Théorie des Nombres TD6

M2 AAG 2021-2022

Exercice 1 (Minkowski's bound). Let K be a number field. The goal is to show the following statement

Theorem 1 (Minkowski). Let $\alpha \in C l(K)$. Then there exists an ideal I of \mathcal{O}_{K} with class α such that

$$
N_{K / \mathbb{Q}}(I) \leqslant \frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|d_{K}\right|} .
$$

Let $\tau_{1}, \ldots, \tau_{r_{1}}, \sigma_{1}, \ldots, \sigma_{r_{2}}$ the real, resp. complex up to conjugacy, embeddings of K, and denote

$$
i: K \hookrightarrow \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}, x \mapsto\left(\tau_{1}(x), \ldots, \tau_{r_{1}}(x), \sigma_{1}(x), \ldots, \sigma_{r_{2}}(x)\right) .
$$

We identify $\mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}} \simeq \mathbb{R}^{d}=: V$ with $d=r_{1}+2 r_{2}$ in the obvious way.

1. Show that, if $i(x)=\left(t_{1}, \ldots, t_{r_{1}}, x_{1}, y_{1}, \ldots, x_{r_{2}}, y_{r_{2}}\right) \in V$, then

$$
\begin{aligned}
& \left|N_{K / \mathbb{Q}}(x)\right| \leqslant \frac{1}{n^{n}}\left(\left|t_{1}\right|+\cdots+\left|t_{r_{1}}\right|+2\left|x_{1}+i y_{1}\right|+\cdots+2\left|x_{r_{2}}+i y_{r_{2}}\right|\right)^{n} \\
& \quad \leqslant n^{-n / 2}\left(\sqrt{t_{1}^{2}+\cdots+t_{r_{1}}^{2}+2\left(x_{1}^{2}+y_{1}^{2}\right)+\cdots+2\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)}\right)^{n} .
\end{aligned}
$$

We then set the norm $\|$.$\| on V$ by $\left\|\left(t_{1}, \ldots, t_{r_{1}}, x_{1}, y_{1}, \ldots, x_{r_{2}}, y_{r_{2}}\right)\right\|=t_{1}^{2}+$ $\cdots+t_{r_{1}}^{2}+2\left(x_{1}^{2}+y_{1}^{2}\right)+\cdots+2\left(x_{r_{2}}^{2}+y_{r_{2}}^{2}\right)$.
2. For I an ideal of \mathcal{O}_{K}, show that $N_{K / \mathbb{Q}}(I)=\left(\left|\mathcal{O}_{K} / I\right|\right)$.
3. Let I be a fractional ideal of K, show that

$$
\operatorname{covol}(I)=\sqrt{\left|d_{K}\right|} N_{K / Q}(I)
$$

4. Show that the volume for the mesure coming from ||.|| of the unit ball for $\|.\|_{1}$, i.e. the volume of

$$
\left\{x \in \mathbb{R}^{n}\left|\sum_{i}\right| x_{i} \mid \leqslant 1\right\},
$$

is

$$
V_{n}=2^{r_{1}} \pi^{r_{2}} \frac{1}{n!}
$$

5. Let I be a fractional ideal of K. Show that I contains a non-zero element of norm at most

$$
\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{r_{2}} \sqrt{\left|d_{K}\right|}\left|N_{K / \mathbb{Q}}(I)\right|
$$

6. Prove the theorem.

Exercice 2 (Calculation of some class groups). 1. Let $K=\mathbb{Q}(i \sqrt{7})$. Show that $h_{K}:=\left|C \ell\left(\mathcal{O}_{K}\right)\right|=1$.
2. Let $K=\mathbb{Q}(\sqrt{-5})$. Show that $C \ell\left(\mathcal{O}_{K}\right)=\mathbb{Z} / 2 \mathbb{Z}$.
3. Deduce that $Y^{3}=X^{2}+5$ has no integral solution.
4. Let $K=\mathbb{Q}(\sqrt{-14})$. Show that $C \ell\left(\mathcal{O}_{K}\right)=\mathbb{Z} / 4 \mathbb{Z}$.
5. Let $K=\mathbb{Q}(\sqrt{2})$ or $K=\mathbb{Q}(\sqrt{7})$. Show that $h_{K}:=\left|C \ell\left(\mathcal{O}_{K}\right)\right|=1$.

Exercice 3. Compute the class group of $\mathbb{Z}[\sqrt[3]{7}]$.
Remark 1. Actually we know the full list of quadratic fields $K=\mathbb{Q}(\sqrt{d})$ for which the norm gives the structure of a euclidean ring for \mathcal{O}_{K} (such a ring is called norm euclidean):

$$
-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73 .
$$

But the story doesn't stop here : while we know that for quadratic imaginary field (i.e. $d<0$) euclidean and norm euclidean are equivalent, thus giving the full list of quadratic imaginary field for which integral elements form an euclidean ring, the result is completely different for real quadratic fields $(d>0)$, as for $d=14,69$ the corresponding rings are euclidean but not Norm euclidean (a theorem of Harper and Clark respectively). Also, we know completely the list of principal integer rings for imaginary quadratic fields, adding

$$
-19,-43,-67,-163
$$

to the previous list and we know that when $d \rightarrow-\infty$ then the class number h_{K} goes to infinity (Heilbronn), while for real quadratic fields this is widely open, and there is a conjecture of Gauss that \mathcal{O}_{K} will be principal for an infinite number of real quadratic field (actually $\sim 75,4 \%$ of them).

Exercice 4. Let F be a number field, and $\chi: \mathbb{A}_{F}^{\times} / F^{\times} \longrightarrow \mathbb{C}^{\times}$be a character.

1. Show that there exists $\chi_{v}: F_{v}^{\times} \longrightarrow \mathbb{C}^{\times}$unramified for almost all v such that $\chi=\otimes_{v} \chi_{v}$, i.e.

$$
\chi\left(\left(x_{v}\right)_{v}\right)=\prod_{v} \chi_{v}\left(x_{v}\right) .
$$

Let $\mathfrak{m}=\prod_{v} \mathfrak{p}_{v}^{c_{v}}$ where \mathfrak{p}_{v} corresponds to the finite place v of F and c_{v} is the conductor of χ_{v}. Let χ_{∞} the induced character of $\prod_{v \mid \infty} \chi_{v}$. Denote $I^{\mathfrak{m}}:=$ $I^{\mathfrak{m}}(F)$ the group of prime to \mathfrak{m} fractional ideals of F.

1. Show that

$$
\omega: \begin{array}{ccc}
I^{\mathfrak{m}} & \longrightarrow & \mathbb{C}^{\times} \\
\mathfrak{a} & \longmapsto & \prod_{v \nmid \infty} \chi_{v}\left(\pi_{v}^{v_{\mathfrak{p}}(\mathfrak{a})}\right)
\end{array},
$$

is well defined.
2. Show that if $F_{\mathfrak{m}}^{\times}=\left\{\alpha \in F^{\times} \mid a \equiv 1 \bmod \mathfrak{m}\right\}$ then

$$
\omega((\alpha))=\chi_{\infty}(\alpha)^{-1}
$$

3. Show that $\chi_{\infty \mid \mathcal{O}_{F}^{\times} \cap F_{\mathrm{m}}^{\times}}=1$.
4. Conversely show that if we have \mathfrak{m} a non zero ideal of $\mathcal{O}_{F}, \omega_{\infty}$ a character of F_{∞}^{\times}, trivial on $\mathcal{O}_{F}^{\times} \cap F_{\mathfrak{m}}^{\times}$, and a character

$$
\omega: I^{\mathfrak{m}} \longrightarrow \mathbb{C}^{\times}
$$

such that $\omega((\alpha))=\omega_{\infty}(\alpha)^{-1}$ for all $\alpha \in F_{\mathfrak{m}}^{\times}$, then there exists a unique

$$
\chi: \mathbb{A}_{F}^{\times} / F^{\times} \longrightarrow \mathbb{C}^{\times}
$$

inducing ω, whose character divides \mathfrak{m}.
5. Show that characters of the class group of F corresponds to idele characters with $\mathfrak{m}=\mathcal{O}_{F}$ and $\chi_{\infty}=1$.

Exercice 5. Let $F=\mathbb{Q}$ here.

1. What are the possibilities for χ_{∞} ?
2. Show that Hecke characters of weight $\omega_{\infty}=1$ and conductor dividing N corresponds to Dirichlet characters of $(\mathbb{Z} / N \mathbb{Z})^{\times}$.
3. Show that if χ correspond to $\theta: \mathbb{Z} / N \mathbb{Z}^{\times} \longrightarrow \mathbb{C}^{\times}$then $\chi_{\infty}=\operatorname{sgn}^{a}$ where $\theta(-1)=(-1)^{a}$.
4. Compute the L-function of such a character and its completed L-function.
5. Show that χ has conductor exactly N iff θ is primitive.

Exercice 6. Here $F=\mathbb{Q}(\sqrt{5})$. We denote $\varepsilon=\frac{1+\sqrt{5}}{2}$.

1. Show that $\mathcal{O}_{F}=\mathbb{Z}[\varepsilon]$ and $\mathcal{O}_{F}^{\times}=\{ \pm 1\} \times \varepsilon^{\mathbb{Z}}$.
2. What are the characters with modulus $\mathfrak{m}=\mathcal{O}_{F}$ and $\omega_{\infty}=1$?
3. Assume $\mathfrak{m}=\mathcal{O}_{F}$ and

$$
\omega_{\infty}\left(x_{1}, x_{2}\right)=\left|\frac{x_{1}}{x_{2}}\right|^{\frac{-i \pi}{\log \varepsilon}} .
$$

Show that this defines a character χ of I by

$$
\chi((\alpha))=\omega_{\infty}(\alpha)=\left|\frac{\alpha}{\sigma(\alpha)}\right|^{\frac{i \pi}{\log \varepsilon}},
$$

where $\operatorname{Gal}(F / \mathbb{Q})=\langle\sigma\rangle$.
4. Write down its L-function and functional equation.

Exercice 7. Let $N>1$ an integer and for $a \in \mathbb{Z} / N \mathbb{Z}$ we define the partial zeta function

$$
\zeta_{a}(s)=\sum_{n \geqslant 1, n \equiv a} n_{\bmod N} n^{-s} .
$$

For $x>0$ the Hurwitz zeta function $\zeta(s, x)$ is given by

$$
\zeta(s, x)=\sum_{n=0}^{\infty} \frac{1}{(n+x)^{s}} .
$$

Let $\chi: \mathbb{Z} / N \mathbb{Z}^{\times} \longrightarrow \mathbb{C}^{\times}$a Dirichlet character, which we extend to \mathbb{N} by $\chi(a)=0$ if $\bar{a} \notin \mathbb{Z} / N \mathbb{Z}^{\times}$.

1. Give an expression for $L(s, \chi)$ in terms of $\zeta_{a}(s)$ and of $\zeta_{a}(s)$ in terms of $\zeta(s, x)$ for some x.
2. Show that

$$
\Gamma(s) \zeta(s, x)=\int_{0}^{+\infty} \frac{e^{-x t}}{1-e^{-t}} t^{s} \frac{\mathrm{~d} t}{t}, \quad \text { for } \Re(s)>1
$$

For $n \in \mathbb{N}$, denote by $B_{n}(x) \in \mathbb{C}[x]$ the n -th Bernouilli polynomial, defined by

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n \geqslant 0} B_{n}(x) \frac{t^{n}}{n!} \in \mathbb{C}[x][[t]]
$$

3. Show that if $B_{n}:=B_{n}(0)$ then $B_{0}=1$, and $(n+1) B_{n}=-\sum_{n=0}^{n-1}\binom{n+1}{s} B_{s}$ for $n>0$.
4. Calculate B_{1}, show that

$$
B_{n}(x)=\sum_{s=0}^{n}\binom{n}{s} B_{s} x^{n-s}
$$

and deduce $B_{1}(x)$.
5. Show that

$$
\int_{0}^{1} \frac{e^{-x t}}{1-e^{-t}} t^{s} \frac{\mathrm{~d} t}{t}=\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} \frac{(-1)^{n}}{s+n-1}
$$

and deduce that $\Gamma(s) \zeta(s, x)$ as meromorphic continuation on \mathbb{C}. Where are the poles?
6. Let $n \in \mathbb{N}_{>0}$. Compute $\lim _{s \rightarrow 1-n}(s+n-1) \Gamma(s)$ and deduce

$$
\zeta(1-n, x)=-\frac{B_{n}(x)}{n}
$$

7. Deduce finally the equality

$$
L(0, \chi)=-\frac{1}{N} \sum_{s=1}^{N-1} s \chi(s)
$$

Exercice 8. Let $F=\mathbb{Q}(\sqrt{-26})$.

1. What are the integer ring and the discriminant of F ? What is $\left|\mathcal{O}_{K}^{\text {tors }}\right|$?
2. What is the class group of F ?
3. Let $\phi:\{p \in \mathbb{Z}$ prime $\} \longrightarrow \mathbb{Z}$ the function defined by

$$
\phi(p)=\left\{\begin{array}{cc}
1 & \text { if } p \text { is (totally) split } \\
-1 & \text { ifp is inert } \\
0 & \text { ifp is ramified }
\end{array}\right.
$$

Denote

$$
L(s)=\prod_{p} \frac{1}{1-\phi(p) p^{-s}} .
$$

Show that $L(s)$ is absolutely convergent for $\Re(s)>1$ and

$$
\zeta_{F}(s)=\zeta(s) L(s)
$$

4. Our goal is to show that there exists a character $\chi: \operatorname{Gal}(\mathbb{Q}(\sqrt{-26}) / \mathbb{Q}) \longrightarrow$ $\{ \pm 1\}$ such that $L(s)=L(\chi, s)$ for $\Re(s)>1$.
(a) Show that $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(i \sqrt{2}) \subset \mathbb{Q}\left(\zeta_{8}\right)$. Hint : Show that $\zeta_{8}^{2}+\zeta_{8}^{-2}=$ 0.
(b) Show that $\mathbb{Q}(\sqrt{13}) \subset \mathbb{Q}\left(\zeta_{13}\right)$. Hint: consider $g_{k}=\sum_{a \in \mathbb{Z} / 13 \mathbb{Z} \times}\left(\frac{a}{p}\right) \zeta_{13}^{k a}$ and show that $g_{1}^{2}=13$.
(c) Deduce that $\mathbb{Q}(i \sqrt{26}) \subset \mathbb{Q}\left(\zeta_{104}\right)$. How many quadratic extensions in $\mathbb{Q}\left(\zeta_{104}\right)$ are there ?
(d) Construct a character of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{104}\right) / \mathbb{Q}\right) \longrightarrow\{ \pm 1\}$ which sends a prime p coprime to 104 to $\phi(p)$.
(e) Show that this factors through the extension $\operatorname{Gal}(\mathbb{Q}(i \sqrt{26}) / \mathbb{Q})$. Hint : Look at primes 5 and 7 and use previous questions.
5. What is the value $L(1, \chi)$?
6. Deduce $L(0, \chi)$ and $\sum_{s=1}^{103} s \chi(s)$.
