Théorie des Nombres TD2

M2 AAG 2021-2022

Warm-up

1. Let L / K be an algebraic extension of complete non-archimedian fields. Show that \mathcal{O}_{L} is the integral closure of \mathcal{O}_{K} in L.
2. Show that if L / K is a finite extension of local fields, then L / K is totally ramified if and only if $\mathcal{O}_{L}=\mathcal{O}_{K}[\pi]$ with π a root of an Eisenstein polynomial in $K[X]$.
3. Show that if K is a finite extension of $\mathbb{C}((t))$ then there exists n such that $K \simeq \mathbb{C}\left(\left(t^{1 / n}\right)\right)$.

Exercices

Exercice 1. Let $L=\overline{\mathbf{Q}_{p}}$ be an algebraic closure of \mathbf{Q}_{p}.

1. Show that the p-adic absolute value $|\cdot|_{p}$ extends uniquely to L.

We are going to give two proofs that L is not complete.
For all prime number $\ell>2$ let ζ_{ℓ} be a primitive ℓ-th root of 1 . Assume that L is complete and let Liouville's number

$$
\alpha=\sum_{\ell \notin\{2, p\}} \zeta_{\ell} p^{\ell} .
$$

2. Show that the series converges in L.

Let $K=\mathbf{Q}_{p}(\alpha) \subset L$. Let ℓ_{1} the least prime $\notin\{2, p\}$ such that $\zeta_{\ell_{1}} \notin K$.
3. Show that $\zeta_{\ell_{1}} \in \mathcal{O}_{L}$ and that there exists $\beta \in \mathcal{O}_{K}$ satisfying $\beta \equiv \zeta_{\ell_{1}} \bmod p$.
4. Deduce that K contains a ℓ_{1}-th root of 1 congruent to $\zeta_{\ell_{1}}$ modulo p.
5. For $\ell \neq p$, show that roots of unity of order ℓ are distinct modulo p. Deduce that $\zeta_{\ell_{1}} \in K$ and thus that the residue field of K is infinite.
6. Get a contradiction.

Second proof :
7. For $d \geqslant 1$, show that \mathbf{Q}_{p} has only a finite number of non isomorphic extensions of degree d.
8. For $d \geqslant 1$, let $L_{d} \subset L$ the compositum of all degree $\leqslant d$ extensions of \mathbb{Q}_{p}. Show that L_{d} is a closed subset of L with empty interior.
9. Conclude.

Exercice 2. Show that \mathbb{C}_{p} is not spherically complete. Hint: Choose a sequence $\left(a_{n}\right)_{n}$ which is dense in \mathbb{C}_{p}.

Exercice 3 (Ax-Sen-Tate). Let K be a complete non archimedean field. Let $K^{\text {sep }} \subset$ \bar{K} a separable and algebraic closure. Let $G_{K}=\operatorname{Gal}(\bar{K} / K)=\operatorname{Gal}\left(K^{\text {sep }} / K\right)$ the Galois group.

1. Show that the action of G_{K} extends to $\hat{\bar{K}}$.
2. Show that if M / L is a separable extension of fields, then $\operatorname{tr}_{M / L}=M \longrightarrow L$ is surjective.

Our goal is to prove the following theorem of Ax-Sen-Tate,
Theorem 1 (Ax-Sen-Tate). Let H be a closed subgroup of G_{K}. Then $(\hat{\bar{K}})^{H}$ is the completion of \bar{K}^{H}, i.e. \bar{K}^{H} is dense in $(\widehat{\bar{K}})^{H}$.

The reader who wants to focus of the case of extensions of \mathbb{Q}_{p} can forget about questions 3.-6. We introduce $L=\bar{K}^{H}$. If $\alpha \in \bar{K}$, denote $\Delta_{L}(\alpha)=\inf _{\sigma \in H} v(\sigma(\alpha)-$ $\alpha)$, the diameter of α w.r.t. L. Clearly, $\Delta_{L}(\alpha)=0$ iff $\alpha \in L$.
3. Show that L is perfect.

To prove the theorem, we will need to first prove the following theorem of Ax
Theorem 2 (Ax). There exists a constant C such that for $\alpha \in \bar{K}$, there is $a \in L$ such that $v(\alpha-a) \geqslant \Delta_{L}(\alpha)-C$.

Fix a α and denote $M=L(\alpha)$, it is a finite separable extension of L by the previous question.
4. Assume K is of equal characteristics zero. Show that setting $a=\operatorname{tr}_{M / L}\left(\frac{1}{[M: L]} \alpha\right)$ we have

$$
v(a-\alpha) \geqslant \Delta_{L}(\alpha)
$$

5. Now assume K is of equal characteristics $p>0$. Show that for all $\delta>0$ there exists $y \in M$ such that $v(y)>-\delta$ and $\operatorname{tr}_{M / L}(y)=1$.
6. Setting $a=\operatorname{tr}_{M / L}(y \alpha)$, show that for all $\delta>0$ there exists $a \in L$ such that

$$
v(a-\alpha) \geqslant-\delta+\Delta_{L}(\alpha)
$$

For the next two questions, we assume that K is of characteristic zero and its residue field is of characteristic $p>0$. We also assume $v(p)=1$.
7. Let $P \in \bar{K}[X]$ unitary of degree n such that all its roots α satisfies $v(\alpha) \geqslant u$. Show that
(a) if $n=p^{k} d, p \nmid d$ and $d \geqslant 2$, then $P^{\left(p^{k}\right)}$ has at least one root β such that $v(\beta) \geqslant u$.
(b) if $n=p^{k+1}$ for $k \geqslant 0$, then $P^{\left(p^{k}\right)}$ has at least one root β such that $v(\beta) \geqslant u-\frac{1}{p^{k+1}-p^{k}}$.
8. Denote $[L(\alpha): L]=n$ and $\ell(n)$ the maximal power such that $p^{\ell(n)} \leqslant n$. Prove that there exists $a \in L$ such that

$$
v_{p}(\alpha-a) \geqslant \Delta_{L}(\alpha)-\sum_{i=1}^{\ell(n)} \frac{1}{p^{i}-p^{i-1}}
$$

In particular we can prove Ax's theorem with $C=\frac{p}{(p-1)^{2}}$. Hint : We can use strong induction on n.
9. Prove the theorem of Ax-Sen-Tate.
10. What is $\left(\mathbb{C}_{p}\right)^{G_{Q_{p}}}$?

Exercice 4. Let A be a discrete valuation ring (DVR), i.e. a ring with a discrete (non trivial) valuation ${ }^{1}$, K its fraction field and denote by $v: K \longrightarrow \mathbb{Z} \cup\{\infty\}$ the valuation. If $P=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} \in K[X]$ with $a_{0} \neq 0$, we define $\mathcal{N e w t}_{P}$ the Newton polygone of P as the unique maximal continuous fonction, piecewise linear with breakpoint at integral abscissas, $\mathcal{N e w t}_{P}:[0, d] \longrightarrow \mathbb{R}$ such that

- $\mathcal{N e w t}_{P}(0)=v\left(a_{0}\right)$ et $\mathcal{N e w t}_{P}(d)=v\left(a_{d}\right)$.
- $\mathcal{N e w t}_{P}(j) \leqslant v\left(a_{j}\right) \forall j \in\{0, \ldots, d\}$.
- The graph of $\mathcal{N e w t}{ }_{P}$ is convex (i.e. has increasing slopes).

Another way to say it is that $\mathcal{N e w t}_{P}$ is the lower convex hull of points $\left(i, v\left(a_{i}\right)\right)$.

1. Draw the polygon of $X^{3}-X^{2}-2 X+8 \in \mathbb{Q}_{2}[X]$ and of $X^{3}+2 X^{2}-2 X+4 \in$ $\mathbb{Q}_{2}[X]$.
2. Assume given a factorisation $P(X)=\prod_{i=1}^{d}\left(X-x_{i}\right) \in K[X], x_{i} \neq 0$ and denote $\gamma_{1} \leqslant \gamma_{2} \leqslant \cdots \leqslant \gamma_{d}$ the slopes of $\mathcal{N e w t}_{P}$ (with multiplicity). Show that, up to reorder the x_{i}, we have $\gamma_{i}=-v\left(x_{i}\right)$. Hint : we can introduce the piecewise linear function on $[0, d]$ starting at $v\left(a_{0}\right)$ and with increasing slopes $v\left(x_{i}\right)$ (with multiplicities) and try to compare its position to $\mathcal{N e w t}_{P}$
3. Deduce that if $P \in K[X]$ is irreducible, then its Newton polygon is a line. What are the possible reductions of P if $P \in \mathcal{O}_{K}[X]$ and irreducible in $K[X]$?

[^0]4. Let $P=X^{d}+a_{1} X^{d-1}+\cdots+a_{d} \in K[X]$ with $a_{d} \neq 0$ a separable polynomial (or assume K of characteristic zero). Assume that the slopes of $\mathcal{N e w t}{ }_{P}$ are $\lambda_{1}<\cdots<\lambda_{k}$, with multiplicities w_{1}, \ldots, w_{k}. Then there exists a unique factorisation $P(X)=\prod_{i=1}^{k} g_{i}(X)$ with g_{i} unitary, $\operatorname{deg} g_{i}=w_{i}$ et $\mathcal{N} \mathrm{Newt}_{g_{i}}$ isoclinic of slope λ_{i}. Can you extend it to the general case?
5. Show that $X^{3}-X^{2}-2 X+8$ has three distinct roots in \mathbb{Q}_{2}.
6. Deduce the following version of Hensel's Lemma : if $P \in \mathcal{O}_{K}$, such that
$$
P \equiv \bar{h} \bar{g} \quad\left(\bmod \mathfrak{m}_{K}\right)
$$
with \bar{h}, \bar{g} coprime, then there exists $h, g \in \mathcal{O}_{K}[X]$ such that $P=h g$ and $h \equiv \bar{h}, g \equiv \bar{g}\left(\bmod \mathfrak{m}_{K}\right)$. Hint : We can start by writing $P=\prod_{i=1}^{r} P_{i}$ as a product of irreducible
7. Prove Eisenstein-Dumas criterion :

Theorem 5. Let $P \in K[X]$. Assume its Newton polygon is a line from $(0, n)$ to $(d, 0)$ with $n, d=1$. Then P is irreducible.

Deduce the classical Eisenstein criterion.

[^0]: ${ }^{1}$ Prove if you want that it is the same as an integral, local, dimension one ring

