Théorie des Nombres TD5

M2 AAG 2021-2022

Exercise 1 (Gauss' sums). Let F a finite extension of $\mathbb{Q}_{p}, \omega: \mathcal{O}_{F}^{\times} \longrightarrow S^{1}$ and $\psi: \mathcal{O}_{F} \longrightarrow \mathbb{C}^{\times}$be (resp.) a multiplicative and additive character, and we fix $d x$ and $d^{\times} x$ Haar mesures on F and F^{\times}. We define the Gauss' sum to be

$$
G(\omega, \psi):=\int_{\mathcal{O}_{F}^{\times}} \omega(u) \psi(u) d^{\times} u .
$$

Denote by n and d the respective conductors ${ }^{1}$ of ω and ψ. Let $c \in F^{\times}$such that $c|x|^{-1} d x=d^{\times} x$.

1. Show that this is actually a finite sum, which coincides with an actual Gauss sum up to a constant.
2. Show that if $d<n$ then show $G(\omega, \psi)=0$.
3. Show that if $d=n$ then $|G(\omega, \psi)|^{2}=c \operatorname{vol}\left(\mathcal{O}_{F}, d x\right) \operatorname{vol}\left(U_{r}, d^{\times} x\right)$.

Exercise 2 (Epsilon factors for ramified characters). Let F / \mathbb{Q}_{p} be a finite extension with uniformizer π. Let $\chi: F^{\times} \longrightarrow \mathbb{C}^{\times}$be a continuous character of conductor n.

1. Show that χ is of the form $\left.\left(\chi^{u} \circ u_{\pi}\right)\right|^{s}$ for $s \in \mathbb{C}$ and $\chi^{u}: \mathcal{O}_{F}^{\times} \longrightarrow S^{1}$ with $u_{\pi}: F^{\times} \longrightarrow \mathcal{O}_{F}^{\times}$ explicit depending on π. Is s well defined?
2. Show that we can write $\chi=\chi_{0}| |^{s}$ with $\chi_{0}: F^{\times} \longrightarrow S^{1}$. Is such a decomposition unique ?

Now we let $\psi: F \longrightarrow S^{1}$ be a non trivial additive character ψ of conductor d. Our goal is to calculate the epsilon factor $\varepsilon(\chi, \psi, d x)=\varepsilon(\chi, \psi)$. We choose $d x$ the auto-dual Haar mesure on F.
3. Let $g=\psi \mathbb{1}_{\pi^{d-n}} \mathcal{O}_{F}$. Calculate the Fourier transform \hat{g} of g.
4. What are $L(\chi)$ and $L\left(\chi^{\vee}\right)$, with $\chi^{\vee}=\chi^{-1}|$.$| ?$
5. Assume $n=0$, calculate $\varepsilon(\psi, \chi)$.
6. Assume $n>0$, calculate $\varepsilon(\psi, \chi)$.

From now on we assume that $\psi=\bigotimes_{v} \psi_{v}: \mathbb{A}_{F} \longrightarrow \mathbb{C}^{\times}$satisfies $\psi(F)=1$ and $\psi_{v}\left(\mathcal{O}_{v}\right)=1$ for almost all v, and $\chi=\bigotimes_{v} \chi_{v}: \mathbb{A}_{F}^{\times} \longrightarrow \mathbb{C}^{\times}$such that $\chi\left(F^{\times}\right)=1$ and χ is unramified almost everywhere.
7. Show that

$$
\varepsilon(\psi, \chi):=\prod_{v} \varepsilon_{v}\left(\psi_{v}, \chi_{v}\right) \in \mathbb{C}^{\times}
$$

is well defined.
Exercise 3 (Real epsilon factors). Here we assume $F=\mathbb{R}$ and set $\psi: t \in \mathbb{R} \mapsto e^{-2 \pi i t}$, and we take the autodual Haar mesure for ψ.

1. Let f such that $f(x)=e^{-\pi x^{2}}$. Calculate \hat{f}.
2. Calculate $Z\left(f,|.|^{s}\right)$. Deduce $\varepsilon\left(|.|^{s}, \psi\right)$.
3. Let g such that $g(x)=x e^{-\pi x^{2}}$. Calculate \hat{g}.

[^0]4. Calculate $Z\left(g, \operatorname{sgn}|.|^{s}\right)$. Deduce that $\varepsilon\left(\psi, \operatorname{sgn}|.|^{s}\right)=-i$.
5. Deduce that $\frac{Z(g, \omega)}{L(\omega)}$ is holomorphic everywhere, i.e. for all continuous character $\omega: \mathbb{R}^{\times} \longrightarrow \mathbb{C}^{\times}$.

Exercise 4 (Complex epsilon factors). Here we assume $F=\mathbb{C}$ and we set $\psi: z \in \mathbb{C} \mapsto e^{-2 i \pi(z+\bar{z})}$. We take the autodual Haar mesure for ψ.

1. Show that all continuous characters $\omega: \mathbb{C}^{\times} \longrightarrow \mathbb{C}^{\times}$are of the shape $\omega=|.|^{s} \theta_{n}$, for $s \in \mathbb{C}, n \in \mathbb{Z}$, with

$$
\theta_{n}: r e^{i \theta} \mapsto e^{i n \theta}
$$

2. Let

$$
f_{n}(z)=\left\{\begin{array}{cc}
\bar{z}^{n} e^{-2 \pi z \bar{z}} & \text { if } n \geqslant 0 \\
z^{-n} e^{-2 \pi z \bar{z}} & \text { if } n<0
\end{array}\right.
$$

Show that $\hat{f_{n}}=i^{|n|} f_{-n}$. Hint : first calculate \hat{f}_{0} and then apply the operator $d \bar{z}=\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}$.
3. Calculate $Z\left(f_{n},|\cdot|^{s} \theta_{n}\right)$.
4. Deduce that the epsilon factor $\varepsilon\left(\psi, \theta_{n}|\cdot|^{s}\right)=i^{-|n|}$.

Exercise 5 (Non archimedian tempered distributions). Let F be a finite extension of \mathbb{Q}_{p}. Denote $S(F)$ the Schwartz functions on F (i.e. locally constant functions with compact support). Denote $S(F)^{\prime}$ its continuous dual, called tempered distributions. Let $w: F^{\times} \longrightarrow \mathbb{C}^{\times}$. We denote $w=w_{0}|\cdot|^{s}$ with w_{0} unitary. We have an action of F^{\times}on $S(F)$ by $a \cdot f(z)=f(a z)$, and on $S(F)^{\prime}$ by

$$
<a \cdot z, f>:=<z, a^{-1} \cdot f>
$$

1. Show that for $\Re s>0$, the distribution $z\left(\omega_{0}|\cdot|^{s}\right)$ defined by

$$
<z\left(\omega_{0}|\cdot|^{s}\right), f>=\int_{F^{\times}} f(x) \omega(x) d^{\times} x
$$

is in $S(F)^{\prime}$, and actually in $S(F)^{\prime}(\omega):=\left\{z \in S(F)^{\prime} \mid a \cdot z=\omega(a) z\right\}$.
Let $C_{c}^{\infty}\left(F^{\times}\right)$the subspace of $S(F)$ of functions with compact support in F^{\times}, and denote $C_{c}^{\infty}\left(F^{\times}\right)^{\prime}$ its dual.
2. Show that we have an exact sequence

$$
0 \longrightarrow S(F)_{0}^{\prime} \longrightarrow S(F)^{\prime} \xrightarrow{r e s} C_{c}^{\infty}\left(F^{\times}\right)^{\prime} \longrightarrow 0
$$

with $S(F)_{0}^{\prime}:=\operatorname{ker}($ res $)$ the distribution that are supported at 0 . Show moreover that the following sequence is exact

$$
0 \longrightarrow S(F)_{0}^{\prime}(\omega) \longrightarrow S(F)^{\prime}(\omega) \longrightarrow C_{c}^{\infty}\left(F^{\times}\right)^{\prime}(\omega)
$$

3. Show that for all $\omega, C_{c}^{\infty}\left(F^{\times}\right)^{\prime}(\omega)$ is of dimension 1, spanned by $z(\omega):=\int_{F \times} \cdot \omega(x) d^{\times} x$.
4. Give an invariant distribution $\delta_{0} \in S(F)_{0}^{\prime}$ and show that $S(F)_{0}^{\prime}(1)=\mathbb{C} \delta_{0}$, and for all $\omega \neq 1$, $S(F)_{0}^{\prime}(\omega)=\{0\}$.
5. For $f \in S(F)$ let $\nabla(f): x \mapsto f(x)-f\left(\pi^{-1} x\right)$. Show that

$$
<z_{0}(\omega), f>:=\int_{F^{\times}} \nabla(f)(x) \omega(x) d^{\times} x
$$

defines a distribution in $S(F)^{\prime}(\omega)$.
6. Show that for all $\omega, \operatorname{dim} S(F)^{\prime}(\omega)=1$. What is the relation between $z_{0}(\omega)$ and $z(\omega)$ if $s=$ $\Re(w)>0$?

[^0]: ${ }^{1}$ We say that an additive (resp. multiplicative) character $\psi(\omega)$ has conductor $r(n)$ if its conductor is $\left(\pi^{r}\right)$ (resp. $1+\left(\pi^{n}\right)$) for π a uniformizer

