi, jq P Sp, the µ-ordinary
locus above, and in the rest of the text (until the conclusion at the end of section 9) if not
stated otherwise, is with respect to the prime pi, jq.

Definition 5.11. — On XSph we can define a µ-ordinary Hasse invariant µ Ha (cf. [Her18],

see also [GN17, KW14]) which is a section of the sheaf detω
bppf´1q
G pmod pq. This defines

a function
vpµ Haq : XSph ÝÑ r0, 1s,

which sends a OK-point to the (truncated by 1) valuation of the µ-ordinary Hasse invariant
of the reduction of the corresponding point of XSph. In particular we can define by
pullback an analogous function on X0pp

nq, and define

X0pp
nqfull´µpvq “ vpµ Haq´1pr0, vsq.

Remark 5.12. — 1. In the previous definition, the valuation is normalized by vppq “
1, and X0pp

nqfull´µp0q “ X0pp
nqfull´µ´ord, the µ-ordinary locus of X0pp

nq.
2. Actually by construction we have many maps from X0pp

nq to XSph (and as much
for their integral model), namely one for each γ P Γn. The one we consider above
is the canonical one corresponding to the zero-matrix γ (which sends A to A, or
pAγqγ to A0).

Definition 5.13. — Define X0pp
nqpvq as the (union of) connected components of

X0pp
nqfull´µpvqq which contains a point of maximal degree for the previous function

(equivalently, the components where the subfiltration ofH¨ of height npτ coincides with the
canonical filtration in sense of theorem 5.6). We will call X0pp

nqp0q “: X µ´ord´can
0 ppnq

the µ-ordinary-canonical locus of X0pp
nq. It is an open and closed subset of

X0pp
nqfull´µp0q and coincides with the locus of maximal degree of proposition 5.9.

Remark 5.14. — X0pp
nqpvq is the analogue of the strict neighborhoods of the ordinary-

multiplicative part of the modular curves of level Γ0ppq.

Definition 5.15. — For ε “ pετ qτ , define the rigid analytic open,

X0pp
nqppετ qτ q “

f´1
ź

j“0

degpHσjτ q
´1p

f´1
ź

j“0

rn
ÿ

τ 1

minppσjτ , pτ 1q´εσjτ , n
ÿ

τ 1

minppσjτ , pτ 1qsq.

This is a strict neighborhood of the µ-ordinary-canonical locus X0pp
nqp0q in X0pp

nq.

Remark 5.16. — The map πn,n´1 sends X0pp
nqpεq into X0pp

n´1qpεq. Indeed, if
degHτ ą n

ř

τ 1 minppτ , pτ 1q ´ ετ , then because of the generic exact sequence,

0 ÝÑ Hτ rp
n´1s ÝÑ Hτ ÝÑ K ÝÑ 0,
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and the fact that K is killed by p, thus degK ď
ř

minppτ , pτ 1q we have that
degHτ rp

n´1s ě pn´ 1q
ř

τ 1 minppτ , pτ 1q ´ ε.

5.5. Extension to the boundary. — We want to extend the previous opens to all
X0pp

nqtor , thus we will need to extends the functions deg and µ Ha. The function µ Ha
can be extended to all X0pp

nqtor (as a section of some detpωGq
bN b pOX0ppnqtor{pq) by

[Lan17] Theorem 8.7. For the functions deg, we can also extend it. The group Hpτ is the
Kernel of an isogeny of semi-abelian schemes

π : A ÝÑ Aγ ,

on X0pp
nqtor . Thus, looking at the corresponding map on conormal sheaves we get

π˚ : ωAγ ÝÑ ωA,

and taking determinants gives detπ˚ P H0pX0pp
nqtor,detωA b detω´1

Aγ
q. Over X0pp

nq,
the valuation at every point of detπ˚, which can be seen as an element of R`, coincides
with the degree of Hpτ . Thus, we have extended the degree map to,

degpHτ q : X0pp
nqtor ÝÑ R`.

To check that this map is actually bounded by n
ř

τ 1 minppτ , p
1
τ q as on the open Shimura

variety X0pp
nq, we can do the following. Let x P X0pp

nqtorpKq, and let rG{OK be the
constant toric rank semi-abelian scheme such that Ax is a quotient by some etale sheaf
Y of rG by Mumford’s construction. Then by [FC90b] Corollary 3.5.11, we have an exact
sequence, and taking schematic adherence Hn of rGrns bK in Axrns, we have that Hn is
isomorphic to rGrns and whose quotient in Axrns is etale. Decompose accordingly Aγ,x
together with the isogeny π (see for example [FC90b] Corollary III.7.2), and decompose
πH as rπH along rG. Then the degree of πH is the same as rπH as its quotient is etale. But
ker rπH (which is now finite flat) is of signature smaller than pnminppτ , p

1
τ qqτ 1 , thus the

assertion on its degree.
In particular we can define X0pp

nqtorppετ qτ q and X0pp
nqtorpvq as before.

5.6. Two collections of strict neighborhoods. — Recall that in a quasi-compact rigid
space X , if U Ă V Ă X are quasi-compact opens, we say that V is a strict neighborhood
of U if pV,XzUq is an admissible covering of X . This is in particular the case when U is
relatively compact in V over X ([KL05, Definition 2.1.1] which is denoted often U ŤX V ),
see [KL05, Lemma 2.3.3].

The previous opens X0pp
nqtorppετ qτ q and X0pp

nqtorpvq both define stricts neighbor-
hoods of the µ-ordinary-canonical locus X0pp

nqtorp0q. Thus we get the following proposi-
tion,

Proposition 5.17. — For all v ą 0 there exists pετ qτ ą 0 such that,

X0pp
nqtorppετ qτ q Ă X0pp

nqtorpvq,

and for all pετ qτ ą 0 there exists v ą 0 such that,

X0pp
nqtorpvq Ă X0pp

nqtorppετ qτ q.
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Proof. — Fix V a strict neighborhood of X can´µ´ord,tor
0 ppnq “ X0pp

nqtorp0q. As
pV,X0pp

nqtorzX0pp
nqtorp0qq is an admissible covering, V contains X0pp

nqtorpvqq for
some v ą 0. The same applies for X0pp

nqtorppετ qτ q.

Definition 5.18. — We say that ε “ pετ q and v are n-compatible, or we say that pε, v, nq
is satisfied, if,

X0pp
nqtorpvq Ă X0pp

nqtorpεq.

Let us explain quickly why we chose this two collections of strict neighborhoods. Clas-
sically, we use the stricts neighborhoods X pvq given by the Hasse invariant to construct
eigenvarieties because this is the classical definition of Katz, and as the Hasse invariant
is a section of an ample line bundle on the minimal compactification, we get that the or-
dinary (or µ-ordinary) locus and its strict neighborhoods in the minimal compactification
are affinoids. This is a crucial part of the construction described in [AIP15]. In many case
(see [Bra16] or [Her19] in the Picard case, and using [Her16] in all PEL unramified case
when p is big enough), we manage to construct on the opens X pvq a canonical filtration
and control the degree of the subgroups of this filtration explicitly in terms of v. Thus
the choice of the strict neighborhoods X pvq is enough to do all the constructions in these
cases. But the classicity results as in [Buz07, Kas06, Pil11, PS12, BPS16] and in the µ-
ordinary case [Bij16] relies on the stricts neighborhoods in terms of the degree. So in the
unramified PEL case when p is not big enough, it is not clear a priori how to relate the
degrees in terms of the Hasse invariant. Nevertheless, the previous proposition will allow
us to use the best of both worlds.

We will need to understand the behavior of the strict neighborhoods along finite etale
maps.

Lemma 5.19. — Let π : X ÝÑ Y a finite etale map of quasi-compact rigid spaces. Let
U Ă X be a quasi-compact open subset and V “ πpUq the corresponding open in Y . Let
Uw Ă X be a strict neighborhood of U , then πpUwq is a strict neighborhood of V .

Proof. — This is [BPS16] Proposition 4.1.7.

6. Canonical filtration, Hodge-Tate map and overconvergent modular forms

As before, fix a couple pi, jq P Sp that will be understood until the rest of this section.
Let v P vpOKq. In the previous section we defined a rigid open denoted X0pp

nqtorpvq. We
first need an integral (formal) model.

Definition 6.1. — Let BlIpvq be the blow-up of X0pp
nqtor along the ideal I “ ppv, µ Haq.

Let X0pp
nqtorpvq0 be the open of BlIpvq where I is generated by µ Ha, and we denote by

X0pp
nqtor,full´µpvq the normalisation of X0pp

nqtorpvq0. As this scheme is normal; it has
the same connected components than its rigid fiber, and we thus denote X0pp

nqtorpvq the
one whose generic fiber is X0pp

nqtorpvq.

From now on, fix ε ă 1
2 . Recall that over X0pp

nqtor we have subgroups Hm
pτ for m ď n

(which are finite flat on X0pp
nq of O-rank mpτ ), but a priori only quasi-finite flat over the

boundary.
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Proposition 6.2. — If ε ă 1
2 , for every v ą 0 such that

X0pp
nqtorpvq Ă X0pp

nqtorpεq,

the groups Hm
τ are finite flat over X0pp

nqtorpvq.

Proof. — Over X0pp
nqtor there is a isogeny

A ÝÑ Aγ ,

of semi-abelian schemes whose Kernel is the group Hm
τ (a priori only quasi-finite flat),

and this group is finite flat over X0pp
nq. Moreover, by a classical construction, there is

an etale covering Utor of X0pp
nqtor over which the semi abelian schemes A and Aγ can

be approximated by a 1-motive of Mumford M and Mγ (concretely these UtorSph exists for
XSph by construction, see e.g. [Str10] section 3, and we can moreover assure that M rpns
andMγrp

ns are isomorphic to Arpns and Aγrpns, by the arguments of [Str10] section 2.3,
and take the pull-back via X0pp

nqtor ÝÑ
ś

γ X
Sph,tor). We only need to check that Hm

pτ

is finite flat over Utorpvq :“ Utor ˆX0ppnqtor X0pp
nqtorpvq. But there is an isogeny over

Utorpvq

π : A ÝÑ Aγ ,

such that Kerπ is Hm
pτ . Thus for every OK-point of Utorpvq, Hm

pτ is of high degree (in the
sense of theorem 5.6). But over Utorpvq, A and Aγ are associated to Mumford 1-motives
M and Mγ by Mumford construction. Thus there exists semi abelian schemes G and Gγ ,
of constant toric ranks, in the datum of M and Mγ , such that the isogeny π reduces to

π1 : G ÝÑ Gγ .

Call H 1 “ kerπ1. It is finite flat as G and Gγ have constant toric ranks. As ωG » ωA
and ωGγ » ωAγ , the degree of H 1 is the same as the one of Hm

τ “ Kerπ. Thus, away
from the boundary, over Upvq :“ Utorpvq ˆX0ppnqtorpvq X0pp

nqpvq, by unicity in Arpns of
Theorem 5.6, we haveH 1 “ Hm

τ (it is true for every OK-point, thus on Upvq by normality).
In particular, the semi-abelian schemes

A{Hn
τ and A{H 1,

are isomorphic over Upvq. But by [FC90b] Prop. I.2.7, this implies by normality of
X0pp

nqtorpvq, and thus of Utorpvq, that they are isomorphic over Utorpvq. Thus Hm
pτ is

finite flat.

6.1. The sheaves F and integral automorphic sheaves. — We denote

tpτ | τ P T u Y t0, hu “ t0 “: p0 ď p1 ă p2 ă ¨ ¨ ¨ ă pr ď pr`1 :“ hu.

We define for every v ą 0 such that X0pp
nqpvq Ă X0pp

nqpεq, a cover of X0pp
nqpvq. In

case (AL) or if pr “ h in case (AU) (in which case p1 “ 0 by duality and thus on X the
universal p-divisible group Airπ8j s has no multiplicative nor etale part), we set

X1pp
nqtorpvq :“

r`1
ź

k“1

IsomX0ppnqtorpvq,pol,OpHpk{Hpk´1
,O{pnOpk´pk´1q,
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wherep13q the condition pol is trivial in case (AL), and in case (AU) means that we are also
given an isomorphism,

ν1 : pO{pnOqD » pO{pnOqσ,
i.e.

X1pp
nqtorpvq Ă

r`1
ź

k“1

IsomX0ppnqtorpvq,OpHpk{Hpk´1
,O{pnOpk´pk´1qˆIsompO{pnOqD, pO{pnOqσq,

satisfying the following. There are fixed isomorphisms,

φk : pHpk{Hpk´1
qD » pHpr´k`2

{Hpr´k´1
qpσq,

induced by HKpk » H
pσq
pr´k`1 , itself induced by the prime-to-p polarisation on Xtor.p14q

We require that for all k, the two isomorphisms,

ψDk : pO{pnOqD,pk´pk´1 ÝÑ pHpk{Hpk´1
qD,

and
ψr´k`2 : pHpr´k`2

{Hpr´k`1
q ÝÑ O{pnOpk´pk´1 ,

satisfies ψDk “ ψ
pσq,´1
r´k`2, after identifying source and target via ν1 and φk.

In this definition we have extended slightly the definitions of the (canonical) subgroups
Hk : for k “ 0 we set H0 “ t0u and for k “ r ` 1 we set Hr`1 “ Grpns. If pr ă h in
case (AU) (in which case p1 ą 0 and on X the universal p-divisible group Airπ8j s has a
non-zero multiplicative and etale part), we set

X1pp
nqtorpvq :“

r
ź

k“2

IsomX0ppnqtorpvq,pol,OpHpk{Hpk´1
O{pnOpk´pk´1qˆIsomX0ppnqtorpvqpHp1

, pO{pnOqp1q.

Remark 6.3. — 1. The difference in definition in case (AU) is because if pr “ h, the
group Airπmj s is finite flat and polarised on the all toroïdal compactification, but not
if pr ă h, because Airπmj s{Hpr , which is generically finite etale, is only quasi-finite
on the boundary.

2. The point is that X1pp
nqtorpvq is a rigid open in (a toroïdal compactification of) the

Shimura variety for G of some level (which we could make explicit). Indeed, if we
use the definition of [Lan13] Definition 1.3.7.4. at our prime pi, jq, we see that it
amounts to the previous definition : the morphism

ν : Z{pnZ „
ÝÑ µpn ,

there induces a perfect pairing,

O{pnO ˆ pO{pnOqpσq trpă,ąqÝÑ Z{pnZ ν
ÝÑ µpn ,

p13qWe now write Hpτ instead of Hn
τ . Thus Hpk “ Hn

τ if pτ “ pk and of O-height npk .
p14qTo be precise, we have on X0ppnqtorpεq a semi-abelian scheme A and Hm

pτ
inside its p-torsion. The group

homorphism λ : A ÝÑ A_,pσq, is a polarisation on X0ppnq, and this polarisation, which identifies HKpk
with Hpσqpr´k , induces an isomorphism pHpk {Hpk´1 q

D » pHpr´k`1{Hpr´k q
pσq everywhere. Indeed, it is

enough to check it locally and introduce the formal-etale covering Utorpvq of subsection 5.5. Over Utorpvq, the
polarization extend as λ an isogeny of 1-motives, thus induces an isogeny λab of their abelian parts on which the
asserted isomorphism follows from theorem 5.6 and normality of Utorpvq.



24 VALENTIN HERNANDEZ

where trpă a, b ąq :“ trpabq is a perfect pairing, and thus induces an isomorphism
of O-group schemes

ν1 : pO{pnOqD „
ÝÑ pO{pnOqpσq.

Let ψk and ψr´k`2 be the isomorphism induced by a Level structure in the sense of
[Lan13], then let ∆k “ pk ´ pk´1,

pHpk{Hpk´1
q ˆ pHpr´k`2

{Hpr´k`1
qpσq µpn

pO{pnOq∆k ˆ pO{pnOq∆k Z{pnZ

Weil

ψk ˆ ψ
pσq
r´k`2

trpă,ąqL

ν´1

must be commutative, and by compatibility between the polarisations on Arpns and
L, the two pairings trpă,ąqL ˝pψkˆψ

pσq
r´k`2q and trpă,ąqL ˝pψkˆpν

1 ˝pψDk q
´1 ˝

φ´1
k qq must coincide, thus ψpσqr´k`2 “ ν1 ˝ pψDk q

´1 ˝ φ´1
k by [Lan13] Corollary 1.1.4.2.

Definition 6.4. — Let X1pp
nqtorpvq be the normalisation of X0pp

nqtorpvq in X1pp
nqtorpvq.

It is flat, proper and normal over SpecpOKq, and moreover we have maps

πn,n´1 : X1pp
nqtorpvq ÝÑ X1pp

n´1qtorpvq,

by normalisation of the map sending pψkq to pψkrpn´1sq.

Proposition 6.5. — Assume pε, v, nq. For every τ , there is on X1ppq
torpvq a locally free

OX1ppqtor -module of rank pτ Fτ Ă ωG,τ , (respectively in case (AL) also a sheaf FKτ Ă ωGD,τ )
containing

p
Kτ pq‚q`Sτ pε‚q

pf´1 ωτ prespectively p
Kτ pp‚q`Sτ pε‚q

pf´1 ωGD,τ q.

For all n, it induces by pullback by πn “ πn,1 a sheaf Fτ (resp. and FKτ ) on X1pp
nqtorpvq,

endowed with a compatible map for all wτ ă n´ ετ , for all SpecpRq Ă X1pp
nqtorpvq,

HTτ,wτ : HD
pτ ,npRq ÝÑ Fτ bRwτ ,

(resp.

HTKτ,wτ : pHKpτ ,nq
DpRq “ pGrpns{Hpτ ,nqpRq ÝÑ FKτ bRwτ ,

which induces an isomorphism,

HD
pτ ,npRq bRwτ ÝÑ Fτ bRwτ ,

(resp. HTKτ,wτ bRwτ is also an isomorphism).

Proof. — Indeed, we can work locally over S “ SpecpRq. We have isomorphisms
pHpk{Hpk´1

qDpRq » pO{pnOqpk´pk´1 but as HD
pτ pRq is a O{pnO-module killed by pn

and of finite presentation, there exists an isomorphism HD
pτ pRq » pO{pnOqpτ . We can

thus work as in [AIP15] proposition 4.3.1 (see [Her19] Proposition 6.1), where the analogs
of the proposition are assured by Theorem 5.6, and the construction of X0pp

nqtorpvq.
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Proposition 6.6. — Suppose we are given an isogeny on X1ppq
torpvq, φ : G1 ÝÑ G where G1

is a p-divisible group, together with subgroups H 1pτ Ă G1rps satisfying the properties of Theorem
5.6. We can thus define F 1 for G1 similarly. Then the induced map,

φ˚ : ωG1 ÝÑ ωG,

sends F 1 in F .

Proof. — As the groups in Theorem 5.6 are steps of some Harder-Narasihman filtration,
and this filtration is functorial, φ induces a map

φ : H 1pτ ÝÑ Hpτ .

The rest follows easily (see e.g. [AIP15] Proposition 4.4.1).

6.2. Constructing Banach sheaves. — Out of the universal isomorphisms

ψDk : pO{pnOqpk´pk´1 ÝÑ pHpk{Hpk´1
qD,

on X1pp
nqtorpvq, we get a (full) flag of pHpk{Hpk´1

qD , and thus (inductively) of HD
ps for

all sp15q by writing for all i, ek1 , . . . , e
k
pk´pk´1

the natural basis of pO{pnOqpk´pk´1 , and
we thus denote xki the corresponding images in pHpk{Hpk´1

qD through ψk. Choose a lift
of this basis,

px1, . . . , xpsq

of HD
ps , and denote Filψm the subgroup of HD

ps generated by x1, . . . , xm. These subgroups
do not depend on the lifts. From now on, fix v ą 0 such that X0pp

nqtorpvq Ă X0pp
nqtorpεq

(i.e. such that pε, v, nq is satisfied). In particular, we have the sheaves Fτ on X0pp
nqtorpvq

and the compatibilities with HTτ of the proposition 6.5. For simplicity, in case (AL) we
call T the set of embeddings of O together with their conjugate, and represent its elements
by τ, τ . For all τ , we mean by ωτ the sheaf ωGD,τ , for Fτ the sheaf FKτ and HTτ “ HTKτ .
We hope it will not lead to any confusion.

Definition 6.7. — For all τ let Grτ be the Grassmanian parametrizing all complete Flags
of Fτ , and Gr`τ which parametrizes same flags, together with a basis of the graded pieces.

Let w ď n ´ ετ . For all R1 in R ´ Adm, an element Fil‚ Fτ of Grτ pR1q (respectively
pFil‚ Fτ , w‚q of Gr`τ pR1q) is said to be w-compatible with ψ if Fil‚ Fτ ” HTτ pFilψ‚ q
pmod pwR1q (respectively if moreover wi ” ψpxiq pmod pwR1 ` Fili´1 Fτ q). This defini-
tion does not depends on the choice of the lifts pxiq.

Of course Fil‚ Fτ and Filψ‚ are not always defined for the same index set for ‚. It is un-
derstood that we restrict ‚ to the smallest of the two index sets. LetM “

ś

τPT GLpτ {OK

the linear group with upper triangular Borel B such that M{B “ Gr “
ś

τ Grτ is a flag
variety for M . Denote also U Ă B the unipotent radical and Gr` “

ś

τ Gr`τ “ M{U .
Denote M{SpfpOKq the completion along the special fiber, T “

ś

τ Tτ its diagonal torus
and for ωτ ą 0, Tτ,wτ the open which represent the functor Tτ,wτ pRq “ kerpTτ pRq ÝÑ

p15qBy first taking the full flag of pHps{Hps´1 q
D given previously, and then lifting the one of

pHps{Hps´2 q
D{pHps{Hps´1 q

D » pHps´1{Hps´2 q
D and so on...
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Tτ pR{p
wτRqq. We denote Tw “

ś

τ Tτ,w and analogously Bw and Uw (which acts triv-
ially).

Proposition 6.8. — For each τ P T and wτ ă n´ ετ , there exists formal schemes,

IW`
τ,wτ

π1
ÝÑ IWτ,wτ

π2
ÝÑ X1pp

nqtorpvq,

where π1 is a Tτ,wτ -torsor, and π2 is affine.

Proof. — We set, following [AIP15],

IWτ,w :
R´Adm ÝÑ Sets

R1 ÝÑ tw ´ compatible Fil‚ Fτ P Grτ pR1qu

IW`
τ,w :

R´Adm ÝÑ Sets
R1 ÝÑ tw ´ compatible pFil‚ Fτ , wτ‚ q P Gr`τ pR1qu

These are representable by affine formal schemes (some admissible open in an admissible
formal blow-up of the previous Grassmanians).

Fix w ă n´ ετ for all τ . We denote by,

IW`
w “

ź

τ

IW`
τ,w

π1
ÝÑ IWw “

ź

τ

IWτ,w,

and IW`
τ,w, IWτ,w, IW`

w , IWw the corresponding generic fibers. Recall that W is the
space of weights, i.e. continuous characters of T pZpq. Up to pass to some pi, jq, we can
assume that

T pZpq “

$

’

&

’

%

¨

˚

˝

a1

. . .
an

˛

‹

‚

, ai P Oˆ, aian`1´i “ 1

,

/

.

/

-

is (a part of) the maximal torus of G1 “ ker c Ă G. We fix the following embedding

ι :

T pZpq ÝÑ MpOKq “
ś

τ GLpτ pOKq
¨

˚

˝

a1

. . .
an

˛

‹

‚

ÞÝÑ

¨

˚

˝

τpapτ q
´1

. . .
τpa1q

´1

˛

‹

‚

τ

The order is reversed for the following reason. T pZpq acts naturally on X1pp
nq by acting

on the left on pO{pnOqpk´pk´1 ÝÑ pHpk{Hpk´1q in such a way that a1, . . . , ap1
acts on

the trivialisation of Hp1
etc.. But when relating trivialisation of the canonical subgroups

by the Hodge-Tate map to the sheaf ω, we need to take a dual, and this reverse the order
(it sends a trivialisation M to J tM´1J with J the matrix of the hermitian form, we see
it as antidiagonal with 1’s). In particular, the natural action of T pZpq both on X1pp

nq and
M thus Gr` now are compatible in the sense of definition 6.7.
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We haven’t really defined X1pp
nqtor (but see remark 6.3), and it will not be useful for

us, but in general X1pp
nqtor ÝÑ X0ppq

tor “ X tor would be a torsor over the groupp16q

Ippnq :“

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

A1 ‹ ‹ ‹

A2 ‹ ‹

. . . ‹

pO{pn Ar`1

˛

‹

‹

‹

‚

P GpO{pnq : Ai P IppO{pnOq Ă GLpi´pi´1
pO{pnq

,

/

/

/

.

/

/

/

-

pmod UP q,

where we chose an ordering tpτ , qτ | τ P T p“ Tpi,jqqu Y t0, hu “ t0 ď p1 ă p2 ă ¨ ¨ ¨ ă

pr ď pr`1 “ hu, and h “ hpi,jq is the Opi,jq-height of Airπ8j s, Ip denote the standard
Iwahori subgroup, and UP is the standard upper-block-diagonal unipotent associated to
p1 ď p2 ¨ ¨ ¨ ď pr`1 “ h (remember that we fixed a couple pi, jq at this point so here
everything is related to the group G “ Gpi,jq at the place pi, jq). Of course, here we chose
a specific pairing so that this parabolic is upper-triangular.

The group Ippnq does not preserve X1pp
nqtorpvq : the reason is that the condition on

X1pp
nqtorpvq to be "close to the µ-ordinary canonical locus" (i.e. that the group of height

pτ have big enough degree) fixes the group of height npτ to be equal to the canonical (and
thus unique) corresponding one. In particular X1pp

nqtorpvq ÝÑ X0ppq
torpvq is a torsor

over,

I0ppnq :“ Im

¨

˚

˚

˚

˝

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

A1 0 0
A2

. . . 0
0 Ar

˛

‹

‹

‹

‚

:
Ai P IppO{pnOq Ă GLpi´pi´1

pO{pnq
tAiJpi´pi´1

A
pσq
r´i`2 “ Jpi´pi´1

,

/

/

/

.

/

/

/

-

ÝÑ GpZ{pnZq pmod UP q

˛

‹

‹

‹

‚

,

with Js the antidiagonal matrix with entries 1 of size s.

Remark 6.9. — The group I0ppnq is related to the group I0
ppτ q

of section 4

I0ppnq is the group of Z{pn-points of a natural group I0 defined over Zp, which con-
tains T pZpqp17q, and denote B0 Ą T its upper Borel, and U0 the unipotent. There is
a natural action of I0 on IW`

w ÝÑ X0pp
nqtor with U0 acting trivially and the action

on X1pp
nqtor factors through I0ppnq. Given a character of T pZpq we see it as a charac-

ter of B0pZpq trivial on U0pZpq. A character κ is said to be w-analytic if it extends to
a (w-analytic) character of T pZpqTw, and we see it as a character of B0pZpqBw where
U0pZpqUw acts trivially.

Denote by π : IW`
w ÝÑ X0pp

nqtorpvq.

Definition 6.10. — Let κ be a w-analytic character in W . The formal sheaf,

wκ:w :“ π˚OIW`
w
rκs,

is a small formal Banach sheaf on X0pp
nqtorpvq.

p16qThis is for pr “ h, there is an analogous description when pr ă h.
p17qAgain we have restricted the situation to some pi, jq here...
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Here we take κ-variant sections for the action of B0pZpqBw acting on IW`
w above

X0pp
nqtorpvq via the previous explanation. We fix the following notation. If κ PWpwq Ă

W , in particular it is locally analytic, then we denote κ0 its (analytic) restriction to Tw .

Proof. — Denote κ0 the restriction to Tw of κ. The map

π1 : IW`
w ÝÑ IWw,

is a torsor over Tw, thus pπ1q˚OIW`
w
rκ0s is invertible, and

π2 : IWw ÝÑ X1pp
nqtorpvq,

is affine, thus pπ2 ˝ π1q˚OIW`
w
rκ0s is a small formal Banach sheaf. As X0pp

nqtorpvq is
quasi-excellent (formally of finite-type over OK ), thus Nagata, the map X1pp

nqtorpvq ÝÑ
X0pp

nqtorpvq is finite, and we can use [AIP15] with the action of B0pZ{pnZq. Thus,

wκ:w “

´

pπ2 ˝ π1q˚OIW`
w
rκ0spκ´1q

¯B0
pZ{pnZq

,

is a small Banach sheaf on X0pp
nqtorpvq.

We would like to descend further to Xtorpvq, i.e. at Iwahori level, unfortunately the map
X0pp

nqtorpvq ÝÑ Xtorpvq is not finite in general...
Let ωκ:w be the associated rigid sheaf ([AIP15] appendice) on X0pp

nqtorpvq Ă

X0pp
nqtorpεq.

6.3. Descent to Iwahori level. — In order to get an action of Hecke operators at p,
which are defined at Iwahori level, we will need to descend our construction at this level.
Fortunately, this is possible in rigid fiber.

Denote by U0ppnq the (diagonal, not just block-diagonal) subgroup,

¨

˚

˚

˚

˚

˝

1 ‹ ‹

1
...

. . . ‹

1

˛

‹

‹

‹

‹

‚

Ă I0ppnq

Define X`0 ppnqtorpvq as the quotient of X1pp
nqtorpvq by U0ppnq, which doesn’t

parametrizes trivialisations of the groups pHpk{Hpk´1
qD but only full flags of sub-

groups of this quotients, together with a basis of the graded pieces. Actually we can
also define the same way Fτ over X0pp

nq`pvqtor (i.e. the sheaves Fτ descend). As the
action of U0ppnq on X1pp

nqtorpvq lifts to IW`
w , denote also by IW0,`

w the quotient of by
U0ppnq. As Fτ » ωτ over X`0 ppnqtorpvq (i.e. after inverting p), we thus have an injection,

IW0,`
w Ă pT {UqX`0 ppnqtorpvq.

Proposition 6.11. — If n´ ετ ą w ą n´ 1, then the composite,

IW0,`
w ãÑ pT {UqX`0 ppnqtorpvq ÝÑ pT {UqX torpvq,

is an open immersion.
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Proof. — Denote by V Ă X torpvq “ X0ppq
torpvq the image by πn of X`0 ppnqtorpvq. Up

to reducing to a suitable affinoid U Ă X`0 ppnqtorpvq, the previous composite map h is
given by,

h :
ž

τ

ž

γPS

Mτ

¨

˚

˚

˚

˝

1` pwBp0, 1q
pwBp0, 1q 1` pwBp0, 1q

. . .
1` pwBp0, 1q

˛

‹

‹

‹

‚

γ ÝÑ
ž

τ

pGLpτ {UqπnpUq,

where S is a set of representative of I0ppnq{U0ppnq in IpOq Ă GLpτ pOq, and Mτ is the
matrix relating the basis of HD

pτ to the fixed one of ωτ , which is thus related to the Hodge-
Tate map (or equivalently relating a fixed basis of Fτ to a fixed one of ωτ ). In particular
there exists M˚

τ such that, M˚
τMτ “ pcIdpτ for some c (which we could bound in terms

of the Hasse invariant or 1
p´1 , but it is not even necessary). From this, we deduce that

M˚ ˝ h is injective, thus the same thing for h.

Thus we have a map gn : IW0,`
w ÝÑ X torpvq, and recall that X torpvq is a strict

neighborhood of the µ-ordinary canonical locus at Iwahori level. It is not clear that the
map,

πn : X`0 ppnqtorpvq ÝÑ X torpvq,

is surjective. But still, having n fixed, πnpX`0 ppnqtorpvqq describe a basis of strict neigh-
borhoods of X tor,µ´can by lemma 5.19.

Definition 6.12. — Assume pε, n, vq is satisfied. The open πnpX`0 ppnqtorpvqq is a strict
neighborhood of the (µ-canonical) ordinary locus X torp0q “ X torp0qcan´µ´ord included
in X torpεq. On πnpX`0 ppnqtorpvqq, if w Psn´ 1, n´ ετ r for all τ , for all κ w-analytic, we
define the following sheaf,

ωκ:w “ ppgnq˚OIW0,`
w
qrκs.

It is called the sheaf of overconvergent, w-analytic modular forms of weight κ. For every
v1 ą 0 small enough such that X torpv1q Ă πnpX`0 ppnqtorpvqq, the module

Mκ:
w pv

1q “ H0pX torpv1q, ωκ:w q,

(respectively Mκ:
cusp,wpv

1q “ H0pX torpv1q, ωκ:w p´Dqq) is called the module of v1-
overconvergent, w-analytic (respectively cuspidal) modular forms of weight κ.

Remark 6.13. — In the previous compatibilities, if pε, n, vq is satisfied, pε, n, v1q is for all
v1 ă v. Also, because of the compatibility between w and n, n is uniquely defined (and is
thus suppressed form the notation of ωκ:w ). Thus, we can choose v arbitrarily close to 0 in
the previous definition. Also, for every w and κ, there exists n0 such that for all n ě n0,
there is w1 ą w, and κ is w1-analytic with n ´ 1 ă w1 ă n ´ ετ for all τ . In particular,
there exists constants v0, w0 such that Mκ:

w pvq is defined for all v ă v0 and w ą w0 such
that w Psn´ 1, n´ εr (for some integer n large enough).

Suppose n1 ´ ετ ą w1 ą w with w Psn ´ 1, n ´ εr and n ď n1. As a flag with graded
basis which is pn1, w1q-compatible is also pn,wq-compatible, there is an injective map,

IW`
n1,w1 ãÑ IW`

n,w ˆX1ppnqtorpvq X1pp
n1qtorpvq.
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In particular, we have a natural map, for every w1-analytic κ,

ωκ:w ãÑ ωκ:w1 ,

over πn1pX`0 ppn
1

qtorpvqq Ă πnpX`0 ppnqtorpvqq.

Definition 6.14. — For w ą 0, the module,

Mκ: “ lim
ÝÑ

vÑ0,wÑ8

Mκ:
w pvq prespectively Mκ:

cusp “ lim
ÝÑ

vÑ0,wÑ8

Mκ:
cusp,wpvqq

is the module of overconvergent locally analytic (respectively cuspidal) modular forms of
weight κ.

Remark 6.15. — In the previous definition, it is understood that the limit is taken on
v, w such that w Psn ´ 1, n ´ εr for some n “ nw, pε, n, v0q is satisfied for some v0 and
X torpvq Ă πnpX`0 ppnqtorpv0qq Ă X torpεq. Thus in particular pε, n, v0q is satisfied and
v ď v0.

Let κ be a classical weight of W . This means that if M denote the Levi associated to µ
as in Section 3, we can embed T pZpq in TM the torus of M and κ is the composition of
this embedding with a dominant algebraic character of TM . If we write M “

ś

τPT GLτ ,
and we choose B the upper Borel, then a dominant algebraic character of TM can be
seen as integers pk1 ě ¨ ¨ ¨ ě kpτ qτ . We then define the associated character of T pZpq as
´w0,M pκq ˝ ι with the embedding ι given in (6.2).

Proposition 6.16. — Suppose that κ P W is a dominant algebraic character, and choose w,
and n, v and any v0 such that w Psn ´ 1, n ´ εr, pε, n, v0q is satisfied, and X torpvq Ă
πnpX`0 ppnqtorpv0qq. Then we have the following inclusion as sheaves over X torpvq,

ωκ Ă ωκ:w .

Proof. — Indeed, sections of ωκ are by definition section of OT ˆ which are are κ_ “
´w0pκq-equivariant for the action of the Borel B Ă

ś

τ GLpτ (with U acting trivially),
thus we have by Proposition 6.11 a restriction map πT ˚OT ˆ{U ÝÑ pgnq˚OIW0,`

w
over

Xtorpvq which is injective by analytic continuation. But because of the previous definition
of κ as a character of T pZpq and the construction both of ωκ (as ´w0pκq variant function
for TM ) and ωκ:w (as κ-variant functions on T pZpq) the previous restriction map factors as
an injective map ωκ ÝÑ ωκ:w .

Remark 6.17. — In the previous definition, it can seem a bit arbitrary the use of the map
ι from T pZpq to TM , but it is the natural one from the point of view of the Hodge-Tate map
(which relate a trivialisation of GD , ordered by the canonical filtration, and a trivialisation
of ωG) : it is what assures the compatibility between the action of T pZpq on trivialisations
of Grpns-points, and Tw on IW`

w .
p18q. In particular, we have that in case AL – i.e. when

primes above p splits in F {F`– so that we can identify T pZpq with (product of) On
K for

some p-adic field K (choosing a CM type above p in F ), dominant algebraic weights of

p18qThus there is a mistake in [Her19] in the way we chose the embedding of T pZpq in TM in section 7.1 which
implies that classical sheaves are not associated to p-adic characters pk1 ě k2, k3q but to p´k1,´k2, k3q PW
with k1 ě k2 which is unfortunate... The embedding should be given by ι.



FAMILIES OF COHERENT PEL AUTOMORPHIC FORMS. 31

TM corresponds to dominant integers p`τ1 ě ¨ ¨ ¨ ě `τnqτ for all embeddings τ : K ÝÑ Qp
for sufficiently generic classical points on the Eigenvariety.

6.4. Some complexes. — For compatibilities reasons with Hecke operators and to con-
trol the structure on the previous modules, we will need to define complexes overconvergent
sections. Recall that on X tor “ X0ppq

tor , our rigid toroïdal Shimura variety with fixed
Iwahori level, we have defined two basis of strict neighborhoods of X torp0q (the canonical
µ-ordinary locus whose points have maximal degree), one given by

X torpεq,

for ε “ pετ qτ (of points with degrees bigger than the maximal one minus ετ ), and

X torpvq,

for v P p0, 1s (describing the connected components containing X torp0q of points with
Hasse invariant of valuation smaller than v). Because we will need to let the neighborhood
described in terms of the degree vary, we from now on call ε0 a number fixed to be able to
define the sheaves ωκ:w , and we will always consider small enough opens X pvq and X pεq
so that there exists the sheaves ωκ:w on them. In particular, once w is fixed this just implies
that v or ε are small enough (depending on w).

Ultimately we are interested by (finite slope) overconvergent cuspidal modular forms,
that is, (finite slope) elements of

lim
ÝÑ

vÝÑ0,wÝÑ8

H0pX torpvq, ωκ:w p´Dqq “ lim
ÝÑ

εÝÑ0,w ÝÑ8

H0pX torpεq, ωκ:w p´Dqq.

We temporarily introduce the following complexes,

Definition 6.18. — Let w ą 0, U “ SpmpAq ĂW an affinoid such that κU is w-analytic,
and define for v, ε small enough p19q,

Ccusppv, w, κU q “ RΓpX torpvq ˆ U , ωκU:
w p´Dqq,

and
Ccusppε, w, κU q “ RΓpX torpεq ˆ U , ωκU:

w p´Dqq.

We can analogously define the non-cuspidal versions of these complexes.
We also define

Hi
cusp,:pκU q “ lim

vÝÑ0,wÝÑ8
HipX torpvq ˆ U , ωκU:

w p´Dqq,

and
Hi1

cusp,:pκU q “ lim
εÝÑ0,wÝÑ8

HipX torpεq ˆ U , ωκU:
w p´Dqq.

In particular H0
cusp,:pκq “ H01

cusp,:pκq is simply the space of overconvergent locally
analytic cuspidal modular forms of weight κ, and we will see that the higher cohomology
groups vanishes (their finite slope part at least).

Proposition 6.19. — The previous complexes are represented by bounded complexes of projective
Ar1{ps-modules (i.e. perfect complexes in the sense of [Urb11]).

p19qsuch that the sheaves ωκU :
w is defined on X torpvq ˆ U resp. X torpεq ˆ U .
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Proof. — This is the same proof as [Pil18] Proposition 12.8.2.1. We have maps,

IW`
w ˆX pvq U

π1
ÝÑ IWw ˆX pvq U ÝÑ X1pp

nqtorpvq ˆ U ,

and sheaves LκU “ pπ1˚OIW`
w
qrκ0

U s (for the action of Tw), this is a line bundle on

IWw ˆX pvq U ), and ω
κ0
U:
w “ π2˚LκU . Moreover

RΓpX torpvq ˆ U , ωκU:
w p´Dqq “ RΓpI0pnq, RΓpX1pp

nqtorpvq ˆ U , ωκ
0
U:
w p´Dqqp´κqq

“ RΓpI0pnq, RΓpIWw ˆ U ,LκU p´Dqqp´κqq.

The last equality is because IWw ÝÑ X1pp
nqtorpvq is locally affinoid. Now if you

choose U a covering of IWwˆU by affinoids which is I0pnq-stable (by adding all translates
by I0pnq if necessary), then the Cech complex of this covering is perfect and calculates
RΓpIWw ˆ U ,LκU p´Dqq, and twisting the action of I0pnq, and looking at the direct
factor of invariants by I0pnq (we are in characteristic 0), this is still perfect and calculates
RΓpX torpvq ˆ U , ωκU:

w p´Dqq. The same remains true with X torpεq (for ε small enough)
instead of X torpvq.

7. Hecke Operators

In this section we will construct Hecke operators, both at p and outside p. As noted
in [AIP15, Bra16], it is not true that the Hecke correspondences will extend to a fixed
choice of a toroidal compactification, nevertheless we can adapt the choice of toroïdal
compactifications and use results of Harris ([Har90a] Proposition 2.2).

Lemma 7.1 (Harris). — Let Σ,Σ1 be two smooth projective polyhedral cone decompositions,
and X1pp

nqtorΣ ,X1pp
nqtorΣ1 the associated toroïdal compactifications. Then there is a canonical

isomorphism H˚pX1pp
nqtorΣ pvq,OIW`q » H˚pX1pp

nqtorΣ1 pvq,OIW`q.

Proof. — To simplify notation, denote XΣ “ X1pp
nqtorΣ . Up to choosing a common

refinement of Σ and Σ1, we can suppose that Σ1 refines Σ and look at the map

π : XΣ1 ÝÑ XΣ.

By results of Harris we have π˚ωG “ ω1G. Moreover, we can take Σ1 small enough (which
we do) such that it corresponds to a refinement of the auxiliary datum we chose in section
5.2. In particular, on the integral model X1pp

nqtorΣ1 , the groups Hk are given by pullback of
those on X1pp

nqtorΣ and thus we have π : X1pp
nqtorΣ1 pvq ÝÑ X1pp

nqtorΣ pvq. Thus we have a
cartesian square,

IW`
Σ1 XΣ1pvq

IW`
Σ XΣpvq

i1

i

π1 π
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Also, by results of Harris ([Har90b] (2.4.3)-(2.4.6)), we have quasi-isomorphisms
π˚OXΣ1

„
ÝÑ Rπ˚OXΣ1

“ OXΣ . As IW`
ÝÑ Xpvq is flat and π is proper, we

have thus by base change (see e.g. [Sta18, 30.5.2, Tag 02KH])

Rπ1˚OIW`

Σ1
» OIW`

Σ
.

7.1. Hecke Operator outside p. — Let λ be a place where our fixed level Kp is hyper-
special, and fix γ P GpF`λ q. Denote Cγ the (analytic space associated to the) moduli
space classifiying tuples pAk, ιk, λk, ηkq, k “ 1, 2, of the type G, together with an isogeny
f : A1 ÝÑ A2 of type γ which respects the additional structure. It is endowed with two
maps,

Cγ
p1

Ñ
p2

X pvq,

where pkpf : A1 ÝÑ A2q “ Ak. Denote Cγppnq “ Cγ ˆX pvq X1pp
nqpvq. But we can

find choices of smooth projective polyhedral cone decompositions (see [Lan13] proposition
6.4.3.4) Σ and Σ1 and associated toroïdal compactifications Xtor

Σ , Cγ,Σ, X
tor
Σ1 and maps

p1 : Cγ,Σ ÝÑ Xtor
Σ , p2 : Cγ,Σ ÝÑ Xtor

Σ1 which extends the previous ones. As v is
away from p, this correspondence preserves X torpvq, and the universal isogeny induces an
isomorphism,

f˚ : p˚2FX1ppnqtorΣ1
pvq

„
ÝÑ p˚1FX1ppnqtorΣ pvq,

and we can thus construct,

H0pX1pp
nqtorΣ1 pvq,OIW`q

p˚2
ÝÑ H0pCγ,Σpp

nq, p˚2OIW`q
f˚

ÝÑ

H0pCγ,Σpp
nq, p˚1OIW`q

Tr p˚1
ÝÑ H0pX1pp

nqtorΣ pvq,OIW`q

As by the previous lemma, H0pX1pp
nqtorΣ1 pvq,OIW`q “ H0pX1pp

nqtorΣ pvq,OIW`q, we get
an operator Tγ on H0pX1pp

nqtorΣ pvq,OIW`q. Similarly Tγ acts on Ccusppv, w, κU q and
Ccusppε, w, κU q (as the isogeny is outside p) and their non-cuspidal analogues. We can
thus forget about the choice of Σ in the notations.

Remark 7.2. — Here we made the slight but usual abuse, as we used the notations with a
fixed pi, jq. Of course, taking tensor products over the pi, jq of the correspondings IW`

(which depends of the choice of pi, jq) solves this abuse of notation.

Definition 7.3. — Let κ P WpwqpLq with w Psn ´ 1, n ´ ετ r. Restricting the previous
operator to homogenous functions on X pvq for κ, we get the Hecke operator,

Tγ : Mκ:
w ÝÑMκ:

w .

Working over X pvq ˆWpwq, considering κ “ κuniv , we get an operator

Tunivγ : Mκuniv:
w ÝÑMκuniv:

w ,

which is OWpwq-linear, and an operator on Ccusppv, w, κWpwqq and Ccusppε, w, κWpwqq.

Denote by Hp,S the spherical Hecke algebra of level Kp,S , the previous construction
endow for each w the modules Mκuniv:

w (respectively the module Mκ:
w with κ P Wpwq)

with an action of Hp,S .
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7.2. Hecke operators at p. — At p, the construction of Hecke Operators is much more
subtle than outside p, and even more subtle than in the ordinary case, as already remarked
in [Her19]. Indeed, when the ordinary locus is non empty, only one operator, Up,g in
[AIP15], is compact on classical forms (it improves the "Hasse"-radius, i.e. the Hasse
invariant), but does not improves the analycity radius for overconvergent forms, whereas
the other operators, Up,i, i ă g in [AIP15], improves (a priori) only the analycity radius.
Already for Up2, 1q with p inert in the quadratic imaginary field the situation is different.
Indeed, there is only one interesting operator, Up, that improves at the same time both the
Hasse-radius and the analycity radius.

Following [Bij16], we define operators at p.

7.2.1. Linear case. — This is actually easier than the unitary case, and can be adapted
from [Bij16] on ωκ to ωκ:w (in particular there is no p´2 appearing in the normalisation
corresponding to equation 4, see Remark 8.3). But as this case can be recovered from the
general Unitary case (considering G ˆ GD with canonical polarisation instead of G), we
just write the details in the unitary case.

7.2.2. Unitary case. — Fix as before pi, jq a prime, that we supress from now on from
the notations, and we can thus use i as a variable. Let G be the associated p-divisible
group. Let 0 ď i ď h

2 an integer, and define Ci the moduli space pA, ι, λ, η,H‚, Lq
where pA, ι, λ, η,H‚q P X pvq and L Ă Grp2s be a totally isotropic subgroup such that
Hi ‘ Lrps “ Grps and HKi ‘ pL “ Grps, and denote the two maps,

Ci
p1

Ñ
p2

X pvq,

where p1pA,Lq “ A and p2pA,Lq “ A{L. Denote Cippnq “ Ci ˆX pvq X1pp
nqpvq,

and denote f : A ÝÑ A{L the universal isogeny. As we are in characteristic zero,
we can find smooth projective polyhedral cone decompositions Σ,Σ1,Σ2 such that the
previous correspondence extends to p1 : Ci,Σ1 ÝÑ X tor

Σ , p2 : Ci,Σ1 ÝÑ X tor
Σ2 . In [Bij16]

Proposition 2.11, Bijakowski verifies that the previous correspondence stabilizes the open
X pεq. More precisely, he verifies that the Hecke correspondence Ui “ p2 ˝ p

´1
1 satisfies

degH 1j ě degHj with equality for i “ j if and only if degHi is an integer. Its proof
extend to the case of a 1-motive in case of bad reduction, and thus extend to the boundary.

In particular, if ετ ă 1, by quasi-compacity of

Xp@τ,degpHτ q P rλτ , ντ sq,

with
ÿ

τ 1

minppτ 1 , pτ q ´ 1 ă λτ ă ντ ă
ÿ

τ 1

minppτ 1 , pτ q, λτ , ντ P Q,

we can thus prove the following,

Proposition 7.4. — For all w ą 0, for all ε ą 0 sufficiently small, there exists ε1 ă ε such
that the Hecke correspondence

ś

pUiq sends X tor
Σ pεq into X tor

Σ2 pε
1q. Also, for all ε ą 0, and all

0 ă ε1 ă ε, there exists N ą 0 such that
ś

i U
N
i sends X tor

Σ pεq in X tor
Σ2 pε

1q.

The universal isogeny f induces a map,

f˚ : p˚2Tan ÝÑ p˚1Tan,
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which is an isomorphism, and denote rf˚ “
À

σ
rf˚σ (using the decomposition ω “

À

σ ωG,σ) such that rf˚σ sends a basis w11, . . . , w
1
pσ of ωA{L,σ to

p´2f˚w11, . . . , p
´2f˚w1pσ´h`i, p

´1f˚w1pσ´h`i`1, . . . , p
´1f˚w1pσ´i, f

˚w1pσ´i`1, . . . , f
˚w1pσ ,

(being understood that the terms on the left with p´2 only appears if pσ ą h´ i and terms
with p´1 only if pσ ą i). Another way to write it is to set, aσ “ maxppσ´ph´ iq, 0q, bσ “

maxpminph´2i, pσ´ iq, 0q and cσ “ minpi, pσq (thus aσ` bσ` cσ “ pσ). Then rf˚σ sends
w11, . . . , w

1
pσ to,

(4)
p´2f˚w11, . . . , p

´2f˚w1aσ , p
´1f˚w1aσ`1, . . . , p

´1f˚w1aσ`bσ , f
˚w1aσ`bσ`1, . . . , f

˚w1pσ ,

Remark 7.5. — This normalisation is made in order to make the operator Ui vary in a
family (it corrects the multiplication by p that appears on ω if we do the quotient by L). It
is related with normalisation of [Bij16] for classical sheaves, but it is not exactly the same,
see 8.3.

Fix ε “ ε0 “ pετ qτ ă
1
2 small enough and assume pε, v, nq is satisfied.

Definition 7.6. — Let w “ pwτi,jqτ , such that for all pi, j, τq, wτi,j Ps0;n´ ετ r and define
IW0,`

w to be the open subspace of T ˆ{U over πnpX`0 ppnqtorpvqq such that its L-points,
for all L over K , is the datum of a OL-point of πnpX`0 ppnqtorpvqqpOLq, thus in particular
an abelian scheme A{SpecpOLq for which Grpns has (canonical by Theorem 5.6) filtration
by subgroups Hτ , together with a flag Fil‚ Fτ for all τ with graded pieces wτ‚ , such that
there exists a (polarized) trivialization ψ (as in section 6.1), such that

ωτi pmod Fili´1 Fτ ` pw
τ
0 Fτ q “

ÿ

jěi

aj,i HTτ,w0
pejq,

where wτ0 “ n´ ετ and with aj,i P OL such that, vpaj,iq ě wτj,i if j ą i and vpai,i´ 1q ě

wτi,i. We then define as before ωκ:w on πnpX`0 ppnqtorpvqq for mini,τ w
τ
i,i-analytic κ.

Remark 7.7. — In the previous definition, if we take n1 ě n, wτi,j Ps0, n ´ ετ r and we
make the previous construction over πn1pX`0 ppnqpvqq for w0 “ n ´ ετ or w0 “ n1 ´ ετ ,
we get the same space. Thus, up to reducing the strict neighborhood, we suppress n from
the notation. When w is parallel and n´ 1 ă w ă n´ ετ , then ωκ:w “ ωκ:w .

Suppose w satisfies
$

&

%

0 ă wτk,l ă w0 ´ 2 if aτ ‰ 0

0 ă wτk,l ă w0 ´ 1 if aτ “ 0 and bτ ‰ 0

0 ă wτk,l ă w0 otherwise

Proposition 7.8. — Let f be the universal isogeny over Ci. Then

p rf˚q´1p˚1IW
0,`
w Ă p˚2IW

0,`
w1 ,
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with

w
1σ
k,l “

$

&

%

wσk,l ` 2 if k ą aσ ` bσ and l ď aσ
wσk,l ` 1 if pbσ ` aσ ě k ą aσ and l ď aσq, or pbσ ` aσ ě l ą aσ and k ą aσ ` bσq

wσk,l otherwise

Proof. — This is similar to 4.2 and [AIP15] Proposition 6.2.2.2. Indeed, in the basis
given by the "trivialisation" of pHpk{Hpk´1

qD on X`0 ppnqtorpεq, the dual of the morphism
Hpτ ÝÑ H 1pτ induced by f ,

fD : pH 1pτ q
D ÝÑ HD

pτ ,

is given by Diagpp2, . . . , p2, p, . . . , p, 1, . . . 1q, where p2 appears aτ -times, p appears bτ -
times and 1 cτ -times. The rest follows exactly as in [AIP15] Proposition 6.2.2.2, as π˚F 1τ Ą
pFτ is aτ “ 0 and bτ ‰ 0, π˚F 1τ Ą p2Fτ if aτ ‰ 0 and Fτ “ π˚F 1τ otherwise.

We can thus define the operator U0
i ,

H0pX tor
Σ2 pεq, ω

κ:
w1 q

p˚2
ÝÑ H0pCi, p

˚
2ω

κ:
w1 q

rf´1˚

ÝÑ H0pCi, p
˚
1ω

κ:
w q

1
pni

Trp1
ÝÑ H0pX tor

Σ pεq, ωκ:w q

and also

Ccusppε, w
1, κunivWpwqq

p˚2
ÝÑ RΓpCi ˆWpwq, p˚2ω

κuniv:
w1 q

rf´1˚

ÝÑ RΓpCi ˆWpwq, p˚1ωκ
univ

:
w q

1
pni

Trp1
ÝÑ RΓpX tor

Σ pεq ˆWpwq, ωκ
univ

:
w q “ Ccusppε, w, κ

univ
Wpwqq,

where ni is an integer defined in [Bij16] section 2.3 for examplep20q. It is related to the
inseparability degree of the projection p1.

Remark 7.9. — 1. Unfortunately it is not clear how to define the Hecke operator U0
i

on the neighborhoods X pvq as we don’t know how the Hasse invariants behaves with
quotients... But we will solve this in the end of the paper.

2. Thus we can use the different operators U0
i to improve the radius of convergence in

all directions wτk,l with k ą l.

7.3. A compact operator. — Using the previous construction, we can define a compact
operator. Fix w ą 0 and n sufficiently big such that n´ 2´ ε ą w. Fix also v sufficiently
small such that pε, n, vq is satisfied.

Define w1 “ pw
1σ
k,lqσ,kąl by,

w
1σ
k,l “

"

w if k “ l
w ` 1 otherwise

Remark 7.10. — We could be more precise about the precise values of w1 we can choose
for what follows (summing over all i’s the previous proposition), but the previous will be
sufficient.

p20qFor us, this integer will not be important as it is used to normalize the Hecke operators and is a constant of
the weight. As our Hecke eigensystems are constructed on spaces where p is inverted, this normalisation could
be changed (we should change Theorem 8.4 accordingly)



FAMILIES OF COHERENT PEL AUTOMORPHIC FORMS. 37

Denote by ε1 ă ε the tuple given by Proposition 7.4. Then we have for each κ PWpwq,
the following operator,

ź

iě1

U0
i : H0pX torpε1q, ωκ:w1 q ÝÑ H0pX torpεq, ωκ:w q,

and thus the operator,

ź

i ě1

Ui : H0pX torpεq, ωκ:w q ÝÑ H0pX torpε1q, ωκ:w1 q
ś

i U
0
i

ÝÑ H0pX torpεq, ωκ:w q,

is compact, as the first map is. Indeed, for some ε let π : IW0,`
w,ε ÝÑ IW0

w,ε be the
rigid open in, respectively, pT {UqX torpεq ˆW and pT {BqX torpεq ˆW as in Proposition
6.11, and denote Fw “ π˚OIW0,`

w,ε
rκ0,univs, which is an invertible sheaf on IW0

w,ε, and

H0pX torpεq, ωκ:w q is a direct factor of H0pIW0
w,ε,Fwq. Clearly, as w1 ą w, and ε1 ă ε we

have a map

res : H0pIW0
w,ε,Fwq ÝÑ H0pIW0

w1,ε1 ,Fw1q,

and it is enough to show it is compact. By [KL05] Proposition 2.4.1, it is enough to show
that IW0

w1,ε1 ŤW IW0
w,ε. But now, e.g. [KL05] Proposition 2.3.1, this is reduced to show

IWw,ε ŤW pT {BqX tor ˆW , which is true as T {B ˆ X tor is proper.
Similarly, denote Ui by precomposing U0

i by the mapH0pX torpεq, ωκ:w q Ă H0pX torpεq, ωκ:w1 q

of the previous subsection. The same construction works also over X torpεq ˆWpwq with
κuniv .

Definition 7.11. — We define Appq` as the commutative Qp-algebra generated by in-
determinates U 1i . Then Appq` acts on H0pX torpεq, ωκ:w q for all κ and ε, and also on

H0pX torpεqˆWpwq, ωκWpwq:
w q, Cpε, w, κWpwqq, and their cuspidal variants, by letting U 1i

acts as Ui. Denote Appq the Qp-algebra generated by U 1i and their inverses. Similarly de-
fine HSp the (spherical) Hecke algebra outside S, the set of places of K of bad reduction,
and p. Then the previous sections induces an action of HSp on all these spaces.

Remark 7.12. — In the linear case, we can see Appq` as the (commutative !) Qp-algebra
generated by

¨

˚

˝

pa1

. . .
pan

˛

‹

‚

, a1 ě ¨ ¨ ¨ ě an,

where we use a choice w|v| p in Fi to identify GpZpq with GLnppF
`
i qvq. See [BC09]

Section 6.4 (but our Appq` is Appq´ there). Here we like to see the Iwahori level using the
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upper triangular Borel. Then Ui corresponds to
¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
. . .

1
p´1

. . .
p´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where 1 appears i times and p´1 appears n´ i times. We can also see this Appq` algebra
as acting on πI , where π is a GpQpq-representation and the action of the previous diagonal
matrix d is by rIdIs in the classical Hecke algebra for I (which is commutative). There is
a similar description in the unitary case. As Appq is constructed by adding inverses to U 1i ,
this will act on the finite slope part in the coherent cohomology, but careful that inverses of
elements of Appq` does not acts as the corresponding double class in the classical Hecke
algebra !

8. Classicity results

Let w and ε such that 0 ă w ă 1 ´ ε. Up to reduce ε this is always possible for
some w ă 1. Then the map IW0

w ÝÑ X torpεq has connected fibers. Denote ωκ:
w´

:“

lim
ÝÑw1ăw

ωκ:w1 .

Proposition 8.1. — Let κ be a classical weight. We have an exact sequences of sheaves over
X torpεq,

0 ÝÑ ωκ ÝÑ ωκ:w
d1
ÝÑ

à

αP∆

ωα¨κ:
w´

which etale locally is isomorphic to the exact sequence (2).

Proof. — We construct the map d1 as in [AIP15] (we don’t need the hypothesis on w here).
Then we have a sequence,

0 ÝÑ Vκb̂OX torpεq ÝÑ V 0,w´an
κ,L b̂OX torpεq

d1
ÝÑ

à

αP∆

V 0,w´´an
α¨κ,L b̂OX torpεq,

which is exact by hypothesis on w by Jones result (hypothesis implies that N1 » B as
in [Jon11] section 8). Then as this sequence is etale locally isomorphic to the one of the
proposition, we get the result.

Proposition 8.2. — Let κ “ pkσ,jqσ,1ďjďpσ be a classical weight. The submodule of
Mκ:
w pX torpεqq on which each Ui acts with slope strictly less than inftkσ,i ´ kσ,i`1 : i ă pσu

is contained in H0pX torpεq, ωκq.

Proof. — By the previous proposition, and Proposition 7.4 and Proposition 7.8, the proof
is identical to [AIP15] Proposition 7.3.1. Indeed, let f P Mκ:

w pX torpεqq on which the Ui
acts with the said slope. Using Proposition 7.8, and that f is finite slope for Ui, we can
assume that w ă 1´ ε. Thus, by proposition 8.1, because of the slope, we calculate as in
[AIP15] that d1f “ 0. Thus f P H0pX torpεq, ωκq.
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Remark 8.3. — Let us make explicit the normalisation of our Hecke operators, in partic-
ular the effect of the operation in equation (4). In case (AL), for i P t0, . . . , hu, we choose
L0 Ă Grps such that L0 ‘Hi “ Grps and we have an isogeny

f : GˆGD ÝÑ G{L0 ˆG
D{LK0 .

This induces a map
f˚ : p˚2Tan ÝÑ p˚1Tan,

sending, for τ P T a basis pwτ1 , . . . , w
τ
pτ q of ωG{L0,τ

p21q to its image via

ωG{L0
‘ ωGD{LK0 ÝÑ ωG ‘ ωGD .

We then denote f̃˚ which sends a basis pwτ1 , . . . , w
τ
pτ q to

pp´1f˚ωτ1 , . . . , p
´1f˚ωτpτ´i, ω

τ
pτ´i`1, . . . , ω

τ
pτ q.

Seeing f̃˚ as a morphism on functions on trivialisation of ω, this means that f˚ sends a
trivialisation ψ of p˚2ω to π˚ ˝ ψp¨diq, where di is in entry τ the matrix of size pτ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

p´1

. . .
p´1

1
. . .

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

with maxppτ ´ i, 0q times p´1 appearing. If κ “ pkτ,iqτPT ,1ďiďpτ is a classical weight,
this induces a normalisation by a factor

p´
ř

τPT kτ,pτ`¨¨¨`kτ,i`1 ,

with the obvious abuse of notation. In case (AU) this is slightly more complicated but f̃˚

sends a trivialisation ψ to π˚ ˝ψp¨diq, where di is the matrix with τ -entry (of size pτ ) given
by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

p´2

. . .
p´2

p´1

. . .
p´1

1
. . .

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

p21qRecall that in case AL we have chosen a section T ` Ă T , i.e. a CM type induced by the choice of a place,
and if τ P T ` we denote ωG,τ :“ ωGD,τ thus here ωG{L0,τ “ ωGD{LK0 ,τ

.
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with p´2 appearing aτ -times, p´1 appearing bτ -times. Remark that if p´2 appears for τ ,
no p´2 nor p´1 appears for τ . In particular for a classical weight κ we get a normalisation
by the power of p

´
ÿ

τPT
2pkτ,pτ ` ¨ ¨ ¨ ` kτ,h´i`1q ` pkτ,h´i ` ¨ ¨ ¨ ` kτ,i`1q,

with the same obvious abuse of notation. In both case we also normalise by p´ni with ni
independent of the weight (along the trace map).

The second result we need for classicity is Bijakowski’s result, [Bij16]. For each τ P T `,
denote Aτ “ minppτ , qτ q in case (AU) and Aτ “ pτ , τ P T ` in case (AL).

Theorem 8.4 (Bijakowski). — Let κ “ pkτ,j , λτ,lqτPT `,1ďjďpτ ,1ďlďqτ be a classical weight
and let f P H0pX torpεq, ωκq. Suppose that f is an eigenvector for the Hecke operators UAτ of
eigenvalue ατ such that,

nAτ ` vpατ q ă inf
τ
pkτ,pτ ` λτ,qτ q,

for each τ P T ` verifying Aτ ‰ 0. Then f is classical.

Proof. — This is almost exactly Bijakowski’s Theorem [Bij16, Theorem 4.2], except that his
normalisation for the Hecke operators is slightly different (see loc. cit. section 2.3). I claim
that still with our stronger hypothesis the classicity remains true. The reason is that in
Proposition 3.9 and 3.15 of [Bij16] we can strengthen bound on the norm of the morphism

ωκA{L ÝÑ ωκA.

This can be done for each τ 1 P T , and remark that ωκτ 1A,τ 1 “ ω
κ0
τ 1

A,τ 1 b ω
kτ 1,p

τ 1

A,τ 1 with

κ0
τ 1 “ pkτ 1,1 ´ kτ 1,pτ 1 , . . . , kτ 1,pτ 1´1 ´ kτ 1,pτ 1 , 0q and kτ 1,pτ 1 “ pκτ 1,pτ 1 , . . . , κτ 1,pτ 1 q.

By loc. cit. we have a bound on the morphism on ω
kτ 1,p

τ 1

A,τ 1 related to the degrees of L, so
let’s give a bound (which will be independent of the degree) for the other part and we even
assume that we have any κ “ pk1, . . . , kpq (we don’t need the last entry of κ to be zero).
Denote i “ pτ and τ 1 such that p “τ 1ą pτ , and denote pA, λ, ι, η,H¨q as in loc. cit. an
OK-point of X , and L0 Ă Grπs (in case AL) such that Hi ‘ L0 “ Grπs. Then L0 is of
τ 1-degree bigger than p1τ ´ pτ . But looking at

ωG{L0,τ 1
M
ÝÑ ωG,τ 1 ,

which is a resolution of ωL0,τ 1 we have that choosing carefully a basis of both term we can
assume that M is given by a p “ p1τ -square matrix

¨

˚

˝

a1

. . .
ap

˛

‹

‚
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and vpa1q ` ¨ ¨ ¨ ` vpapq “ degτ 1pL0q ě p´ i, but vpaiq ď 1 (as L0 Ă Grπs). But ωκτ is a
submodule of

Symk1´k2 ωτ b Symk2´k3p

2
ľ

ωτ q b ¨ ¨ ¨ b Symkp´1´kpp

p´1
ľ

ωτ q b detkpωτ ,

thus it is enough to prove the result for this vector bundle. But on each term, we have for
r ą i “ pτ , for each i1 ă i2 ă ¨ ¨ ¨ ă ir ,

vpai1 . . . air q ě r ´ i.

Indeed otherwise reduce to ij “ j, then as vpakq ď 1, vpa1 . . . apq “ vpa1 . . . arq `
vpar`1q ` ¨ ¨ ¨ ` vpapq ă r ´ i` p´ r “ p´ i, which is absurd. Thus the norm induced
by ωG{L0

ÝÑ ωG is less than

p´
řp´1
rąi pkr´kr`1qpr´iq´kppp´iq “ p´ki`1´ki`2´¨¨¨´kp .

This is completely analogous for GD with LK0 . In particular using this on ω
κ0
τ 1

A,τ 1 we get
that the valuation of the non normalized pU0

i q
bad on weight κ is bigger than

ÿ

τ 1|pτ 1ąi

pkτ 1,i`1 ´ kτ 1,pτ 1 q ` ¨ ¨ ¨ ` pkτ 1,pτ 1´1 ´ kτ 1,pτ 1 q `Ni ´ ni ´B,

using the notations of [Bij16, Proposition3.9], but remark that
ÿ

τ 1|pτ 1ąi

pkτ 1,i`1´kτ 1,pτ 1 q` ¨ ¨ ¨`pkτ 1,pτ 1´1´kτ 1,pτ 1 q`Ni “
ÿ

τ 1|pτ 1ąi

kτ 1,i`1`¨ ¨ ¨`kτ 1,pτ 1 ,

which is exactly our normalization of Ui. Thus we have

||α´1
i U badi || ď pvpαiq`ni´p1´α´2fε infσPS2

pkσ`λσq,

with our normalisation for Ui. This is identical in case (AU), and the rest of [Bij16] is
identical with this modification.

9. Projectiveness of the modules of overconvergent forms

Recall that we work over X tor , our Shimura variety with Iwahori level at p, and as
explained in section 6.3 we have defined for all n and w Psn ´ 1, n ´ ε0,τ r (where ε0

was small enough), a sheaf ωκ:w for all w-analytic κ P W , and a universal one ωκ
univ

:
w ,

both defined on sufficiently small strict neighborhoods of X torp0q “ X torpε “ 0q, the
µ-ordinary canonical locus. We have two families of strict neighborhoods of this locus,
each having their advantages. In this section, we prove that essentially we have all the
advantages (action and compactness of U “ Up “

ś

iě1 Ui, the operator of section
7, and vanishing of higher cohomology) on the finite slope part on both kind of strict
neighborhoods. In this section, we assume that on the strict neighborhoods we consider
we have the sheaves ωκ

univ
:

w , which means concretely that ε and v are small enough
(smaller than a constant which depends on w). Let U ĂWpwq ĂW an open affinoïd such
that the universal character κU is w-analytic.
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Proposition 9.1. — Let w ď w1 and ε ě ε1. Then the restriction maps,

Ccusppε, w, κU q ÝÑ Ccusppε
1, w1, κU q,

are isomorphisms on the finite slope part for U “
ś

i Ui. In particular, the finite slope part for
U of Ccusppv, w, κU q and Ccusppε, w, κU q are the same, and thus are their cohomology groups.

As explained in section 7, it is not clear that Ccusppv, w, κU q or any of its cohomology
group is preserved by U . But by proposition 7.4, there exists N ą 0 an integer (which
depends on v à priori) such that UN preserves Ccusppv, w, κU q. We can see that when U
acts on a moduleM , the finite slope part for U of UN are the same (see for example proof
of proposition 9.3). We thus define the finite slope part of Ccusppv, w, κU q for U as the
one for UN . It is then a consequence of the previous equality that the finite slope part of
Ccusppv, w, κU q is actually stable by U .

Proof. — Indeed, it is enough to do it for ε1 given by proposition 7.4, w1 “ w ´ 1. We
have the factorisation,

HipCcusppε
1, w1, κU qq

rU
ÝÑ HipCcusppε, w, κU qq

res
ÝÑ HipCcusppε

1, w1, κU qq

Now for a finite slope section f P HipCcusppε
1, w1, κU qq, by definition there exists

a non zero polynomial P with P p0q “ 0 and P pUqf “ f . We can extend f to
HipCcusppε, w, κU qq by P prUqf . In particular, we can find for all v, an ε and ε1 ď ε such
that,

X torpε1q Ă X torpvq Ă X torpεq,

and the composed restriction map,

Cpε, w, κU q ÝÑ Cpv, w, κU q ÝÑ Cpε1, w, κU q,

is an isomorphism on the finite slope part, in particular, Cpv, w, κU qfs “ Cpε, w, κU q
fs

and thus these spaces are stable by U .

In particular, we get

Proposition 9.2. — Ccusppv, w, κU q has cohomology concentrated in degree zero, and the finite
slope part of the cohomology of Ccusppε, w, κU q is concentrated in degree zero.

Proof. — The first part is appendix Theorem A.6. Fix i, then we have restriction maps

HipCcusppε, w, κU qq ÝÑ HipCcusppv, w, κU qq ÝÑ HipCcusppε
1, w, κU qq,

(for well chosen ε, ε1, v) whose composite is an isomorphism on finite slope parts, and the
middle module vanishes for i ą 0.

According to [Urb11] section 2.3.10, we can form the alternated Fredholm determinant,

detp1´XU |Cpε, w, κU qq.

But, because of the results of the previous section, this alternated determinant should
actually only be the one in degree 0. Moreover, we will be able to restrict (locally) to the
classical construction on an eigenvariety as in [Col97b, Buz07, AIP15].
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For this, fix ε, v, w and U accordingly. By Proposition 6.19, recall that Ccusppε, w, κU q
and Ccusppv, w, κU q are perfect complexes (in the sense of Urban [Urb11]), and the lat-
ter one can be represented by the projective (in the sense of Buzzard [Buz07] or [Urb11])

module in degree 0 H0pX torpvq ˆ U , ωκ
univ:
U
w p´Dqq. The compact operator U acts on

Ccusppε, w, κU q, but not a priori on Ccusppv, w, κU q, but by Proposition 5.17 and Proposi-
tion 7.4, there exists ε1 ă ε and an integer N , which we fix, such that we have inclusions,

X torpεq Ă X torpvq Ă X torpε1q,

and UN pX torpεqq Ă X torpε1q. In particular UN pX torpvqq Ă X torpε1q Ă X torpvq. Thus,
UN is an operator on both Ccusppε, w, κU q and Ccusppv, w, κU q. We now need to ex-
plain how to construct the Eigenvariety. First, we have three Fredholm series over OU
FU,ε and FUN ,ε of U and UN acting on Ccusppε, w, κU q, and FUN ,v of UN acting on

Ccusppv, w, κU q “ H0pX torpvq ˆ U , ωκ
univ:
U
w p´Dqq.

First, we need, as in the classical construction, to do things on a specific cover, so
choose a slope covering covering for U and FU,ε, pV, hq in the sense of definition 2.3.1.
of [JN19] (this exist, see [JN19] Theorem 2.3.2 for example). Over pV, hq, we can thus
decompose the Fredholm series,

FU,ε “ GS,

where G P OV rT s is a slope ď h polynomial and S P 1 ` TOV T is an entire series of
slopes ą h. Accordingly, by [Col97b] Theorem A4.3/5 (or [JN19] Theorem 2.2.2), we have
slope decompositions for U of complexes,

Ccusppε, w, κU q “ Ccusppε, w, κU qU,ďh ‘ Ccusppε, w, κU qU,ąh.

Lemma 9.3. — This decomposition is a slopeNh decomposition for UN acting on this module,
and it induces a slope Nh factorisation of

FUN ,ε “ G1S1.

Proof. — We can work on a single module, say M and denote the associated decomposi-
tions associated to the slope decomposition of FU,ε “ GS,

M “MU,ďh ‘MU,ąh.

As if QpT q is a slope ą Nh polynomial, the polynomial QpTN q is of slope ą h, we get
that UN is invertible on MU,ąh. Now let

P “ tm PM | DQ of slopes ď Nh, such that Q˚pUN qm “ 0u.

This is clearly a submodule of M , and has if QpT q has slopes ď Nh, QpTN q has slopes
ď h, we have P ĂMU,ďh. We claim that P “MU,ďh. Denote the OV -module

R “MU,ďh{P.

Fix x a point of V , and let v P pMU,ďhqx “ pMxqU,ďh (which is easily seen to be true,
or see e.g. [JN19] Theorem 2.2.13), thus if we denote Npvq the sub-kpxq-vector space
generated by v and its images by U and its powers, Npvq is finite dimensional (say of
dimension r). Denote µU,v and χU,v the minimal and characteristic polynomials of U on
Npvq. As there exists Q of slopes ď h such that Q˚pUq kills U , µ˚U,v , and thus χ˚U,v have
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ď h slopes. Up to extending scalars, there is a basis of Npvq such that the matrix of U on
Npvq is given by

¨

˚

˚

˚

˝

λ1 ‹

λ2

. . .
0 λr

˛

‹

‹

‹

‚

,

and we can thus calculate characteristic polynomial of UN : it is of slope ď Nh. By the
theorem of Cayley-Hamilton v P P . Thus Rpbkpxq is zero, and by Nakayama, R “ 0.
In particular we have that MU,ďh ‘MU,ąh is a slope Nh decomposition for UN , which
is functorial with respect to localisations Spmpkpxqq ÝÑ V as it comes from the slope
decomposition of FU,h, thus by [JN19] Theorem 2.2.13 it induces a slopeNh decomposition

FUN ,ε “ G1S1.

Lemma 9.4. — The restriction map

res : Ccusppε, w, κU q ÝÑ Ccusppv, w, κU q,

induces an equality

FUN ,ε “ FUN ,v.

In particular, over pV, hq we have a decomposition

Ccusppv, w, κU q “ Ccusppv, w, κU qUN ,ďNh ‘ Ccusppv, w, κU qqU,ąNh,

such that, res induces an isomorphism over V ,

Ccusppε, w, κU qU,ďh “ Ccusppv, w, κU qUN ,ďNh.

Proof. — The first part is because we have a diagram

Ccusppεq Ccusppvq

Ccusppεq Ccusppvq

res

res

UN UN

UNUN

Where the shortened notations speak for themselves, and thus UN : Ccusppvq ÝÑ
Ccusppεq is a link in the sense of [Buz07]. Thus the two power series are equal. The
rest follows by lemma 9.3

In particular, for each pw, εq, for w big enough and ε small enough such that for all
τ , w Psn ´ 1, n ´ ετ r (which determines a unique integer n), (v doesn’t play a role and
can always be chosen so that X torpεq Ą X torpvq, which we do here), we can construct an
Eigenvariety for the tuple

pOWpwq, Ccusppε, w, κWpwqq,HN bAppq,
ź

vPSp,iě1

Uv,iq,
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as if Ccusppε, w, κWpwqq were one projective module. Indeed, locally this can be replaced

by πpvq˚ω
κWpwq:
w p´Dq where

πpvq : X torpvq ˆWpwq ÝÑWpwq,
and this OWpwq-module is indeed projective, its finite slope part inherits the action of
U “

ś

π,i Uπ,i, and these constructions glue together. Moreover, we have natural maps
between them when pw, εq, pw1, ε1q satisfies w1 ě w and ε1 ď ε.

This is the main ingredient in all the constructions of Eigenvarieties. In particular, we
get,

Theorem 9.5. — Let p be a prime. Fix Sp a set of primes over p (see section 2) unramified
in D and pKJ , Jq a typep22q outside Sp, K Ă Ker J , and Sp the set of places away from Sp
where K is not maximal. There exists an equidimensional rigid analytic space ESp , together
with a locally finite map,

ESp
w
ÝÑWSp ,

and a Zariski dense subset Z , such that for any κ P WpLq, w´1pκq is in bijection with the
eigensystems for HSp b Appq acting on the space of overconvergent, locally analytic, modular
forms of weight κ, type pKJ , Jq, and finite slope for Appq. Moreover, wpZq consists of classical
weights and z P Z is an Hecke eigensystem for a classical modular form of weight wpzq.

Proof. — The construction is classical as soon as we have the previous datum, see [Col97b]
and [Buz07]. Just remark that cutting in the datum the piece of type pKJ , Jq is possi-
ble as we are in characteristic zero (see [Her19], Proposition 9.13). The equidimension-
ality results follows from the fact that we locally reduce to a single projective module
H0pX pεq, ωκU:w p´DqqUN ,ďh and [Che04] Lemme 6.2.10. The set Z is the set of points of
E which map to a point in W satisfiying the hypotheses of proposition 8.2 and theorem
8.4. This is (Zariski) dense by [Che04] Corollaire 6.4.4. and using that every open of W
contains a point satisfying the previous hypothesis.

Remark 9.6. — We will always consider the space ESp with its reduced structure (see
[Che05] section 3.6). But in turns out that ESp is almost always automatically reduced
with the structure given by H b Appq. For the eigencurve this is [CM98], Proposition
7.4.5., in the quaternionic case see [Che05] Proposition 4.8, and [BC09], section 7.3.6 for
a unitary group, compact at infinity. In the next section, we will prove that in the case of
Up2, 1q this is also true.

10. Some complements for Picard modular forms (especially when p “ 2)

In a previous article (see [Her19]), we constructed the Eigenvariety E for Up2, 1qE{Q
where E is a quadratic imaginary field, under the hypothesis that p was inert (if p splits
see [Bra16]) so that the ordinary locus is empty, but also that p ‰ 2, so that we can
apply the main theorem of [Her16] on the canonical filtration. Theorem 9.5 extends this
construction also for p “ 2, and for E{F a general CM-extension (but we only consider

p22qHere by type we only mean, as in [Her19], a compact open subgroup KJ of GpApf q together with a finite
dimensional representation
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F “ Q in this section). To fix ideas, we set τ, τ (or v, v if p splits) the places above p,
and pτ “ pv “ 2, pτ “ pv “ 1. Classical points on E correspond to classical forms for
pGqUp2, 1q with classical weights given by κ “ pk1 ě k2, k3q P Z3. The corresponding
character in W is given, as explained just before Proposition 6.16, by

px, yq P Oˆ ˆO1 ÞÝÑ τpxqk1τpyqk2στpxqk3 .

Recall that E comes with a map Appq ÝÑ OpEqˆ, and we setp23q

F1 “ UpU
´1
0 , if p is inert

$

&

%

F1 “ U1U
´1
0

F2 “ p´1U2U
´1
1

F3 “ pU3U
´1
2

if p splits,

these are the respective (up to a normalisation factor related to the Hodge-Tate weights)
images of

¨

˝

p
1

p´1

˛

‚,

¨

˝

p
1

1

˛

‚

v

,

¨

˝

1
p

1

˛

‚

v

,

¨

˝

1
1

p

˛

‚

v

,

in the Atkin-Lehner algebra Appq (which we can see in the Iwahori-Hecke algebra), for

some presentation of GpZpq. When we write

¨

˝

p
1

1

˛

‚we really mean

»

–I

¨

˝

1
p´1

p´1

˛

‚I

fi

fl

»

–I

¨

˝

p´1

p´1

p´1

˛

‚I

fi

fl

´1

and not the corresponding double class in the Iwahori Hecke algebra ! Precisely when p
splits, if G “ Arv8s with dimG “ 2, then Uv,i the operator defined in section 7.2 with L
a subgroup of the form Li ‘ L

K
i , and Li Ă Grps complementary to Hi the i-th canonical

subgroup, such that t0u “ H0 Ĺ H1 Ĺ H2 Ĺ H3 “ Grps.

Proposition 10.1. — The space E is reduced. This remains true if we had fixed the second
weight to k2 P Z on the weight space.

Proof. — We will use [Che05] Proposition 3.9, and we only need to check assumption
(SSG) there. Thus, we need to find sufficiently many classical points k P W for which the
module M class

k XM :,ďα
k is semi-simple as an HN bAppq-module. We know already that

the space of cuspidal forms for a group G is semi-simple for the action of HN (spherical
Hecke operators being auto-adjoint). Thus, we need to treat the action of Appq. But the
action on an automorphic form π of Appq determines its refinements. Thus, we only need
to prove that we can assure that these refinements are distincts, leading that the action of
Appq on πIp will be semi-simple (I is an Iwahori subgroup). Let k “ pk1, k2, k3q PW be a
classical weight. Fix α P R, and consider Eďα the eigenvariety constructed with slopes ď α
locally around k. It is locally (on the base) finite over W . As the space H0pX,ωkp´Dqq is
finite dimensional, there is a finite number of classical points f in Eďα mapping to k (and

p23qUp is the compact operator, equal to U1 here, and U0 was denoted Sp in [Her19]
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for varying k these are strongly Zariski-dense in Eďα). But the slopes of Hecke operators
at p are locally constant, thus for each of these points we can find an open Uf (intersecting
every component of Eďα at f ) on which the slope is actually constant. As Eďα is finite
above some affinoid U with x P U ĂW , taking the intersection of the image of Uf by π in
W , we can find an open V Q k in W and for which every classical point k1 P V and every
classical f 1 in the fiber of k1 in Eďα has slopes equal the same as the one of some classical
f in the fiber of k. But the refinements are given (up to twists) in terms of eigenvalues
of Frobenius by (see section 7.2 and see also [Her19] section 10.6 but normalisations are
slightly different)

pp´pk1`k3qF1, 1, p
k1`k3F´1

1 q if p is inert,

with F1 “ UpS
´1
p P OpEqˆ and

pp´k1F1, p
1´k2F2, p

´1´k3F3q if p splits,

where Fi P OpEqˆare defined above. In particular Uv,1 corresponds up to normalisation
by p´k2 to the double class

¨

˝

1
p´1

p´1

˛

‚

v

,

¨

˝

p´1

1
1

˛

‚

v

P GUp2, 1qpQpq Ă GL3pEvq ˆGL3pEvq.

The normalisation by the weight in both cases arise because of definition of f̃˚ in equation
(4). In particular, as the slopes of Fi are constant on V Q k, for any k1 P V with
sufficiently regular weights, the three Frobenius eigenvalues are distincts, thus as are the
possible refinements. In particular for those k1 (which are Zariski dense in W ) the action
of H b Appq is semi-simple on classical forms in M class

k1 . The same proof works if k2 is
fixed.

Remark 10.2. — 1. In particular, by [Che05] this proves that for a classical k2 P Z,
E 1 given by the full eigenvariety E , base changed over

WOˆ ãÑW, pk1, k3q ÞÑ pk1, k2, k3q,

and the surface constructed as in the previous section, over WOˆ with a fixed value
for k2 coincide and are reduced.

2. Obviously, the same result where we would suppose k1 “ k3 would not be true
anymore as it could be that there isn’t enough classical semi-simple points.

In [Her19] (Theorem 1.3), we proved the following theorem,

Theorem 10.3. — Let E{Q be a quadratic extension, and

χ : AˆE{E
ˆ ÝÑ Cˆ,

an algebraic Hecke character. We suppose χ polarized (i.e. χK :“ pχ ˝ cq´1 “ χ|.|´1 where
c is the complex conjugation on E). Let p be a prime such that p is unramified in E and
p ffl Condpχq, and p ‰ 2 if p is inert in E. Let

χp : GE ÝÑ Qp
ˆ
,
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be its p-adic realisation. Then, if ords“0 Lpχ, sq is even and non-zero, the Bloch-Kato Selmer
group H1

f pE,χpq is non-zero.

This result (actually a more general version of it) was almost entirely already proved by
Rubin ([Rub91]) at least for CM elliptic curves when p ‰ 2 (and p ‰ 3 for E “ Qpi

?
3q). In

particular as 2 is inert in Qpi
?

3q (and 3 is ramified in this case), it does not prove anything
new for inert primes (only for the split ones above 2 in other quadratic extensions).

Fortunately, with Theorem 9.5, we will be able to remove the hypothesis p ‰ 2 if inert.
Moreover, we can also remove the hypothesis p ffl Condpχq (as long as p stays unramified
in E).

To do this we focus from now on to the case of Up2, 1qE{Q, and let

χ : AˆE{E
ˆ ÝÑ Cˆ,

be an algebraic Hecke character, that we assume to be polarised. We often identify it with
its p-adic realisation and let χ :“ χc. Denote χ8pzq “ τpzqaτpzqb, then b “ 1 ´ a P Z.
Moreover (up to change χ by χc) we assume a ě 1.

10.1. A remark on p “ 2. — To construct an integral model for the Picard modular
surface, it is needed to choose a lattice for the group pGqUp2, 1q, as it appeared in D in
section 3. We do as we did in [Her19] and choose the lattice L “ O3

E Ă E3, stable for the
form of matrix (used to define pGqUp2, 1q) in the canonical basis given by,

ψ “

¨

˝

1
1

1

˛

‚.

There is another natural choice, which would be the same lattice but the form

ψ1 “

¨

˝

1
1
´1

˛

‚.

These two forms are isomorphic over Zr1{2s but not modulo 2. Moreover, see [Bel06] Sec-
tion 3.1, any abelian scheme of type (2,1) A{S will have a polarized Tate module pT`pAq, qq,
together with the Weil pairing induced by the polarisation isomorphic either to pO3, Jq or
pO3, J 1q. Any of these form would give an integral model for the Picard modular surface,
not isomorphic modulo 2, and we choose ψ, the first one, to define Up2, 1qE{Q,ψ over Z
as in section 3. Apart to construct the Eigenvariety, this choice (for which the construction
of the Eigenvariety can be checked to be independant afterwards, even if we don’t need
this result) will not appear in this section as we work in characteristic zero.

10.2. Removing the hypothesis p ffl Condpχq. — Recall that in [Her19] Section 10,
following [BC04], we introduced a type pKJ , Jq for J “ Condpχq. Fix an auxiliary level
Kp Ă pKer Jqp, and consider X0pp

nqtor{SpmpKq the (rigid and compactified) Picard
variety of Iwahori level pn, over some p-adic field K and fix τ : E ÝÑ K . It is the
analytic space of X0pp

nqtor which away from the boundary its S-points parametrizes

pA, ι, λ, η,H1 Ă H2q,

where
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– A ÝÑ S is an abelian scheme of genus 3
– ι : OE ãÑ EndSpAq is a CM-structure of signature (2,1), i.e.

ωA “ ωA,τ ‘ ωA,τ , ωA,σ “ tw P ωA|ιpxqw “ τpxqw,

with ωA,τ and ωA,τ are respectivelly locally free of rank 2 and 1, and where τ :
E ÝÑ S is the canonical morphism and τ its conjugate.

– λ : A ÝÑ tA is a polarisation for which the Rosati involution on ιpxq coincides with
ιpxq

– η is a level-Kp-structure,
– H1 Ă H2 Ă Arpns is a filtration by cyclic OE b Zp{pnZp-modules such that HK2 “
H1.

This is exactly the rigid space introduced in section 5.
The subgroups H1, H2 extends to X0pp

nqtor , and we can also extend the polarisation
of H2{H1 to the boundary. We will distinguish the cases p inert (AU) and p split (AL) in
E.

In case (AL), i.e. p “ vv is split, then Arpns » G` ˆ G´ (with G´ “ pG`qD and
λ exchange the two factors), and we can suppose that G “ G`, say, is of dimension 2
and height p3n. Under this decomposition, Hi “ H`i ˆ H´i and H`i is a cyclic rank
pin-subgroup of G` and H´1 “ pH

`
2 q
K “ pG`{H`2 q

D Ă G´. In this case

X`0 ppnq “ IsompH`1 ,Z{p
nZq ˆ IsompH`2 {H

`
1 ,Z{p

nZq ˆ IsompG`{H`2 ,Z{p
nZq.

It is a Tn “ ppZ{pnZqˆq3-etale torsor. Remark that H`2 is the canonical subgroup in
this case. In case (AL) we can also introduce a second space. Using the previous notation,
denote by X tor

Pn
the analytic space associated to a toroïdal compactification of the following

moduli space Xtor
Pn

over SpecpKq. A S-point of Xtor
Pn

is, away from the boundary, a tuple
pA, ι, λ, η,Hp

1 , H
p
2 , Hq such that pA, ι, λ, η,Hp

1 , H
p
2 q is a S-point of X0ppq (Iwahori level,

i.e. Hp
1 Ă Hp

2 Ă G`rps) together with a subgroup H Ă Grpns locally isomorphic to
pZ{pnZq2 and Hrps “ Hp

2 . It is the Shimura variety of level Pn X Ippq where Ippq is the
Iwahori subgroup of GL3pZvq and Pn is the subgroup of matrices of the form

¨

˝

‹ ‹ ‹

‹ ‹ ‹

‹

˛

‚ pmod pnq.

In particular we have a map X0pp
nq ÝÑ XPn .

In case (AU), i.e. p inert, denote

X`0 ppnq “ IsompH1,O{pnOq ˆ IsompolpH2{H1,O{pnOq.

This is a Tn “ pO{pnOqˆ ˆ pO{pnOq1-etale torsor.
In both cases, if π : X`0 ppnqtor ÝÑ X0pp

nqtor and ϕ : Tn ÝÑ Kˆ is a character, we
can consider OX0ppnqtor pϕq to be the subsheaf of π˚OX`0 ppnqtor

of sections which vary like

ϕ. This is an invertible sheaf on X0pp
nqtor .

Definition 10.4. — For all classical weight κ, we can consider the sheaf,

ωκpϕq :“ ωκ bOX0pp
nqtor

OX0ppnqtor pϕq,
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which is a locally free sheaf on X0pp
nqtor , whose global sections are (classical) Picard

modular form of weight κ and nebentypus ϕ. Similarly,

H0pX0pp
nqtor, ωκpϕqp´Dqq,

is the set of cuspidal ones.

Proposition 10.5. — There is a natural injection

ωκpϕq ãÑ ωκϕ:w ,

for all w Psn´ 1, n´ ετ r and κϕ the product of the character κ with the character

T pZpq ÝÑ Tn
ϕ
ÝÑ Kˆ,

which we still denote ϕ.

Proof. — Indeed, a section f of ωκpϕq is a law which associate to pA, x,wq where A P

X torpKq, x is a level X`0 pp
nq-structure and w an isomorphism

StOE bOK » ωA,

an element fpA, x,wq P A1pKq, which moreover satisfies,

fpA, tx, zwq “ ϕptqκ_pzqfpA, x,wq.

In particular, this defines by restriction a section g of IW0,`
w which satisfies, for the

induced action of T pZpq on IW0,`
w (using ι !) which sends pA, x,wq to pA, tx, ιptqwq,

such that gptiq “ ϕptqκptqgpiq. Thus g is a section of ωκϕ:.

Over X tor
Pn

we also have a IGL2
ppqpZ{pnZq ˆ pZ{pnZqˆ-torsor (where IGL2

ppq is the
Iwahori subgroup of GL2pZpq), given by

IsommodppH, pZ{pnZq2q ˆ IsompG`{H,Z{pnZq,

where modp means that an isomorphism φ induces an isomorphism of H1
p inside

pn´1Z{pnZe1. Thus, for ϕ1 a character of IGL2
ppqpZ{pnZq ˆ pZ{pnZqˆ, i.e. of the form

pϕ1 ˝ det, ϕ3q, we have an invertible sheaf Opϕ1q on X tor
Pn

and thus a sheaf ωκpϕ1q. The
sheaf ωκpϕq on X0pp

nqtor descend to X tor
Pn

if and only if ϕ “ pϕ1, ϕ1, ϕ3q and coincides
with ωκpϕ1q with ϕ1 “ pϕ1 ˝ det, ϕ3q.

Proposition 10.6. — In the split case, if v ă 1
2pn´1 , the canonical subgroup induces an

isomorphism,
X0ppq

torpvq ÝÑ X tor
Pn pvq.

Here we really mean the µ-canonical locus (and not the full µ-ordinary locus).

Remark 10.7. — If p ą 2, is inert, the results of [Her16] give, for v ă 1
4pn´1 , an isomor-

phism X pvq ÝÑ X0pp
nqpvq.

Recall the following result of Rogawski (see [BC09] section 6.9.6 and [Bel10] section
2.7). Fix first a Hecke character µ as in [BC09] Lemma 6.9.2(iii).
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Theorem 10.8 (Rogawski). — Suppose ords“0 Lpχ, sq is even and non zero. Then there exists
a representation πn, automorphic for Up2, 1q and cuspidal such that for every prime x split in
E,

Lpπnx q “ µ|.|´
1
2 pLpχ‘ 1‘ |.|q.

Remark 10.9. — This representation πn is slightly different from the one of [BC04] or
[Her19], it is a twist of the latter by Lpχqµ|.|´

1
2 .

Recall that χ : AˆE{Eˆ ÝÑ Cˆ is a Hecke character, to which is associated its p-adic
representation

χ “ χp : GE ÝÑ Qp
ˆ
.

We hope that the context is sufficiently clear to know which we refer to when writing χ.
To avoid confusion, we denote χsmp the (smooth) component at p of the adelic χ.

Proposition 10.10. — Suppose ords“0 Lpχ, sq is even and non zero. Denote n0 “

vppCondpχqq. Denote by ϕ if p is split the character p1, 1, pχsmp q´1q and if p is inert
the character ppχsmp q´1, pχsmp q´1q of pO{pnOqˆ ˆ pO{pnOq1. Denote also κ the classical
weight corresponding to

p1, 2´ a, 1q P Z3
dom.

Then the Hecke eigensystem (away from pCondpχq) of πn appears in H0pX pεq, ωκϕ:w p´Dqq
for all n ě n0 and w Psn´ 1, n´ εr for ε small enough.

Proof. — Indeed we checked that πn contributes to the coherent first cohomology group
in [Her19] Proposition D.2. More precisely we checked that its restriction to SUp2, 1q
appears with K-type corresponding to κ restricted to SUp2, 1q. As πn is a twist of the
representation denoted πnpχq in [Her19] by χµ|.|´1{2, which is algebraic, we can calculate
its algebraic weight κ and check that κ “ p1, 2´ a, 1qp24q. Moreover Bellaiche-Chenevier
([BC04] Proposition 4.2) proved that πnpχqbχ´1

0 was of a certain type pKJ , Jq at ramified
primes for χ. As χ “ χ0|.|

1
2 “ χ´1

0 |.|
1
2 and both |.| and µ are unramified at p, we deduce

that the twist πn is of the same type as πnpχq b χ´1
0 (which is obviously trivial if χ is

unramified at p). Thus πn is of nebentype ϕ, and we deduce the previous result from
proposition 10.5.

We need to take care of the action at p of the Iwahori algebra Appq. This is well known
in the case of GL2 (see [Col97a]). Denote the higher-Iwahori subgroup

I`n “

¨

˝

1` pnO ‹ ‹

pnO 1` pnO ‹

pnO pnO 1` pnO

˛

‚XGpQpq,

where GpQpq “ GL3pQpq if p is split, and Up2, 1qpQpq “ Up3qpQpq otherwise. We could
do everything for GUp2, 1q or GL3ˆGL1 (if p splits) but it doesn’t change anything for

p24qWe could also argue directly as in [Her19] relating κ to the Hodge-Tate weights of ρπn on the Eigenvariety
E . Remark that for the τ -Hodge-Tate weight of πn there is a twist by 1´ a compared to those of πnpχq. This is
compatible with the twist by pa´ 1, a´ 1, 1´ aq on the coherent weight κ given in formula before Proposition
10.20
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us. I`n has a natural Iwahori decomposition I`n “ Nn ˆ T`n ˆ Nn (and Nn “ N ), and
thus if we denote Σ` the elements of the form

¨

˝

pa1

pa2

pa3

˛

‚ with a1 ě a2 ě a3,

if p splits, and
¨

˝

pa1

pa2

p´a1

˛

‚ with a1 ě a2,

if p is inert. Denote by Σ the group generated by Σ` and their inverse.

Proposition 10.11. — Denote by A`,0n ppq the sub-algebra of HpGpQpq{{I`n q generated by the
double class characteristic functions

1I`n aI`n , a P Σ`.

A`,0n ppq is commutative. Denote by A`n ppq the algebra generated over Qp by A`,0n ppq and the
inverse of the elements 1I`n aI`n . It is canonically isomorphic to Σ and thus to Appq.

Proof. — A`n ppq is commutative by [Cas95] Lemma 4.1.5.

Remark 10.12. — The canonical isomorphism Σ ÝÑ A`n ppq sends a P Σ` to the corre-
sponding double class, but this is not true for all a P Σ, just like the case of Appq. The
double class are not invertible in general (if n ą 1 at least, see [Ogg69] Lemma 2 for (new)
modular forms, but this is true if n “ 1, [Vig16]).

There is thus an Hecke operator acting on X`0 ppnq corresponding to the double class
1I`n aI`n where in the inert case

a “

¨

˝

p
1

p´1

˛

‚

and in the split case,

a “

¨

˝

p
1

1

˛

‚ or a “

¨

˝

p
p

1

˛

‚.

We call respectively Fnp,1, F
n
v,1, F

n
v,1F

n
v,2 the corresponding operators.These operators can

be defined on the moduli problem X`0 ppnqtor and commutes with their counterparts on
X0ppq

tor “: X tor (see for example [PS17] section 8.2), in the sense that for one of these
operators, say g, if we denote the correspondence C and Cn “ C ˆX X`0 ppnq, with πng
and πg the universal isogeny on Cn and C , we thus have commutatives diagrams,
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Cn

X`0 ppnq X`0 ppnq

C

X X

p2

p1

π

p1

p2

π π

and a commutative diagram,

IW`

X`0 ppnq
ˆ Cn IW`

X`0 ppnq
ˆ Cn

IW`
X ˆ C IW`

X ˆ C

πng

πg

p p

The normalisation of the maps πng and πg can be done the same way, and we thus
deduce that the operators Up,‹ in level X and Unp,‹ in level X`0 ppnq commutes with the
pullback by π (i.e. Unp,‹pπ

˚fq “ π˚pUp,‹fq). Thus, these operators defined on ωκ:w for any
κ P W w-analytic (with w Psn ´ 1, n ´ ε0r) are the same once we identify (invariant by
Tn) sections on some small neighborhood X`0 ppnqpvq of ωκ

0
:

w p´κ|Tnq with sections of ωκ:w
on some small neighborhood X pvq.

In particular to understand the action of Appq on the forms corresponding to πn which
appears in H0pX torpvq, ωκϕ:w q for v small enough, we need to understand the action of
A`n ppq on πnp .

Definition 10.13. — If π is a representation of GpQpq, denote by

pπI
`
n qfs :“ 1I`n aI`n pπ

I`n q,

where a is the diagonal element corresponding to Fnp,1 if p is inert, and pFnv,1q
2Fnv,2 if p

is split (in other words a is the double class corresponding to the compact operator Up in
the text, up to twits by a central element). This coincides with the space V K0

A´
of [Cas95],

Proposition 4.1.6.

By [Cas95] Lemma 4.1.7, this space pπI
`
n qfs is endowed with an action of A`n ppq.

Proposition 10.14. — Let π be a representation ofGpQpq. Write I`n “ NnT
`
n Nn its Iwahori

decomposition. Then, as Σ “ A`n ppq-module,

pπI
`
n qfs “ pπNnq

T`n b δ´1
B ,
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Proof. — As in [BC09] Proposition 6.4.3, this is due to [Cas95] Proposition 4.1.4. using
the Iwahori decomposition.

Remark 10.15. — We could also extends a bit the previous isomorphism by adding the
action of (the split part of) T {T`n as in [Cas95].

Moreover, as πn is a quotient of an induction (or the induction from a parabolic sub-
group in the split case), we will use the same geometric lemma as [BC09] Proposition
6.4.4. In particular we only need to calculate the admissible refinement using this lemma,
and as this does not assume χ to be unramified, we find exactly the same (automorphic)
refinements as if p ffl Condpχq in pppπnp q

I`n qfsqss.

Definition 10.16. — Let σ be the refinement corresponding to the one when p ffl Condpχq
used in [Her19] when p is inert (in which case it is unique, see [Her19] Proposition 10.7), and
to pµ|.|´1{2qp1, χppq, p´1q, see [BC09] Lemma 8.2.1 when p is split p25q. More precisely, it
corresponds to

pµ|.|´1{2qp1, χppq, p´1q :
T {T`n ÝÑ Cˆ
pa, b, cq ÞÝÑ pµ|.|´1{2qpabcqχpcq|b|

in the case where p splits, and to

pµ|.|´1{2qp1, χppq, p´1q :
T {T`n ÝÑ Cˆ
pa, eq ÞÝÑ pµ|.|´1{2qpaa´1eqχpeq|a|

when p is inert. Recall that T » pOr1{psqˆ ˆ pOr1{psq1 in this case.

10.3. Refinements of De Rham representations. — In this subsection, we slightly
generalise the well-known notion of refinements (see e.g. [BC09] section 2.4) to non-
necessarily crystalline representations. This is especially useful for us when p|Condpχq.

Definition 10.17. — Let V a n-dimensional, continuous L-representation of GK , where
K is a p-adic field. Assume that V is De Rham, and denote WDpV q the Weil-Deligne
representation associated to V (see [Fon94, BGGT14]). Assume that L is big enough so
that all eigenvalues of the Frobenius ϕ onWDpV q are defined on L. A Refinement of V is
the datum pFiqi“1,...,n of a filtration

0 Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fn “WDpV q,

by Weil-Deligne representations.
Just as in the crystalline case, the previous definition more generally applies to a general

De Rham pϕ,Γq-module D, to WDpDq (see [Ber08]).

Remark 10.18. — Obviously when V is crystalline, this definition coïncides with the one
of [BC09].

p25qThis refinement is not ordinary, in the sense that the normalised Hecke operators Fi won’t have slope zero
at the corresponding point. In the split case, the other two accessible refinements are also non-ordinary (one
of which being even anti-ordinary in the sense of [BC04], but unfortunately we can’t check crystallinity (i.e.
Theorem B.5) at those refinements.
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Let D be a De Rham pϕ,Γq-module. Let pFiq be a refinement of D, i.e. a filtration of
WDpDq. Then we can associate to pFiq a filtration of D by

FilipDq “ pRr1{tsFiq XD.
This filtration is saturated, and thus defines a triangulation of D (see [BC09], section 2.3).

Proposition 10.19. — The previous map pFiq ÞÑ pFiliDq induces a bijection between the set
of refinements of D and the set of triangulations of D.

Proof. — This is [Ber08] Théorème A and Corollaire III.2.5.

In the particular case of an automorphic representation π of our unitary group G,
with associated Galois representation ρπ (for example ρ “ 1 ‘ χcp ‘ ε associated to the
automorphic representation πn of the previous subsection), we have distinguished – we
call them accessible, (galois) refinements for ρπ,v which correspond to the (automorphic)
refinements for the action ofA`n ppq on πnv (for v|p). Such refinements exist only if pπvqI

`
n ‰

0 for some n. The association is explained in [BC09] (when G is split at v) for unramified
representations, and for Up3qpQpq (when v is inert) in [Her19] section 10.5. This can be
generalized for non-necessarily unramified πv , verbatim when there is no monodromy. For
example, to the refinement σ of definition 10.16, is associated the following refinement of
ρ “ 1‘ χcp ‘ ε :

(5)

"

0 Ĺ LLp1q Ĺ LLp1q ‘ LLpχcpq ĹWDpρGpq when p is inert.
0 Ĺ LLpχcvq Ĺ LLp1q ‘ LLpχcvq ĹWDpρGv q when p is split.

Here 1 is the trivial representation of Eˆv , and LL denotes the Local-Langlands corre-
spondence.

10.4. Constructing the extension. — We thus take a prime p unramified in E, which
can be 2 or not, and which can divide Condpχq or not. Let E be the eigenvariety of level
N “ Condpχqp (the prime-to-p-part of the conductor) associated to pGqUp2, 1qE and p
by Theorem 9.5. It is equipped with a map w : E ÝÑ W , and there is a point y P E
which coincides with the representation πn together with its refinement σ by definition
10.16 and proposition 10.10. For all Z Ă E , we have associated to the automorphic form
corresponding to z a Galois representation

ρz : GE ÝÑ GL3pQpq,
which is moreover polarised in the following way :

ρKz » ρzp´1q :“ ρzε
´1,

where ε denote the cyclotomic character. Let us be more precise : we will change a bit the
convention used in [Her19] to stick with the one of [BC09] (this will make things easier
to treat the case p|Condpχq). Denote for an automorphic representation π of Up2, 1q of
regular weight ρ1π the associated p-adic Galois representation by [BC09] Conjecture 6.8.1,
which is know to exists, see Remark 6.8.3, (vi) of [BC09]. For z P Z associated to a
modular form fz , denote by Π any irreducible constituent of the representation of (the
restriction to) Up2, 1qpAq generated by fz . Then we set

ρz “ ρ1πν,
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where ν is defined in [BC09] Lemma 8.2.3, and is associated by class field theory to
µ´1|.|3{2p26q. In particular it satisfies νK “ νp´3q. Thus ρKz “ ρzp´1q. Moreover for
z P Z of classical (automorphic) weight pk1 ě k2, k3q, the Hodge-Tate weights of ρz are
given byp27q

pp´k1, 1´ k2, k3 ´ 1q, p´k3, k2 ´ 2, k1 ´ 1qq “

"

pHTτ ,HTτ qpρzq if p is inert
pHTv,HTvqpρzq if p splits

Proposition 10.20. — There exists a pseudo character on E ,
T : GE ÝÑ OpEq,

such that for all z P Z , Tz is the trace of ρz . Moreover, TK “ T p´1q.

Proof. — This is [Che04] Proposition 7.1.

We need a particular point on E .

Proposition 10.21. — Suppose ords“0 Lpχ, sq is even and Lpχ, 0q “ 0. There exists a point
y P E corresponding to a (non-tempered) automorphic representation πn. The point y is non-
classical if p|Condpχqp28q but is classical otherwise. Moreover its p-adic weight wpχq is of the
form wpχqalgwpχqsm where wpχqsm is the smooth (finite order) character of Proposition 10.10,
and wpχqalg is the algebraic character

Oˆ ˆO1 ÝÑ Qp
ˆ

px, yq ÞÑ τpxqτpyq2´aστpxq
if p is inert

Z3
p ÝÑ Qp

ˆ

px, y, zq ÞÝÑ xy2´az
if p is split

At the point y, the evaluation Ty is given by the trace of 1‘ ε‘ χc and the refinement is given
by σ of definition 10.16, i.e. it is the refinement (5).

Proof. — This is a translation of Proposition 10.10 with the normalisation of T .

We freely use the notation of [KPX14] concerning ϕ,Γ-modules. Denote δi for i “
1, 2, 3 the character,

δi : Kˆ ÝÑ OpEqˆ,
such that δippq “ Fi

p29q and, in the inert case, recall that we have on W two universal
morphisms,

κ1 : x P Oˆ ÞÝÑ κ1pxq P OpWqˆ, and κ2 : y P O1 ÞÝÑ κ2pyq P OpWqˆ,
such that at classical points κ “ pk1, k2, k3q P Z3, we have

κ1|κpxq “ τpxqk1τpxqk3 and κ2|κpyq “ τpyqk2 .

p26qCareful to the normalisation of the Local Langlands correspondence in [BC09]
p27qWe choose the normalisation of the Hodge-Tate weight such that the cyclotomic character has Hodge-Tate
weight ´1, as in [BC09]
p28qMore precisely, it is non classical without level at p as its system of Hecke eigenvalues doesn’t appear in
H0pX , ωκq, but appears in H0pX`0 ppnq, ωκpϕqq.
p29qThese Fi P OpEqˆ already appeared in proof of proposition 10.1. These are the functions given by a basis
of the Hecke operator in Appq.
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We set
δ1|OˆK

“ pκ1qx
´2
τ ,

δ2|OˆK
: y P OˆK ÞÝÑ κ2py{yqτpyq

´1,

δ3|OˆK
“ pκc1q

´1xτx
´1
τ “ pδc

1|OˆK
q´1x´1

τ x´1
τ .

In particular we have δ3 “ δ1
´1
x. In the split case, we set

δi : Qˆp ÝÑ OpEqˆ,

with δippq “ Fi and as we have universal characters on W ,

κi : Zˆp ÝÑ OpWqˆ,

such that for classical weights pk1, k2, k3q P Z3,

κ1pxq “ xk1 , κ2pxq “ xk2 , κ3pxq “ xk3 ,

We set
δ1|Zˆp “ κ1, δ2|Zˆp “ κ2x

´1, δ3|Zˆp “ xκ´1
3 .

In particular, we can define wti :“ ´wtpδiq P OpWqΣ the opposite of the derivative at
1 of δi (see [KPX14] Definition 6.1.6). In particular E ,Z and the functions δi satisfies the
hypothesis of Corollary 6.3.10 of [KPX14] (excepts possibly the irreducibility condition).

Denote by A “ Oy the rigid analytic local ring of E at y, and K its total fraction
ring. The pseudo character T on E induces one on A, and denote by Itot Ă A its
total reducibility ideal (see [BC09] Proposition 1.5.1, Definition 1.5.2.) In particular for any
J Ą Itot on A{J we can write

T bA{J “ T1 ` Tχ ` Tε.

Proposition 10.22. — The reducibilty locus SpecpA{Itotq is a proper closed sub-scheme of
SpecpAq, i.e. Itot ‰ t0u. More precisely, if p is inert we have that

wtτ pδ1q ´ wtτ pδ3q ” wtτ pδ1qpyq ´ wtτ pδ3qpyq pmod Itotq,

and
wtτ pδ1q ´ wtτ pδ3q ” wtτ pδ1qpyq ´ wtτ pδ3qpyq pmod Itotq,

and similarly (with τ, τ changed by v, v) is p splits.

Proof. — Let I Ą Itot a finite length ideal of Oy0
“ A. We thus have for j “ t1, χ, εu,

Tj : GE,S ÝÑ A{I,

a (continuous) character, such that Tj pmod mAq “ j.
As Tj is a character, by [KPX14] Theorem 6.2.14, there exists a character

δ1j : Kˆ ÝÑ pA{Iqˆ,

such that the ϕ,Γ-module associated to Tj ,DrigpTjq is isomorphic to RA{IpπKqpδ1jq. From
now on we just write this last space Rpδ1jq. We will determine δ1j . Recall that j P t1, χ, εu
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and i P t1, 2, 3u. We choose the bijection between these two spaces, which corresponds to
the refinement 10.16, more precisely,

1 ÞÑ 1
2 ÞÑ χ
3 ÞÑ ε

Thus T2 :“ Tχ and T3 :“ Tε, for example. By Lemma B.3, we have in particular a map

Rpδiq ãÑ DrigpTiq » Rpδ1iq.

To determine δ1i the character of Ti, we still need to know the weight of Ti. We know
by Lemma B.2 that Ti has its Sen operator killed by

3
ź

i“1

pT ´ wtiq P A{IrT s
Σ.

Moreover, at y P E , we have, if p splits,

pwtv1,wtv2,wtv3q “ p´1, a´ 1, 0q and pwtv1,wtv2,wtv3q “ p´1,´a, 0q

and if p is inert,

pwtτ1 ,wtτ2 ,wtτ3q “ p´1, a´ 1, 0q and pwtτ1 ,wtτ2 ,wtτ3q “ p´1,´a, 0q.

Thus, if a ě 2 these weights are distincts at y. Thus we can calculate the Hodge-Tate-Sen
weight of Ti : T1 has weight wt3, Tχ has weight wt2 and Tε has weight wt1. Similarly at
v and v if p splits. If a “ 1, we can’t a priori distinguish the two weights wtv2,wtv3 at v
and wtv1,wtv2 at v (similarly at τ and τ ), but we know that Tε “ T3 has weight wtpδ1q at
v, and that T1 has weight wtpδ3q at v.

Suppose p is split, using Lemma B.3 and Lemma B.4 for Tε, we have (evaluating at y to
have the value of tσ, kσ),

wtvpδ1q ´ wtvpδ3q ´ pwtvpδ1qpyq ´ wtvpδ3qpyqq P I.

Using that δ3 “ δ1
´1
x (or using lemma B.4 for T1 at v), we get the result for v. This is

identical if p is inert.

We also need the following result, which is a corollary of theorem B.5.

Corollary 10.23. — ExtT p1, iq Ă H1
f pE, iq, for i “ χ or ε.

Proof. — Indeed, the theorem B.5 gives that any extension in ExtT p1, iq is crystalline at
all place above p (as the Frobenius eigenvalues of i are different from 1). At v a place
dividing ` ‰ p, if v ffl Condpχq, by hypothesis on the level of E , the dense set of classical
points Z are unramified at v, thus T pIvq “ 1 on E (as E is reduced) and thus ExtT p1, iq
consists of unramified extensions at v.

Now suppose v|Condpχq. If i “ ε, any extension is automatically unramified. Suppose
i “ χ. By choice of the type J outside p on E , we know ([BC04] Proposition 4.2 or
[Her19] proposition 10.21) that for all z P Z , there exists a subgroup I 1 Ă Iv such that
ρzpI

1q “ t1u. Thus, T pI 1q “ 1 and for all x P E , ρxpI 1q “ 1. Thus, TIv is locally constant,
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and the same for ρx|Iv (as it is semi-simple as I 1 acts trivially). Up to extending scalars,
evaluating at ρy , we get

T|Iv “ p1‘ 1‘ χ|Iv q bOU ,

for some neighborhood U of x. But as we have a morphism

M1{IM1 ‘ Ti ÝÑ ρc ÝÑ 0,

we have that ρcpI 1q “ 1, thus ρc is semi-simple, thus ρc|Gv P H
1
f pGv, χq.

We have the following improvement of Theorem 10.3 :

Theorem 10.24. — Let χ be a polarized algebraic Hecke character as in Theorem 10.3. Suppose
that Lpχ, sq vanishes with even (non-zero) order at s “ 0. Let p be unramified in E. Then

H1
f pE,χpq ‰ t0u.

Proof. — Let e1, eχ, eε be the indempotents as in Appendix B, and denote Ai,j , for i, j P
t1, χ, εu the corresponding A-modules. Then as in [BC09] Lemma 8.3.2, we get

Itot “ A1,χAχ,1.

But if ExtT p1, χq “ 0, then Aχ,1 “ Aχ,εAε,1 ([BC09], Theorem 1.5.5). Thus Aχ,1A1,χ “

Aχ,εAε,1A1,χ. But as H1
f pE, εq “ t0u, we get by the same reasoning

Aε,1 “ Aε,χAχ,1.

Thus,
Itot “ Aχ,εAε,χAχ,1A1,χ Ă mAχ,1A1,χ “ mItot.

Thus Itot “ 0, contradicting proposition 10.22.

Appendix A. Cohomology of cuspidal automorphic sheaves

Proposition A.1. — (Lan, [Lan17] Theorem 6.1) Let X1pp
nq˚ the minimal compactification

of X1pp
nq, defined by normalisation of the minimal compactification with our fixed auxiliary

level, as in [Lan16a], Proposition 6.1. There is a proper surjection p : X1pp
nqtor ÝÑ X1pp

nq˚.

Definition A.2. — The (µ-ordinary) Hasse invariant µ Ha descends to X1pp
nq˚ (modulo

p), and we can thus define X1pp
nqµ´full˚pvq to be the normalisation in its generic fiber

of the greatest open in the blow up of pµHa, pvq where this ideal is generated by µ Ha. Its
generic fiber is X1pp

nqµ´full˚pvq, a strict neighborhood of the (full) µ-ordinary locus. De-
note X1pp

nq˚pvq the (union of) connected components which contains a point of maximal
degree, and as X1pp

nqµ´full˚ is normal in its generic fiber, there is an associated open
X1pp

nq˚pvq. We thus have a map,

πpvq : X1pp
nqtorpvq ÝÑ X1pp

nq˚pvq.

For all this section, except the last two results (Corollary A.5, Theorem A.6), we forgot
the notation concerning the level at p, and denote X1pp

nqtorpvq by Xtorpvq, and similarly
for Xpvq,X˚pvq,Xtor,X,X˚. We thus have the previous map,

πpvq : Xtorpvq ÝÑ X˚pvq.

Assume that our fan Σ is smooth and projective. We have the following vanishing result.
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Proposition A.3. — Denote by Dpvq the boundary in Xtorpvq. Then, for all q ą 0,

Rqπpvq˚Op´Dpvqq “ 0.

Proof. — This is essentially Lan’s result (see [Lan17] Proposition 8.6), slightly modified
because of the neighborhood we chose. First, note that we can prove it for Xµ´fullpvqtor

and Xµ´fullpvq˚ and then localise (as the schemes are normal and thus have same con-
nected component as their rigid fiber) to Xtorpvq and X˚pvq. From now on and until the
end of this proof, we denote X?pvq the neighborhood of the full µ-ordinary locus in X?.
By the formal functions theorem we can work on formal completions of geometric points
x P X˚pvq, and we need to prove that HqpXtorpvq^x ,Op´Dpvqqq “ 0 for all q ą 0. Let
us describe the completions at x of Xpvqtor . Let Z be a stratum of X˚ ([Lan16a] Theorem
12.1, it depends on a choice of a cusp datum), and denote Z˚pvq be the base change of
Z to X˚pvq, then Z˚pvq is locally closed in X˚pvq. In [Lan16a, Theorem 10.13] (see also
notations of [Lan16b, Sect. 4], and [Lan17, Theorem 6.1]), local charts for Xtor over X˚

are constructed using normalization of local charts in an auxiliary Shimura datum. They
have the following shape

Ξ

Z C

Ξpσq

i

with i : Ξ ãÑ Ξpσq an affine torus embedding, and if Uσ denote the completion of Ξpσq
along its closed strata, tUσu glue together to a formal scheme X “ XΣ, and pXtorq^Z »
X{Γ with Γ acting on X freely and

(6) X ÝÑ X{Γ » pXtorq^Z

is a local isomorphism. All the maps described before are flat. Denote Zpvq be the
normalisation in its rigid fiber of the open Zpvq0 in the blow-up of the ideal I “ pµ Ha, pvq
in Z where I is generated by µ Ha. It is not a priori equal to Z˚pvq (which is defined by base
change). Let C ÝÑ Z be the proper scheme, normal over O ([Lan16a] Proposition 8.4), but
as it is constructed using normalisation of Caux ÝÑ Zaux for an auxiliary datum, where
Caux ÝÑ Zaux is an abelian scheme torsor over a finite etale formal scheme above Zaux,
thus is smooth, and as normalisation commutes with smooth base change ([Sta18, Tag
03GV]) we have C “ Caux ˆZaux Z, and C ÝÑ Z is smooth again. Then we define Cpvq
as the normalisation in its rigid fiber of Cpvq0, the open in the Blow-up of I “ pµ Ha, pvq
where I is generated by µ Ha. Then, as the Blow-up commutes with flat base change, we
have Cpvq0 “ C ˆZ Zpvq0 and Cpvq0 ÝÑ Zpvq0 is smooth thus again Cpvq “ C ˆZ Zpvq.
Define analogoulsy the local models (see [Lan16b] section 4.) Uσpvq and Xpvq (as the fan
Σ is smooth, normalisation commutes with base change). As all operations commutes, we
have shown that

Xpvq{Γ » pXtorq^Z pvq.

We can describe locally Xtor over X˚ by X (by equation 6, see [Lan16a] Theorem 10.3,
[Lan17] Theorem 6.1 (4)) and also for X torpvq over X ˚pvq, i.e. in rigid fiber, as this is
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just localisation over an open subset. Denote by X˚pvq0 denote the open of the blow-up
where the ideal is generated by µ Ha (i.e. before taking the normalisation in its rigid fiber),
and similarly for Xtorpvq0. Then Xtor ÝÑ X˚ is not flat à priori, but as pµ Ha, pvq is
in both cases a regular sequence, this implies that the admissible formal blow-up in both
cases is given by the closed subset of equation pXµ Ha´Y pvq in ProjpOX?rX,Y sq (see
e.g. [Bos14], Proposition 7. (iii)). Thus this admissible blow-up commutes with the base
change Xtor ÝÑ X˚. In particular, Xtorpvq0 “ Xtor ˆX˚ X˚pvq0. Thus Xtorpvq is the
normalisation of Xtor ˆX˚ X˚pvq0 in its rigid fiber and we have a map

Xtorpvq ÝÑ X˚pvq.

Denote Ztorpvq “ Z ˆXtor X
torpvq, this is a locally closed (formal-)subscheme of Xtorpvq

and coïncides with the pullback of Z˚pvq through the previous map. We claim that

pXtorpvqq^Z˚pvq “ pX
torpvqq^Ztorpvq » pX

torq^Z pvq » Xpvq{Γ,

so that Xtorpvq over X˚pvq is correctly described by Xpvq. We only need to prove the first
isomorphism. Denote (abusively) I “ pµ Ha, pvq the ideal on the various formal schemes,
and p¨q^Z the completion along Z or its pullback in those schemes (in particular this is the
completion along Ztorpvq for Xtorpvq). As Xtor is noetherian, pXtorq^Z ÝÑ Xtor is flat,
and as blow-up commutes with flat base change, we have

pBlIpX
torqq^Z “ BlIppX

torq^Z q,

and pXtor,^Z qpvq is an open in the normalisation of BlIppXtorq^Z q “ pBlIpX
torqq^Z . But

Xtor , and thus BlIpXtorqq is quasi-excellent, normalisation and Z-adic completion com-
mutes.p30q Thus Xtor,^Z pvq is the Z-adic completion of the open in the normalization of
BlIpX

torqq, i.e. of Xtorpvq, thus this is Xtorpvq^Ztorpvq. The etale, local isomorphism

X ÝÑ pXtorq^Z ,

can thus be seen over X˚pvq, and we get that

pXtorpvqq^Z˚pvq » Xpvq{Γ.

Now if x is a geometric point of X˚pvq, lying over Z˚pvq, we deduce that

Xtorpvq^x » X^x {Γ,

Then according to [Lan16b] Theorem 3.9 (and especially section 7), and [Lan17] The-
orem 8.6 it is sufficient to prove the analog of Proposition 8.3 (of [Lan17]) for ppvq :
Cpvq ÝÑ Zpvq. But ppvq is also proper (it is a base change), and the pullback of the sheaf
Ψp`q is relatively ample over Zpvq, thus the same proof applies.

In the following, we denote for a object X over SpecpOq or SpfpOq and n P N˚, Xn

the base change to SpecpO{pnq. We also denote, as in [AIP15], Wpwq0 the analogous
weight space, but forgetting the torsion part when constructing Wpwq. This can be seen
for example as characters in Wpwq being trivial on the torsion part of T pZpq, but we don’t
fix such an identification.

Proposition A.4. — Consider the following diagram, for m ě n,

p30qSee [Gro67, IV2 7.8.3(v), and proof of 7.6.1]
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Xtorpvqm Xtorpvqn

X˚pvqm X˚pvqn

i

i1

πm πn

We have the equality,

i1˚πn˚w
κ0
:

w,np´Dq “ πm,˚i
˚wκ

0
:

w,mp´Dq.

In particular, π˚wκ
0
:

w p´Dq is a small formal Banach sheaf on X˚pvq “ X1pp
nq˚pvq. Simi-

larly for pπˆ1q˚w
κ0,univ

:
w p´Dq on X˚pvq ˆWpwq0. MoreoverHipX˚pvq, π˚w

κ0
:

w p´Dqqr1{ps

vanishes for i ě 1 (similarly for the higher direct image of pπˆ 1q˚ω
κ0,univ

:
w p´Dq onWpwq).

Proof. — The proof is the same as in [AIP15] or [Bra16], except that we stay at level
X1pp

nqpvq (which is easier), as the map X1pp
nqpvq ÝÑ Xpvq is not finite in our situation.

We can prove as in [AIP15] that wκ
0
:

w p´Dq is a direct limit of sheaves whose cokernel is a
successive extension of the sheaf OX1ppnqtorpvqp´Dq. Thus, it is enough to show that

R1π˚OX1ppnqtorpvqp´Dq “ 0,

but this is the previous proposition. This implies also that Riπ˚wκ
0
:

w p´Dq “ 0 for i ą 0.
Moreover, as π˚wκ

0
:

w p´Dq is small on X1pp
nq˚pvq which is generically affinoid, Theorem

A.1.2.2 of [AIP15] implies its higher cohomology vanishes after inverting p.

Exactly as in [AIP15], section 8.2, we deduce the following two results. Now we go
back to the notation X1pp

nqtorpvq to denote the (integral toroïdal compactification of the)
Shimura variety with level "Γ1pp

nq" at p, and X torpvq denote the rigid analog, with Iwahori
level at p, as in the rest of the text.

Corollary A.5. — The module

M0,un
v,w,cusp :“ H0pX1pp

nqtorpvq ˆWpwq0,wκ
0,un

:
w p´Dqqr1{ps

is a projective OWpwq0r1{ps-module, and for all κ PWpwq0, the specialisation

M0,un
v,w,cusp ÝÑ H0pX1pp

nq˚pvq,wκ
0
:

w p´Dqqr1{ps,

is surjective.

Theorem A.6. — For all v, w the moduleMun
v,w :“ H0pX torpvq ˆWpwq, ωκun:w p´Dqq is a

projective OWpwq-module, and for all κ PWpwq, the specialisation map

Mun
v,w,cusp ÝÑMκ

v,w,cusp,

is surjective. Moreover HipX torpvq ˆWpwq, ωκun:w p´Dqq vanishes for i ą 0.
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Appendix B. Families and triangulations

In this appendix we generalise the tools used in [BC09] to prove the theorem in section
10. Fortunately, this is mainly a matter of reformulation, as most of the work is done in
[KPX14]. From now on, we take E to be the eigenvariety for pGqUp2, 1qE{Q and p a prime
unramified in E, constructed in section 9 (see also [Bra16] for p split in E and [Her19]
for p inert not equal to 2), which is 3-dimensional or its variant with weight k2 P Z fixed,
which coincide with the base change by

WOˆ ãÑW,

which is 2-dimensional. Automorphically, the second construction "fixes the central char-
acter" (which can "move" in the three dimensional eigenvariety, but keeping its polarisation
; in particular even in the 3-dimensional eigenvariety, we can’t twist automorphic forms by
a power of the norm character). In any case we always have Z Ă E a strongly Zariski-dense
subset consisting of classical automorphic forms of integral (= algebraic) weight. This space
is not dense for the analytic topology, as it is already the case in W . We can define Zla the
subset of E of classical automorphic forms possibly with level at p, and locally algebraic
weight-character κ PW . Z doesn’t accumulate at Zla, and as if p| Condpχq, we will only
have a point y P Zla corresponding to the automorphic representation πnpχq of section
10, we first need to enlarge a bit Z p31q.

Proposition B.1. — There exists Z 1 Ă Zla, which accumulates at every point of Zla, such
that for all z P Z 1, we have that the Sen polynomial of ρz is killed by

3
ź

i“1

pT ´ wtipzqq.

Proof. — Let z P Zla. In particular, there exists w, ε such that z P Ew,ε in the notations
before Theorem 9.5. This Ew,ε is affinoid. Thus, by [BC09] Lemma 7.8.11, there exists
g : E 1w,ε ÝÑ Ew,ε such that we have an actual representation of G “ GE,S on a coherent
torsion free sheave over E 1w,ε. We can then apply [KPX14] Definition 6.2.11 or [BC09] p125
to have a Sen operator in family over E 1w,ε. But Z is Zariski dense in Ew,ε thus as is its

pullback Z
1alg in E 1w,ε. Moreover, there is Y Ă E 1w,ε Zariski open and dense, on which

Z 1Y “ Y XZ
1alg is Zariski dense, with ρz “ ρgpzq for all z P Y . Thus for all z P Y XZ

1alg ,
we have that the Sen operator is killed by

3
ź

i“1

pT ´ wtipzqq.

By density, this is true for all x P E 1w,ε. Thus, for all y P Z 1Y “ g´1pZlaq X Y , the Sen
operator of ρy “ ρgpyq is killed by the same polynomial. Using Z 1 “ gpZ 1Y q we get the
result.

p31qWe could actually prove directly the following result on all Zla, and even the crystabellianity of these
representations, by extending results of [BPS16, Bij16] for all classical modular forms with Nebentypus, as it is
done in [PS17]. But the following will be enough for us.
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By proposition 10.21 there exists a point y P E , whose (semi-simplified) Galois repre-
sentation is 1 ‘ χ ‘ ε and its refinement is σ (see definition 10.16). Let A “ OE,y be the
rigid analytic local ring at y. We want to study this ring and the pseudo-character T at A.
By [BC09] Theorem 1.4.4 and Lemma 1.8.3 for S “ ArGs{KerT , we choose idempotents
eε, eχ, e1 that are compatible with the involution τ given by i ÞÑ iKp1q. We thus have a
generalized matrix algebra (GMA) of the form

¨

˝

A Aε,χ Aε,1
Aχ,ε A Aχ,1
A1,ε A1,χ A

˛

‚

This defines ExtT pi, jq and hi,j “ dim ExtT pi, jq for all i ‰ j P t1, ε, χu. In the end, we
want to study Itot the total reducibility locus and this GMA.

On A{Itot, we have pseudo-characters of dimension 1 (i.e. actual characters)

Tj : G “ GE,S ÝÑ A{Itot, j P tε, 1, χu,

such that Tj bA{mA “ Tj b kpyq “ j. From now on fix I Ą Itot a cofinite length ideal.

Lemma B.2. — The Sen operator of Tj is killed by the polynomial

3
ź

i“1

pT ´ wtiq P A{IrT s
Σ.

Proof. — Let y P E . As remarked, the set Z 1 of B.1 accumulates at y. Fix j P t1, χ, εu
and denote S “ ArGs{KerT . There exists M a S-module, of finite type as A-module
such that MK “ K3 and with an exact sequence

0 ÝÑ K ÝÑM{IM ÝÑ Tj ÝÑ 0,

such that K as a Jordan-Holder sequence with all subquotient isomorphic to Ti for i ‰ j
(see [BC09] Theorem 1.5.6 and Lemma 4.3.9). Thus, it suffices to prove that M{IM as
its Sen operator killed by the previous polynomial. But by [BC09] Lemma 4.3.7 (and
because Z 1 accumulates at y) we can find U Ă E an affinoïd open containing z, in which
Z 1 is Zariski dense, together with M a coherent torsion-free OU -module endowed with
an action of G such that MpUq b A » M as ArGs-module, and M bOpUq FracpOpUqq
is free of rank 3, semisimple as G-module and trace T bOpXq OpUq. By generic semi-
simplicity and generic flatness, there exists F Ă U a Zariski closed subspace such that for
all x P U zF , My “Mss

y “ ρy . We can change Z 1 by Z 1 X pUzF q, which is still Zariski
dense in U . Denote by ϕ the Sen operator of DSenpMq (or B “ EndOpUqpMpUqq see
[KPX14] Definition 6.2.11 or [BC09] proof of lemma 4.3.3). For all z P Z 1, ϕz is killed by

P “
3
ź

i“1

pT ´ wtipzqq,

by proposition B.1, and as Z 1 is Zariski dense, and OpUq is reduced we get that P kills ϕ
on U , and reducing to A{I we get the result.
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Fix the bijection between t1, 2, 3u and t1, χ, εu corresponding to the refinement 10.16,
i.e.

1 ÞÑ 1
2 ÞÑ χ
3 ÞÑ ε

Thus it makes sense to speak about Ti, i P t1, 2, 3u.

Lemma B.3. — For all i, the A{I-module

H0
ϕ,ΓpDrigpTiqpδ

´1
i qq

is free of rank 1.

Proof. — We will consider inductively the pseudocharacters T , Λ2T and detT whose
reduction is respectively 1‘ χ‘ ε, χ‘ ε‘ εχ and εχ. In particular they are multiplicity
free. Recall that for I Ą Itot, T splits, thus also Λ2T , we denote T 1i “ T1 . . . Ti for
i “ 1, 2, 3. By induction on i, it is enough to prove the result for T 1i . In particular for all
i, we can find M a S-module, finite type over A, of generic rank 3 (if i “ 1, 2, rank 1 and
M “ T 13 if i “ 3) such that ([BC09] Theorem 1.5.6 and Lemma 4.3.9).

0 ÝÑ K ÝÑM{I ÝÑ T 1i ÝÑ 0,

with Kss reducing to a direct sum of
śi
k“1 Tjk ‰ T 1i . As δippq “ Fi and at y these values

are
p1, χppq, p´1q,

which are distincts (|χppq| “ p´1{2), the slope of δ1...δi is distinct from the one appearing
in K . In particular

H0
ϕ,ΓpDrigpKpδ1...δiq

´1qq “ t0u.

Thus, it suffices to show that H0
ϕ,ΓpDrigpMpδ1...δiq

´1qqq is free of rank 1 for every cofinite
ideal J of A “ Oy . But this is assured by [KPX14] Theorem 6.3.9 and [BC09] Theo-
rem 3.3.3 and Lemma 3.3.9. Indeed, first, by [BC09] Lemma 4.3.7 we can find U Ă E
containing y an affinoid together with a coherent torsion free module M with an action
of G “ GE,S reducing to M on A “ Oy , which is generically free of rank 3 (or 1), and

such that the trace of G on M coincides with T 1i bOE OpUq. Denote δpiq1 “ δ1 . . . δi, and
H0
ϕ,ΓpDrigp´qq is a functor as in [BC09] Section 3.2.2. Moreover, by [BC09] Lemma 3.4.2

and [KPX14] Theorem 6.3.9 (applied to M1_ and δ “ δ
piq,´1
1 ) there exists a birational

morphism (see [BC09] section 3.2.3)

π : U 1 ÝÑ U,

such that the strict transform M1 of M on U 1 is locally free, and moreover we have a map

DrigpM1_q ÝÑ RU 1pδ
piq,´1
1 q b L,

whose kernel is a ϕ,Γ-module of rank 2 (is trivial if i “ 3) and which is generically
surjective. Moreover it is proven in the course of the proof of [KPX14] Theorem 6.3.9 that
H0
ϕ,ΓpDrigppM1_q_qpδ´1

1 qq is locally free of rank 1. In particular, as these sheaves are
coherent, for all y1 P π´1pyq, and all cofinite length ideal J 1 of Oy1 ,

H0
ϕ,ΓpDrigpM1pδ

piq,´1
1 q bOy1{J

1qq,
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is free of rank 1. Indeed, we have the commuting diagram

H0
ϕ,ΓpDrigpM1qpδ´1

1 qq bOy1{I
1 H0

ϕ,ΓpDrigpM1qpδ´1
1 q bOy1{I

1q

H0
ϕ,ΓpDrigpM1qpδ´1

1 qq bOy1{my1 H0
ϕ,ΓpDrigpM1qpδ´1

1 q bOy1{my1q
i

f red

where the map i is injective ([KPX14] eq 6.3.9.1). As the map f is non-zero, the map red
is also non-zero. Thus by [BC09] Lemma 3.3.9,

H0
ϕ,ΓpDrigpM1qpδ´1

1 q bOy1{I
1q

is free of rank one over Oy1{I
1. Thus by [BC09] Proposition 3.2.3 and Lemma 3.3.9, for

all cofinite length ideal J of Oy “ A, we have that

H0
ϕ,ΓpDrigpMqpδ

piq,´1
1 q bOy{Jqq,

is free of rank 1 over A{J .

Lemma B.4. — Suppose that D is a ϕ,Γ-module of rank 1 on an artinian ring A, and with
Hodge-Tate weight k “ pkσqσPΣ P ZΣ. Fix

δ : Kˆ ÝÑ Aˆ,

and denote ptσqσPΣ P ZΣ its Hodge-Tate weights. Suppose that

H0
ϕ,ΓpDpδ

´1qq,

is free of rank 1 over A. Then D “ RApδ
1q with δ1 “ δ

ś

σ x
kσ´tσ
σ .

Proof. — LetD “ RApδ
1q and by hypothesis we have a injective morphism of RA-modules

Rpδq ãÑ D “ RApδ
1q.

Let v be the image of a basis of Rpδq, and denote by e a basis of D. Thus, D1 “ RAv is a
sub-ϕ,Γ-module of D, isomorphic to RApδq. Reducing modulo mA, by [KPX14] corollary
6.2.9 we have that D1 “

ś

σ t
lσ
σ D for some lσ P Z. But Γ acts on v as δpγq. Moreover,

using the previous equality, it also acts on v by

γv “
ź

σ

LTσpγq
lσδ1pγqv.

Thus, δ|Γ “ p
ś

σ xσδ
1
q|Γ, which by hypothesis gives

lσ “ tσ ´ kσ.

Consider M “
ś

σ t
´lσ
σ RAv. Then M is saturated in D1, thus D1 “ M . But as RAv »

RApδq, M » Rp
ś

σ x
´lσ
σ δq, thus, by [KPX14] Lemma 6.2.13,

δ1 “ δ
ź

σ

xkσ´tσσ .
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Recall ([BC09] Lemma 8.27, that we have an injective map

ιT,i,j : ExtT pi, jq ãÑ ExtkrGE,Sspi, jq.

Theorem B.5. — Let ρ : G ÝÑ GLdi`dj pA{Iq an extension of T1 by Ti inside the image of
ιT,i,1. Then, if p splits, for ‹ “ v, v

Dcrys,‹pρpδ
´1
1,|Γqq

ϕ“F1

is free of rank 1 over A{I . If p is inert,

Dcrys,τ pρpδ
´1
1,|Γqq

ϕ2
“F1

is free of rank 1 over A{I .

Proof. — Let’s do the proof at v when p splits. Recall that 1 is the only constituent of ρy
which has 1 “ pwt1F1 as eigenvalue for its Frobenius. By [BC09] Theorem 1.5.6 (2), there
is an exact sequence,

0 ÝÑ K ÝÑ pM1{IM1 ‘ ρiq ÝÑ ρ ÝÑ 0,

withKss being a direct sum of Tk, k ‰ 1. Thus,DcryspKpδ
´1
1|Γqq

ϕ“F1 “ DcryspTipδ
´1
1|Γqq

ϕ“F1 “

t0u.In particular, it is enough to prove that

DcryspM1pδ
´1
1|Γqq

ϕ“F1

is free of rank 1 over A. We will use the same devissage as in B.3. By [BC09] Lemma
4.3.9, there existsM “M1‘N1 such thatMK “ K3 a sub-ArGs module of K3 of finite
type over A. Extending this module to an affinoid U Ă E containing y, and using the
accumulation of Z 1 at y (Proposition B.1), we can find a birational morphism π : U 1 ÝÑ U
and M1 the strict transform of M, locally free on U 1, for which the conclusion of [KPX14]
Theorem 6.3.9 for pM1q_ and δ´1

1 applies. In particular

H0
ϕ,ΓpDrigpM1qpδ´1

1 qq

is locally free of rank one on U 1.
As in Lemma B.3 we can specialize at Oy1 for every y1 above y P U . But we have the

commuting diagram

H0
ϕ,ΓpDrigpM1qpδ´1

1 qq bOy1{I
1 H0

ϕ,ΓpDrigpM1qpδ´1
1 q bOy1{I

1q

H0
ϕ,ΓpDrigpM1qpδ´1

1 qq bOy1{my1 H0
ϕ,ΓpDrigpM1qpδ´1

1 q bOy1{my1q
i

f red

where the map i is injective ([KPX14] eq 6.3.9.1), the map f is non-zero, thus the map red
is also non-zero. By [BC09] Lemma 3.3.9,

H0
ϕ,ΓpDrigpM1qpδ´1

1 q bOy1{I
1q

is free of rank one over Oy1{I
1 for all y1 P π´1pyq and I 1 of cofinite length. Thus the

hypothesis of [BC09] Proposition 3.2.3 are satisfied, and by [BC09] Lemma 3.3.9 again,

H0
ϕ,ΓpDrigpM bA{Iqpδ´1

1 qq
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is free of rank 1. In particular we have an injection of RA{I -modules,

0 ÝÑ RA ÝÑ DrigpM bA{Iqpδ´1
1 q ÝÑ Q ÝÑ 0.

Moreover, as the reduction to A{mA of DcryspMpδ
´1
1 qqϕ“1 is of rank 1, using the functor

Dcris, we have that Dcrisp1q Ă DcrispMpδ
´1
1 qqϕ“1 and thus DcryspQq

ϕ“1 “ t0u. In
particular DcryspMpδ

´1qqϕ“1 “ Dcrysp1q is free of rank 1 over A, and thus

DcryspMpδ1|Γq
´1qϕ“F1

is free of rank 1 over A. The same proof remains valid in the case where p is inert,
as 1 “ pwt1F1 is also the first and only constituent of ρy , and by duality in the inert
case, as ρy,v “ ρ_y,vε

´1, whose refinement at y is given by εppq´1p1, χvppq, εppqq
_ “

p1, χvppq, εppqq, thus starts by 1, thus the same proof as for v also applies for v.
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