Théorie des Nombres TD7

M2 AAG 2021-2022

Exercice 1. Let E/F be a finite extension of number fields.

- 1. Explain why there exists an infinite number of primes of F totally split in E.
- 2. Show that if E/F isn't cyclic, there is no prime of F inert in E. What happens when E/F is cyclic?

Exercice 2. We assume the local statement for local class field theory as given in the course. Let F be a local field and \overline{F} an algebraic closure. We denote

$$G_F := \operatorname{Gal}(\overline{F}/F) = \varprojlim_{F \subset L \subset \overline{F}} \operatorname{Gal}(L/F).$$

1. Show that there exists a (unique) continuous map

$$r_F: F^{\times} \longrightarrow G_F^{ab},$$

such that for all finite abelian extension L/F,

$$\pi_L \circ r_F : F^{\times} \longrightarrow G_F^{ab} \longrightarrow \operatorname{Gal}(L/F)$$

factor through $F^{\times}/N_{L/F}(L^{\times})$ and coincides with $r_{L/F}$.

- 2. Show that r_F has dense image.
- 3. Show that we have the commutative diagram

- 4. Show that r_F induces an homeomorphism from \mathcal{O}_F^{\times} to I_F^{ab} , the inertia subgroup.
- 5. Show that r_F is injective and induces and isomorphism

$$r_F: \widehat{F^{\times}} \longrightarrow G_F^{ab}.$$

Remark 1. Sometimes we denote by W_F the preimage of $\mathbb{Z} \subset \widehat{\mathbb{Z}} = \operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ in G_F . This is the Weil group of F, and r_F is an homeomorphism from F^{\times} to W_F (but careful that W_F does not have the subspace topology of G_F !).

Exercice 3 (Local CFT implies Kronecker-Weber). Assume that $F = \mathbb{Q}_p$ here, and that all statement of the previous exercise are true.

1. Show that the map

$$G^{ab}_{\mathbb{Q}_p} \longrightarrow \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^{\infty}})/\mathbb{Q}_p),$$

induces an isomorphism when restricted to $I_{\mathbb{Q}_p}^{ab}$. *Hint* : Show that the cyclotomic extension is totally ramified with Galois group \mathbb{Z}_p^{\times} .

2. Show the local Kronecker-Weber theorem :

Theorem 1. Any finite abelian extension L of \mathbb{Q}_p is included in $\mathbb{Q}_p(\zeta_n)$ for some n.

Hint : Consider \mathbb{Q}_p^{ab} the maximal abelian extension and $E = \bigcup_n \mathbb{Q}_p(\zeta_n)$, and show that they both contain \mathbb{Q}_p^{nr}

3. Deduce the global Kronecker-Weber theorem :

Theorem 2. Let K be a finite abelian extension of \mathbb{Q} . There exists n such that $K \subset \mathbb{Q}(\zeta_n)$.

Hint : use the local Kronecker Weber at ramified places for K to find a suitable field $L = K(\zeta_n)$. Look at the local intertia subgroups and prove they are small enough. Let I be the generated subgroup in $Gal(L/\mathbb{Q})$ and estimate $[L : \mathbb{Q}]$.

- **Exercice 4**. 1. What are the Hilbert class field and extended/narrow Hilbert class field of \mathbb{Q} ?
 - 2. Let $m \in \mathbb{N}_{\geq 1}$ and $\mathfrak{m}_1 = m$ and $\mathfrak{m}_2 = m(\infty)$. What are the Ray class fields for \mathfrak{m}_1 and \mathfrak{m}_2 ?

- 3. Let K/\mathbb{Q} be an abelian extension, and let $\operatorname{Art}_{K/\mathbb{Q}} : \mathbb{A}_{\mathbb{Q}}^{\times} \longrightarrow \operatorname{Gal}(K/\mathbb{Q})$ be the Artin Reciprocity map. Find the smallest modulus \mathfrak{m} such that $\operatorname{Art}_{K/\mathbb{Q}}$ factors through $\mathbb{A}_{\mathbb{Q}}^{\times}/\mathbb{Q}^{\times}V_{\mathfrak{m}}$. What is the smallest n such that $K \subset \mathbb{Q}(\zeta_n)$?
- 4. Show that the abelian inverse Galois problem holds for \mathbb{Q} , i.e. any finite abelian group is the Galois group of some finite extension K/\mathbb{Q} .
- **Exercice 5.** 1. Let $K = \mathbb{Q}(\sqrt{3})$. Show that $h_K = 1$. What is the Hilbert class field of K?
 - 2. Let $L = K(i) = \mathbb{Q}(i, \sqrt{3})$. Show that L/K is unramified everywhere. Why is it not a contradiction with the previous question ?
 - 3. Let $K = \mathbb{Q}(i\sqrt{5})$. What is the Hilbert class field and narrow/extended Hilbert class field for K?
 - 4. Let d > 0 and $K = \mathbb{Q}(\sqrt{d})$. We denote by C and $C_{\mathfrak{m}}$, with $\mathfrak{m} = (\infty)^1$ the Class group and Extended/Narrow class group. Show that we have an exact sequence

$$0 \longrightarrow Ker \longrightarrow C_{\mathfrak{m}} \longrightarrow C \longrightarrow 0,$$

with Ker of cardinal at most 2.

- 5. Fix τ_1 one real embedding of K, and denote τ_2 the other one. We say that an element x of K is positive if $\tau_1(x) > 0$ and totally positive if moreover $\tau_2(x) > 0$. Show that Ker is non-trivial iff all units which are positive are totally positive.
- 6. Recall why $\mathcal{O}_K^{\times} = \{\pm 1\} \times \langle u \rangle$ for some positive fundamental unit. Show that the Hilbert class field of K coincides with the extended Hilbert class field iff Nm(u) = -1.
- 7. Calculate for $\mathbb{Q}(\sqrt{d})$, with d = 2, 3, 5, 6 the extended Hilbert class fields and Hilbert class fields.

Exercice 6 (A counter example to Hasse's principle). Let $F = \mathbb{Q}$ and $E = \mathbb{Q}(\sqrt{13}, \sqrt{17})$. Denote $N = N_{E/\mathbb{Q}}(E^{\times})$.

1. What is the Galois group of E/\mathbb{Q} ? What are the intermediate extensions $E/K_i/\mathbb{Q}$?

¹or $\mathfrak{m} = (\tau_1)$ one real embedding, it doesn't change anything as $-1 \in K^{\times}$

- 2. Let p be a prime, show that p splits completely in one of the three intermediate extension.
- 3. Show that every square (in \mathbb{Q}) is a local norm everywhere.
- 4. Denote $N_i = N_{K_i/\mathbb{Q}}(K_i^{\times})$. Show that $N_1N_2N_3 = \{ x \in \mathbb{Q}^{\times} | x^2 \in N \}$.

Recall the Hilbert Symbol for $a, b \in \mathbb{Q}_v^{\times}$, $(a, b)_{\mathbb{Q}_v}$, which takes value 1 if $ax^2 + by^2 = z^2$ has a non zero solution in \mathbb{Q}_v . We denote $(a, b)_v$ for $a, b \in \mathbb{Q}^{\times}$ for $(a, b)_{\mathbb{Q}_v}$.

- 5. Show that $(a,b)_{\mathbb{Q}_v} = 1$ iff b is a norm for the extension $\mathbb{Q}_v(\sqrt{a})/\mathbb{Q}_v$.
- 6. Show that if $a, b \in \mathbb{Q}^{\times}$, then

$$\prod_{v} (a,b)_v = 1.$$

7. Denote $K_i = \mathbb{Q}(\sqrt{a_i})$ and S_i the set of (rational) primes which splits in K_i . Define

$$\phi_{1,2}(x) = \prod_{v \in S_1} (a_2, x)_v.$$

Show that $\phi_{1,2} = \phi_{1,3} = \phi_{2,1} = \phi_{2,3} = \phi_{3,1} = \phi_{3,2} =: \phi$.

- 8. Show that $N_1 N_2 N_3 = \ker \phi$.
- 9. Show that if x is a product of primes p such that $\left(\frac{p}{13}\right) = -1$ then

$$\phi(x) = \left(\frac{x}{17}\right).$$

10. Show that 5^2 is not a global norm.