Théorie des Nombres TD3

M2 AAG 2021-2022

Warm-up

1. Show that the integer ring of $\mathbb{Q}(i)$ is principal. Deduce that the class number is one.
2. Show that there are integral elements in $\mathbb{Q}(i \sqrt{7})$ which are not in $\mathbb{Z}[i \sqrt{7}]$. Show that $\mathbb{Q}(i \sqrt{7})$ has class number one.
3. Show that $\mathbb{Q}(\sqrt{2})$ has class number one.

Exercises

Exercice 1 (Quadratic extensions). Let $\mathbb{Q}(\sqrt{d})$, with $d \in \mathbb{N}_{>0}$ without square factors.

1. Show that $\mathbb{Z}[\sqrt{d}]$ is the ring of integer of $\mathbb{Q}(\sqrt{d})$ if and only if $d \not \equiv 1(\bmod 4)$. What is the integer ring if $d \equiv 1(\bmod 4)$? Hint : What are the trace and norm of an integral element?
2. Show that $\mathbb{Z}[i \sqrt{3}]$ is not UFD (factoriel, en français), but $\mathbb{Z}\left[\frac{1+i \sqrt{3}}{2}\right]$ is. Show that $\mathbb{Z}[i \sqrt{5}]$ is not UFD.
3. Calculate the discriminant of $\mathbb{Q}(\sqrt{d})$.
4. Show that a prime $p \in \mathbb{Z}$ is
$\left\{\begin{array}{cc}\text { inert if } & p \neq 2 \text { and } p \text { is not a square } \bmod d \text { or } p=2 \text { and } d \equiv 5(\bmod 8) \\ \text { split if } & p \neq 2 \text { and } p \text { is a square } \bmod d \text { or } p=2 \operatorname{and} d \equiv 1 \quad(\bmod 8) \\ \text { ramified if } & p \mid d \text { or } p=2 \text { and } d \not \equiv 1 \quad(\bmod 4) .\end{array}\right.$
in $\mathbb{Q}(\sqrt{d})$. Hint : We can use the result of the next exercice.
Exercice 2. We will prove the following theorem
Theorem 1 (Dirichlet). Let A a Dedekind ring, with fraction field K and L / K a finite extension and B the integral closure of A in L. Assume $B=A[\alpha]$ for α with minimal polynomial P. Let \mathfrak{p} be a prime ideal of A, and assume

$$
P \quad(\bmod \mathfrak{p}) \equiv \prod_{i=1}^{r} P_{i}^{e_{i}} \quad(\bmod \mathfrak{p})
$$

where $P_{i}(\bmod \mathfrak{p})$ is irreducible. Then

$$
\mathfrak{q}_{i}=\mathfrak{p}+P_{i}(\alpha) \mathcal{O}_{L}
$$

is a maximal ideal of B and $\mathfrak{p}=\prod_{i=1}^{r} \mathfrak{q}_{i}^{e_{i}}$.

1. Show that the maximal ideal of B containing \mathfrak{p} are in bijection with maximal ideals of $B / \mathfrak{p} B$.
2. Show that \mathfrak{q}_{i} is maximal in B and doesn't depend on the choice of a lift of P_{i} $(\bmod \mathfrak{p})$.
3. Conclude.
4. Extend this result when $K=\mathbb{Q}, L=\mathbb{Q}(\alpha)$ with $\alpha \in \mathcal{O}_{L}$ and $p \nmid\left[\mathcal{O}_{L}: \mathbb{Z}[\alpha]\right]$ (for p prime).
5. Find the prime decomposition of $2,3,5,7$ in $\mathbb{Q}(\sqrt{10})$.
6. Let α a root of $x^{3}-x-1$. Find the decomposition of $5,13,59$ in $\mathbb{Q}(\alpha)$.
7. Find the decomposition of $3,5,7$ in $\mathbb{Q}[\sqrt[4]{2}]$.

Exercice 3. 1. Let K be a field, θ algebraic and separable over K, with polynomial P of degree n, and $L=K(\theta)$. Show that the discriminant of $(x, y) \mapsto \operatorname{tr}_{L / K}(x y)$ (in the basis $\theta^{k}, k=\{0, \ldots, n-1\}$) is

$$
(-1)^{\frac{n(n-1)}{2}} N_{L / K} P^{\prime}(\theta)
$$

2. Deduce the discriminant of $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$, for an odd prime, and primes that ramifies in $\mathbb{Q}\left(\zeta_{p}\right)$.
3. What is the discriminant of $\mathbb{Q}(\theta)$ for θ a root of $X^{3}+2 X+1$? Deduce that $\mathcal{O}_{\mathbb{Q}(\theta)}=\mathbb{Z}[\theta]$.
4. (More difficult) What is the discriminant of $\mathbb{Q}(\sqrt[3]{7})$? Prove that $\mathbb{Z}(\sqrt[3]{7})=$ $\mathcal{O}_{\mathbb{Q}(\sqrt[3]{7})}$. To calculate $\mathcal{O}_{\mathbb{Q}_{\sqrt[3]{7}}}$ we can show that both ring are equal away from 21 , and localise at 3 and 7 to reduce to show the equality for some extension of $\mathbb{Q}_{3}, \mathbb{Q}_{7}$ where we can prove the result for the quotient ring mod 3, 7 and using Nakayama's lemma. There will be a follow up to this exercice where we will calculate the class group of $\mathbb{Q}(\sqrt[3]{7})$!

Exercice 4. We want to prove that $\mathbb{Q}[i, \sqrt{5}] / \mathbb{Q}(i \sqrt{5})$ is unramified everywhere. We will consider the following extensions

1. What are the ramified primes in the three quadratic extensions of \mathbb{Q} ?
2. Prove that if $M / L / K$ is a tower of extensions of number fields (or local fields), and $\mathfrak{P}|\mathfrak{p}| p$ are primes in these extensions, then $e(\mathfrak{P} \mid p)=e(\mathfrak{P} \mid \mathfrak{p}) e(\mathfrak{p} \mid p)$.
3. Deduce that the maximum ramification index in $\mathbb{Q}(i, \sqrt{5}) / \mathbb{Q}$ is 2 .
4. Now fix a ramified prime \mathfrak{P} for $L=\mathbb{Q}(i, \sqrt{5})$ over \mathbb{Q}, let $G_{\mathfrak{P}} \subset \operatorname{Gal}(L / \mathbb{Q})$ be the associated decomposition subgroup, and H the subgroup acting trivially on $\mathcal{O}_{L} / \mathfrak{P}$. Show that H is of index 2 in $\operatorname{Gal}(L / \mathbb{Q})$, and if K is the corresponding quadratic extension, \mathfrak{P} ramifies for L / K.
5. Prove that $L / \mathbb{Q}(i \sqrt{-5})$ is everywhere unramified. Hint : otherwise choose \mathfrak{P} so that $K=\mathbb{Q}(i \sqrt{5})$ in the previous question. If $\mathfrak{P} \mid p$, then show that there is only one prime, which ramifies, above p in the other two quadratic extensions by letting H act on them.
6. Alternatively, use discriminant and different to reprove this result !

Exercice 5 (The different ideal). Let A be a Dedekind ring, K its fraction field, and L / K be a separable extension and denote B the integral closure of A in L.

1. If $B=A[\alpha]$ with f a minimal polynomial for α of degree n, show that the different ideal $\mathcal{D}_{B / A}=\left(f^{\prime}(\alpha)\right)$. Hint : Show that for all $0 \leqslant r \leqslant n-1$ $X^{r}=\sum_{i=1}^{n} \frac{f(X)}{X-\alpha_{i}} \frac{\alpha_{i}^{r}}{f^{\prime}\left(\alpha_{i}\right)}$, where α_{i} are the conjugate of α.
2. Calculate the different of $\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}$.
3. Assume that L / K is a totally ramified extension of local fields of degree e. Show that $v\left(\mathcal{D}_{L / K}\right) \geqslant e-1$ with equality if and only if L / K is (totally) tamely ramified (i.e. $p \nmid e=n$).
4. Assume that L / K is an extension of local rings such that the extension of residue fields is separable. Show that $\mathcal{D}_{L / K}=\mathcal{O}_{L}$ if and only if L / K is unramified.
5. Let L / K be an extension of number field. Show that a prime ideal of $\mathcal{O}_{K} \mathfrak{P}$ is ramified above K iff $\mathfrak{P} \mid \mathcal{D}_{L / K}$. Deduce that a prime ideal \mathfrak{p} of \mathcal{O}_{K} ramifies in \mathcal{O}_{K} iff $\mathfrak{p l} \mid \mathfrak{d}_{L / K}:=N_{L / K}\left(\mathcal{D}_{L / K}\right)$.
