Théorie des nombres - TD5

Exercise 1. 1. Let K be a field, θ algebraic and separable over K, with polynomial P of degree n, and $L = K(\theta)$. Show that the discriminant of $(x, y) \mapsto \operatorname{tr}_{L/K}(xy)$ (in the basis $\theta^k, k = \{0, \ldots, n-1\}$) is

$$(-1)^{\frac{n(n-1)}{2}} N_{L/K} P'(\theta).$$

- 2. Deduce the discriminant of $\mathbb{Q}(\zeta_p)/\mathbb{Q}$, for an odd prime, and primes that ramifies in $\mathbb{Q}(\zeta_p)$.
- 3. What is the discriminant of $\mathbb{Q}(\theta)$ for θ a root of $X^3 + 2X + 1$? Deduce that $\mathcal{O}_{\mathbb{Q}(\theta)} = \mathbb{Z}[\theta]$.
- 4. (More difficult) What is the discriminant of $\mathbb{Q}(\sqrt[3]{7})$? Prove that $\mathbb{Z}(\sqrt[3]{7}) = \mathcal{O}_{\mathbb{Q}(\sqrt[3]{7})}$. If you are courageous find $C\ell(\mathbb{Z}(\sqrt[3]{7}))$. To calculate $\mathcal{O}_{\mathbb{Q}\sqrt[3]{7}}$ we can show that both ring are equal away from 21, and localise at 3 and 7 to reduce to show the equality for some extension of $\mathbb{Q}_3, \mathbb{Q}_7$ where we can prove the result for the quotient ring mod 3, 7 and using Nakayama's lemma. For the class group calculation, in the end you should find $\mathbb{Z}/3\mathbb{Z}$. After classical reductions you should have 3 potential generators, so use the Norm and try to calculate product of ideals whose norm has a chance to be the norm of one element.

Exercise 2. We want to prove that $\mathbb{Q}[i, \sqrt{5}]/\mathbb{Q}(i\sqrt{5})$ is unramified everywhere. We will consider the following extensions

- 1. What are the ramified primes in the three quadratic extensions of \mathbb{Q} ?
- 2. Prove that if M/L/K is a tower of extensions, and $\mathfrak{P} \mid \mathfrak{p} \mid p$ are primes in these extensions, then $e(\mathfrak{P} \mid p) = e(\mathfrak{P} \mid p)e(\mathfrak{p} \mid p)$.
- 3. Deduce that the maximum ramification index in $\mathbb{Q}(i,\sqrt{5})/\mathbb{Q}$ is 2.
- 4. Now fix a ramified prime \mathfrak{P} for $L = \mathbb{Q}(i, \sqrt{5})$ over \mathbb{Q} , let $G_{\mathfrak{P}} \subset \operatorname{Gal}(L/\mathbb{Q})$ be the associated decomposition subgroup, and H the subgroup acting trivially on $\mathcal{O}_L/\mathfrak{P}$. Show that H is of index 2 in $\operatorname{Gal}(L/\mathbb{Q})$, and if K is the corresponding quadratic extension, \mathfrak{P} ramifies for L/K.
- 5. Prove that $L/\mathbb{Q}(i\sqrt{-5})$ is everywhere unramified. *Hint* : otherwise choose \mathfrak{P} so that $K = \mathbb{Q}(i\sqrt{5})$ in the previous question. If $\mathfrak{P}|p$, then show that there is only one prime, which ramifies, above p in the other two quadratic extensions by letting H act on them.
- 6. Alternatively, use discriminant and different to reprove this result !

Exercise 3 (*p*-adic remarks). 1. Show that for all $N \in \mathbb{N}_{>1}$, we have an isomorphism

$$\operatorname{proj}_{i \ge 0} \mathbb{Z}/N^i \mathbb{Z} \simeq \prod_{p \mid N} \mathbb{Z}_p.$$

- 2. Show that for all sequence $(u_n)_{n \in \mathbb{N}}$, $u_n \in \mathbb{Q}_p$ (or in \mathbb{Q}), $\sum_n u_n$ converges in \mathbb{Q}_p if and only if $u_n \longrightarrow 0$ in \mathbb{Q}_p . Find an example of a sequence of rational whose sum converge in \mathbb{Q}_p but not in \mathbb{R} .
- 3. Show that writing $x = \sum_{i} a_{i}p^{i} \in \mathbb{Q}_{p}$, with $a_{i} \in \{0, \ldots, p-1\}$ we have $x \in \mathbb{Q}$ if and only if the sequence $(a_{i})_{i}$ is eventually periodic.
- 4. Show that there exists a continuous surjection $\mathbb{Z}_p \longrightarrow [0, 1]$. Is there a continuous surjection $[0, 1] \longrightarrow \mathbb{Z}_p$?