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Warm-up

1. Let L{K be an algebraic extension of complete non-archimedian fields. Show
that OL is the integral closure of OK in L.

2. Show that if L{K is a finite extension of local fields, then L{K is totally
ramified if and only if OL “ OKrπs with π a root of an Eisenstein polynomial
in KrXs.

3. Show that if K is a finite extension of Cpptqq then there exists n such that
K » Cppt1{nqq.

Exercices

Exercice 1. Let L “ Qp be an algebraic closure of Qp.

1. Show that the p-adic absolute value |¨|p extends uniquely to L.

We are going to give two proofs that L is not complete.
For all prime number ` ą 2 let ζ` be a primitive `-th root of 1. Assume that L is

complete and let Liouville’s number

α “
ÿ

`Rt2,pu

ζ`p
`.

2. Show that the series converges in L.

Let K “ Qppαq Ă L. Let `1 the least prime R t2, pu such that ζ`1 R K .

3. Show that ζ`1 P OL and that there exists β P OK satisfying β ” ζ`1 mod p.

4. Deduce that K contains a `1-th root of 1 congruent to ζ`1 modulo p.

5. For ` ‰ p, show that roots of unity of order ` are distinct modulo p. Deduce
that ζ`1 P K and thus that the residue field of K is infinite.

6. Get a contradiction.

Second proof :

7. For d ě 1, show thatQp has only a finite number of non isomorphic extensions
of degree d.
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8. For d ě 1, let Ld Ă L the compositum of all degree ď d extensions of Qp.
Show that Ld is a closed subset of L with empty interior.

9. Conclude.

Exercice 2. Show that Cp is not spherically complete. Hint : Choose a sequence panqn
which is dense in Cp.

Exercice 3 (Ax-Sen-Tate). Let K be a complete non archimedean field. Let Ksep Ă

K a separable and algebraic closure. Let GK “ GalpK{Kq “ GalpKsep{Kq the
Galois group.

1. Show that the action of GK extends to pK .

2. Show that if M{L is a separable extension of fields, then trM{L “ M ÝÑ L
is surjective.

Our goal is to prove the following theorem of Ax-Sen-Tate,

Theorem 1 (Ax-Sen-Tate). Let H be a closed subgroup of GK . Then p
pKqH is the

completion of K
H
, i.e. K

H
is dense in p pKqH .

The reader who wants to focus of the case of extensions of Qp can forget about

questions 3.-6. We introduce L “ K
H
. If α P K , denote ∆Lpαq “ infσPH vpσpαq´

αq, the diameter of α w.r.t. L. Clearly, ∆Lpαq “ 0 iff α P L.

3. Show that L is perfect.

To prove the theorem, we will need to first prove the following theorem of Ax

Theorem 2 (Ax). There exists a constant C such that for α P K , there is a P L such
that vpα´ aq ě ∆Lpαq ´ C .

Fix a α and denote M “ Lpαq, it is a finite separable extension of L by the
previous question.

4. AssumeK is of equal characteristics zero. Show that setting a “ trM{Lp
1

rM :Lsαq

we have
vpa´ αq ě ∆Lpαq.

5. Now assume K is of equal characteristics p ą 0. Show that for all δ ą 0 there
exists y PM such that vpyq ą ´δ and trM{Lpyq “ 1.

6. Setting a “ trM{Lpyαq, show that for all δ ą 0 there exists a P L such that

vpa´ αq ě ´δ `∆Lpαq.

For the next two questions, we assume that K is of characteristic zero and its residue
field is of characteristic p ą 0. We also assume vppq “ 1.
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7. Let P P KrXs unitary of degree n such that all its roots α satisfies vpαq ě u.
Show that

(a) if n “ pkd, p ffl d and d ě 2, then P pp
k
q has at least one root β such that

vpβq ě u.

(b) if n “ pk`1 for k ě 0, then P pp
k
q has at least one root β such that

vpβq ě u´ 1
pk`1´pk

.

8. Denote rLpαq : Ls “ n and `pnq the maximal power such that p`pnq ď n.
Prove that there exists a P L such that

vppα´ aq ě ∆Lpαq ´

`pnq
ÿ

i“1

1

pi ´ pi´1
.

In particular we can prove Ax’s theorem with C “ p
pp´1q2 . Hint : We can use

strong induction on n.

9. Prove the theorem of Ax-Sen-Tate.

10. What is pCpqGQp ?

Exercice 4. Let A be a discrete valuation ring (DVR), i.e. a ring with a discrete
(non trivial) valuation1, K its fraction field and denote by v : K ÝÑ Z Y t8u the
valuation. If P “ adX

d ` ad´1X
d´1 ` ¨ ¨ ¨ ` a0 P KrXs with a0 ‰ 0, we define

NewtP the Newton polygone of P as the unique maximal continuous fonction,
piecewise linear with breakpoint at integral abscissas, NewtP : r0, ds ÝÑ R such
that

• NewtP p0q “ vpa0q et NewtP pdq “ vpadq.

• NewtP pjq ď vpajq@j P t0, . . . , du.

• The graph of NewtP is convex (i.e. has increasing slopes).

Another way to say it is that NewtP is the lower convex hull of points pi, vpaiqq.

1. Draw the polygon of X3´X2´2X`8 P Q2rXs and of X3`2X2´2X`4 P
Q2rXs.

2. Assume given a factorisation P pXq “
śd
i“1pX ´ xiq P KrXs, xi ‰ 0 and

denote γ1 ď γ2 ď ¨ ¨ ¨ ď γd the slopes of NewtP (with multiplicity). Show
that, up to reorder the xi, we have γi “ ´vpxiq. Hint : we can introduce the
piecewise linear function on r0, ds starting at vpa0q and with increasing slopes
vpxiq (with multiplicities) and try to compare its position to NewtP

3. Deduce that if P P KrXs is irreducible, then its Newton polygon is a line.
What are the possible reductions of P if P P OKrXs and irreducible in KrXs
?

1Prove if you want that it is the same as an integral, local, dimension one ring
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4. Let P “ Xd`a1X
d´1`¨ ¨ ¨`ad P KrXs with ad ‰ 0 a separable polynomial

(or assume K of characteristic zero). Assume that the slopes of NewtP are
λ1 ă ¨ ¨ ¨ ă λk, with multiplicities w1, . . . , wk. Then there exists a unique
factorisation P pXq “

śk
i“1 gipXq with gi unitary, deg gi “ wi et Newtgi

isoclinic of slope λi. Can you extend it to the general case ?

5. Show that X3 ´X2 ´ 2X ` 8 has three distinct roots in Q2.

6. Deduce the following version of Hensel’s Lemma : if P P OK , such that

P ” hg pmod mKq,

with h, g coprime, then there exists h, g P OKrXs such that P “ hg and
h ” h, g ” g pmod mKq. Hint : We can start by writing P “

śr
i“1 Pi as a

product of irreducible

7. Prove Eisenstein-Dumas criterion :

Theorem 5. Let P P KrXs. Assume its Newton polygon is a line from p0, nq to
pd, 0q with n, d “ 1. Then P is irreducible.

Deduce the classical Eisenstein criterion.
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