Théorie des Nombres TD5

M2 AAG 2021-2022

Exercise 1 (Gauss' sums). Let F a finite extension of \mathbb{Q}_p , $\omega : \mathcal{O}_F^{\times} \longrightarrow S^1$ and $\psi : \mathcal{O}_F \longrightarrow \mathbb{C}^{\times}$ be (resp.) a multiplicative and additive character, and we fix dx and $d^{\times}x$ Haar mesures on F and F^{\times} . We define the Gauss' sum to be

$$G(\omega,\psi) := \int_{\mathcal{O}_F^{\times}} \omega(u)\psi(u)d^{\times}u.$$

Denote by n and d the respective conductors¹ of ω and ψ . Let $c \in F^{\times}$ such that $c|x|^{-1}dx = d^{\times}x$.

- 1. Show that this is actually a finite sum, which coincides with an actual Gauss sum up to a constant.
- 2. Show that if d < n then show $G(\omega, \psi) = 0$.
- 3. Show that if d = n then $|G(\omega, \psi)|^2 = c \operatorname{vol}(\mathcal{O}_F, dx) \operatorname{vol}(U_r, d^{\times} x)$.

Exercise 2 (Epsilon factors for ramified characters). Let F/\mathbb{Q}_p be a finite extension with uniformizer π . Let $\chi: F^{\times} \longrightarrow \mathbb{C}^{\times}$ be a continuous character of conductor n.

- 1. Show that χ is of the form $(\chi^u \circ u_\pi)|_{\cdot}|_s$ for $s \in \mathbb{C}$ and $\chi^u : \mathcal{O}_F^{\times} \longrightarrow S^1$ with $u_\pi : F^{\times} \longrightarrow \mathcal{O}_F^{\times}$ explicit depending on π . Is s well defined ?
- 2. Show that we can write $\chi = \chi_0 |.|^s$ with $\chi_0 : F^{\times} \longrightarrow S^1$. Is such a decomposition unique?

Now we let $\psi: F \longrightarrow S^1$ be a non trivial additive character ψ of conductor d. Our goal is to calculate the epsilon factor $\varepsilon(\chi, \psi, dx) = \varepsilon(\chi, \psi)$. We choose dx the auto-dual Haar mesure on F.

- 3. Let $g = \psi \mathbb{1}_{\pi^{d-n}\mathcal{O}_F}$. Calculate the Fourier transform \hat{g} of g.
- 4. What are $L(\chi)$ and $L(\chi^{\vee})$, with $\chi^{\vee} = \chi^{-1}|.|$?
- 5. Assume n = 0, calculate $\varepsilon(\psi, \chi)$.
- 6. Assume n > 0, calculate $\varepsilon(\psi, \chi)$.

From now on we assume that $\psi = \bigotimes_v \psi_v : \mathbb{A}_F \longrightarrow \mathbb{C}^{\times}$ satisfies $\psi(F) = 1$ and $\psi_v(\mathcal{O}_v) = 1$ for almost all v, and $\chi = \bigotimes_v \chi_v : \mathbb{A}_F^{\times} \longrightarrow \mathbb{C}^{\times}$ such that $\chi(F^{\times}) = 1$ and χ is unramified almost everywhere.

7. Show that

$$\varepsilon(\psi,\chi) := \prod_{v} \varepsilon_{v}(\psi_{v},\chi_{v}) \in \mathbb{C}^{\times},$$

is well defined.

Exercise 3 (Real epsilon factors). Here we assume $F = \mathbb{R}$ and set $\psi : t \in \mathbb{R} \mapsto e^{-2\pi i t}$, and we take the autodual Haar mesure for ψ .

- 1. Let f such that $f(x) = e^{-\pi x^2}$. Calculate \hat{f} .
- 2. Calculate $Z(f, |.|^s)$. Deduce $\varepsilon(|.|^s, \psi)$.
- 3. Let g such that $g(x) = xe^{-\pi x^2}$. Calculate \hat{g} .

¹We say that an additive (resp. multiplicative) character ψ (ω) has conductor r (n) if its conductor is (π^r) (resp. $1 + (\pi^n)$) for π a uniformizer

- 4. Calculate $Z(g, \operatorname{sgn} | . |^s)$. Deduce that $\varepsilon(\psi, \operatorname{sgn} | . |^s) = -i$.
- 5. Deduce that $\frac{Z(g,\omega)}{L(\omega)}$ is holomorphic everywhere, i.e. for all continuous character $\omega : \mathbb{R}^{\times} \longrightarrow \mathbb{C}^{\times}$.

Exercise 4 (Complex epsilon factors). Here we assume $F = \mathbb{C}$ and we set $\psi : z \in \mathbb{C} \mapsto e^{-2i\pi(z+\overline{z})}$. We take the autodual Haar mesure for ψ .

1. Show that all continuous characters $\omega : \mathbb{C}^{\times} \longrightarrow \mathbb{C}^{\times}$ are of the shape $\omega = |.|^{s} \theta_{n}$, for $s \in \mathbb{C}$, $n \in \mathbb{Z}$, with

$$\theta_n: re^{i\theta} \mapsto e^{in\theta}.$$

2. Let

$$f_n(z) = \begin{cases} \overline{z}^n e^{-2\pi z\overline{z}} & \text{if } n \ge 0\\ z^{-n} e^{-2\pi z\overline{z}} & \text{if } n < 0 \end{cases}$$

Show that $\hat{f}_n = i^{|n|} f_{-n}$. Hint : first calculate \hat{f}_0 and then apply the operator $d\overline{z} = \frac{\partial}{\partial x} + i \frac{\partial}{\partial y}$.

- 3. Calculate $Z(f_n, |.|^s \theta_n)$.
- 4. Deduce that the epsilon factor $\varepsilon(\psi, \theta_n | . |^s) = i^{-|n|}$.

Exercise 5 (Non archimedian tempered distributions). Let F be a finite extension of \mathbb{Q}_p . Denote S(F) the Schwartz functions on F (i.e. locally constant functions with compact support). Denote S(F)' its continuous dual, called *tempered* distributions. Let $w : F^{\times} \longrightarrow \mathbb{C}^{\times}$. We denote $w = w_0|.|^s$ with w_0 unitary. We have an action of F^{\times} on S(F) by $a \cdot f(z) = f(az)$, and on S(F)' by

$$\langle a \cdot z, f \rangle := \langle z, a^{-1} \cdot f \rangle.$$

1. Show that for $\Re s > 0$, the distribution $z(\omega_0|.|^s)$ defined by

$$\langle z(\omega_0|.|^s), f \rangle = \int_{F^{\times}} f(x)\omega(x)d^{\times}x,$$

is in S(F)', and actually in $S(F)'(\omega):=\{z\in S(F)'|\ a\cdot z=\omega(a)z\}.$

Let $C_c^{\infty}(F^{\times})$ the subspace of S(F) of functions with compact support in F^{\times} , and denote $C_c^{\infty}(F^{\times})'$ its dual.

2. Show that we have an exact sequence

$$0 \longrightarrow S(F)'_0 \longrightarrow S(F)' \xrightarrow{res} C_c^{\infty}(F^{\times})' \longrightarrow 0$$

with $S(F)'_0 := \ker(res)$ the distribution that are *supported at* 0. Show moreover that the following sequence is exact

$$0 \longrightarrow S(F)'_0(\omega) \longrightarrow S(F)'(\omega) \longrightarrow C_c^{\infty}(F^{\times})'(\omega).$$

- 3. Show that for all ω , $C_c^{\infty}(F^{\times})'(\omega)$ is of dimension 1, spanned by $z(\omega) := \int_{F^{\times}} \cdot \omega(x) d^{\times} x$.
- 4. Give an invariant distribution $\delta_0 \in S(F)'_0$ and show that $S(F)'_0(1) = \mathbb{C}\delta_0$, and for all $\omega \neq 1$, $S(F)'_0(\omega) = \{0\}$.
- 5. For $f \in S(F)$ let $\nabla(f) : x \mapsto f(x) f(\pi^{-1}x)$. Show that

$$\langle z_0(\omega), f \rangle := \int_{F^{\times}} \nabla(f)(x)\omega(x)d^{\times}x$$

defines a distribution in $S(F)'(\omega)$.

6. Show that for all ω , dim $S(F)'(\omega) = 1$. What is the relation between $z_0(\omega)$ and $z(\omega)$ if $s = \Re(w) > 0$?