Théorie des nombres - TD4

Exercise 1 (Hilbert's Symbol). Let k be a field, and $a, b \in k^{\times}$. We define the *Hilbert Symbol* $(a, b)_k$ by

$$(a,b)_k = \begin{cases} 1 & \text{if } ax^2 + by^2 = z^2 \text{ has a non zero solution} \\ -1 & \text{otherwise} \end{cases}$$

1. Show the following relations

$$(a,b) = (b,a)$$
 $(a,c^2) = 1$
 $(a,-a) = 1$ $(a,1-a) = 1$
 $(a,b) = 1 \Rightarrow (a'a,b) = (a',b)$
 $(a,b) = (a,-ab) = (a,(1-a)b)$

2. Show the following, for $k = \mathbb{R}$ or \mathbb{Q}_p^{\times} .

Theorem 0.1. If $k = \mathbb{R}$, then $(a,b)_{\mathbb{R}} = 1$ except if a, b < 0, in which case $(a,b)_{\mathbb{R}} = (-1,-1)_{\mathbb{R}} = -1$.

If $k = \mathbb{Q}_p$, show that, writing $a = p^{\alpha}u, b = p^{\beta}v, u, v \in \mathbb{Z}_p^{\times}$, we have

$$(a,b) = (-1)^{\alpha\beta\frac{p-1}{2}} \left(\frac{u}{p}\right)^{\beta} \left(\frac{v}{p}\right)^{\alpha} \quad \text{if } p \neq 2$$
$$(a,b) = (-1)^{\varepsilon(u)\varepsilon(v) + \alpha\omega(v) + \beta\omega(u)} \quad \text{if } p = 2$$

with $\varepsilon(n) = \frac{n-1}{2}$ and $\omega(n) = \frac{n^2-1}{8}$.

Hint : reduce to the cases $(\alpha, \beta) = (0, 0), (1, 0), (1, 1)$.

- 3. Show that $(,)_k$ is a non degenerate bilinear form on the \mathbb{F}_2 -vector space $k^{\times}/(k^{\times})^2$ for $k = \mathbb{R}$ or \mathbb{Q}_p .
- 4. Show that given $a, b \in \mathbb{Q}^{\times}$, $(a, b)_v := (a, b)_{\mathbb{Q}_v} = 1$ for almost all v and

$$\prod_{v} (a, b)_v = 1.$$

- 5. Show that given Q a quaternion algebra over \mathbb{Q} , show that the number of places v where Q is ramified (i.e. $Q \otimes \mathbb{Q}_v$ non split) is finite and even.
- 6. Can you find for any two distincts places of \mathbb{Q} a quaternions algebra ramified exactly at these 2 places?
- **Exercise 2** (Courbes de Shimura). 1. Let \mathcal{O} be an order in a quaternion algebra D over \mathbb{Q} , such that $D \otimes \mathbb{R} = M_2(\mathbb{R})$. Show that $\mathcal{O}^1 = \{o \in \mathcal{O} | N_{D_{\mathbb{R}}/\mathbb{R}}(o) = 1\}$ acts on

$$\mathbb{H} = \{ x + iy \in \mathbb{C} \mid y > 0 \}$$

2. Show that the action is properly discontinuous ¹, and that we can define the quotient $\mathcal{O}^1 \setminus \mathbb{H}$ (as a topological space). *Hint* : Show first that \mathcal{O} is discrete in $D_{\mathbb{R}}$

^{1.} i.e. for all $K \subset \mathbb{H}$ compact, $\{\gamma \in \mathcal{O}^1 | \ \gamma K \cap K \neq \emptyset\}$ is finite

- 3. Show that $\mathcal{O}^1 \setminus \mathbb{H}$ is compact if and only if D is non split over \mathbb{Q} .
- 4. Here are "representations" of the quotient of \mathbb{H} by the Norm 1 elements of the maximal order in $(-1,3)_{\mathbb{Q}}$ and in $M_2(\mathbb{Q})$ (socalled *fundamental domains*). Can you tell which is which?

- **Exercise 3** (Minkowski). 1. Using Minkowski's theorem, show that p is sum of two square if $p \equiv 1 \pmod{4}$. Hint : Suppose $p \equiv 1 \pmod{4}$. Let $u \in \mathbb{Z}$ such that $u^2 \equiv -1 \pmod{p}$. Let $L = \{(a,b) \in \mathbb{Z}^2 | a \equiv ub \pmod{p}\}$. Show that it is a lattice, and calculate its covolume. Apply Minkowski theorem with the disc of radius $\sqrt{2p}$. What can you say about $a^2 + b^2$ for $(a,b) \in L$?
 - 2. Show that if n has no square factor, -1 is a sum of two squares modulo n, thus $1+u^2+v^2 \equiv 0 \pmod{n}$. Let $L = \{(a, b, c, d) \in \mathbb{Z}^4 | c \equiv au + bv \pmod{n}, d \equiv av bu \pmod{n}\}$. Reprove that any integer is a sum of 4 squares. Hint : Show that you can reduce to n without square factors, that L is a lattice of covolume n^2 , then use a well chosen disc and apply Minkowski's theorem. Use (or prove) that the disc of radius r in \mathbb{R}^4 has volume $\frac{\pi^2}{2}r^4$.
 - 3. Prove the following approximation theorem

Theorem 0.2 (Dirichlet). Let $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$, and $N \in \mathbb{N}_{>0}$. Then there exists $p_1, \ldots, p_d \in \mathbb{Z}$ and $1 \leq q \leq N$ an integer such that

$$|\alpha_i - \frac{p_i}{q}| \le \frac{1}{qN^{1/d}}.$$

Hint : Use Minkowski's theorem with

$$C = \{ (x, y_1, \dots, y_d) \in \mathbb{R}^{d+1} | x \in [-N - \frac{1}{2}, N + \frac{1}{2}], |\alpha_i x - y_i| \le \frac{1}{N^{1/d}} \}.$$

Exercise 4 (Classification of projective finite type \mathcal{O}_K -modules). If A is a commutative ring, a A-module of finite type P is projective if for every projective map of A-module $f: M \to N$, and every $g: P \to N$, there is a $h: P \to M$ such that $g = f \circ h^2$. Let A be a Dedekind ring.

- 1. Show that a fractional ideal I of A is projective. Hint : Use that $\mathfrak{a}(\mathfrak{a}^{-1}) = A$ to find generators $\mathfrak{a} = \sum Ax_i$ and to construct a lift $h : \mathfrak{a} \longrightarrow M$ of $g : \mathfrak{a} \longrightarrow N$ along $f : M \twoheadrightarrow N$.
- 2. Show that a torsion-free, finitely generated A-module is a direct sum of ideals in A. Deduce that for finite type A-module, torsion-free and projective are equivalent notions. *Hint* : *Find* an injective map $M \longrightarrow A^r$ for a well chosen r. What are the image on each component?
- 3. Show that for fractional ideals $\mathfrak{a},\mathfrak{b},$ we have as A-module,

$$\mathfrak{a} \oplus \mathfrak{b} \simeq A \oplus \mathfrak{ab}.$$

Hint : Show that you can assume $\mathfrak{a}, \mathfrak{b}$ are inside A. Then show that you can assume that $\mathfrak{a}, \mathfrak{b}$ are coprime. For this, try to find $a \in \mathfrak{a}^{-1}$ such that $a\mathfrak{a} + \mathfrak{b} = A$, and for this use the decomposition of \mathfrak{b} as a product of prime ideals (you want $a\mathfrak{a} \not\subset \mathfrak{p}$ for any $\mathfrak{p} \supset \mathfrak{b}$). Then find the obvious exact sequence and show it is split.

^{2.} Equivalently (why?) P is a direct factor in a free of finite rank A-module

- 4. Show that if two torsion-free finitely generated A-modules are written as $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n$ and $\mathfrak{b}_1 \oplus \cdots \oplus \mathfrak{b}_m$, they are isomorphic if and only if n = m and $\mathfrak{a}_1 \dots \mathfrak{a}_n = \mathfrak{b}_1 \dots \mathfrak{b}_n \in C\ell(A)$. *Hint* : Show that $\det(\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n) := \bigwedge^n (\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n) \simeq \mathfrak{a}_1 \dots \mathfrak{a}_n$
- 5. By the morphism $M = \mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n \mapsto (n, \mathfrak{a}_1 \dots \mathfrak{a}_n)$, to what is sent $M \oplus N$?

Exercise 5. Let p be a prime, and $\zeta = e^{2i\pi/p}$ a primitive p-th root of 1. Show that $\mathbb{Z}[\zeta]$ is the unique maximal order in $\mathbb{Q}(\zeta)$. *Hint*: *it is enough to show that* $\mathbb{Z}[\zeta_p]$ *is the ring of integers. Here are some steps*

- 1. Show that $\frac{1-\zeta^r}{1-\zeta^s} \in \mathbb{Z}[\zeta]^{\times}$ for all $r, s \in \mathbb{Z}$ not divisible by p.
- 2. Deduce that $p = u(1-\zeta)^{p-1}$ for some $u \in \mathbb{Z}[\zeta]^{\times}$.
- 3. Let $\alpha = c_0 + c_1 \zeta + \dots + c_{p-2} \zeta^{p-2} \in \mathcal{O}_{\mathbb{Q}(\zeta)}, c_i \in \mathbb{Q}$. Using traces deduce $p\alpha \in \mathbb{Z}[\zeta]$.
- 4. Remark that if $\pi = 1 \zeta$, $\mathbb{Z}[\pi] = \mathbb{Z}[\zeta]$, then write $p\alpha = b_0 + b_1\pi + \cdots + b_{p-2}\pi^{p-2}, b_i \in \mathbb{Z}$. Show by induction that $p|b_i$ for all i using step 2.

Exercise 6 (Calculation of some class groups). 1. Let $K = \mathbb{Q}(i\sqrt{7})$. Show that $h_K := |C\ell(\mathcal{O}_K)| = 1$.

- 2. Let $K = \mathbb{Q}(\sqrt{-5})$. Show that $C\ell(\mathcal{O}_K) = \mathbb{Z}/2\mathbb{Z}$.
- 3. Deduce that $Y^3 = X^2 + 5$ has no integral solution, but has a solution modulo n for all $n \in \mathbb{N}_{>0}$.
- 4. Let $K = \mathbb{Q}(\sqrt{-14})$. Show that $C\ell(\mathcal{O}_K) = \mathbb{Z}/4\mathbb{Z}$.
- 5. Let $K = \mathbb{Q}(\sqrt{2})$ or $K = \mathbb{Q}(\sqrt{7})$. Show that $h_K := |C\ell(\mathcal{O}_K)| = 1$.

Remark 0.3. Actually we know the full list of quadratic fields $K = \mathbb{Q}(\sqrt{d})$ for which the norm gives the structure of a euclidean ring for \mathcal{O}_K (such a ring is called *norm euclidean*) :

-11, -7, -3, -2, -1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

But the story doesn't stop here : while we know that for quadratic *imaginary* field (i.e. d < 0) euclidean and norm euclidean are equivalent, thus giving the full list of quadratic imaginary field for which integral elements form an euclidean ring, the result is completely different for *real* quadratic fields (d > 0), as for d = 14, 69 the corresponding rings are euclidean but not Norm euclidean (a theorem of Harper and Clark respectively). Also, we know completely the list of *principal* integer rings for *imaginary* quadratic fields, adding

$$-19, -43, -67, -163,$$

to the previous list and we know that when $d \to -\infty$ then the class number h_K goes to infinity (Heilbronn), while for *real* quadratic fields this is widely open, and there is a conjecture of Gauss that \mathcal{O}_K will be principal for an infinite number of real quadratic field (actually ~ 75, 4% of them).

Exercise 7 (Maximal order in some matrix rings). Let $R = \mathbb{Z}$ or \mathbb{Z}_p (or a principal ring) and $K = \operatorname{Frac}(R)$, and consider $M_n(K)$. Show that conjugate (under $\operatorname{GL}_n(K)$) of $M_n(R)$ are maximal orders and that all maximal orders are of this form.

Hint: use the trace pairing $\operatorname{tr}: M_n(K) \times M_n(K) \longrightarrow K$ and $M^* = \{m \in M_n(K) | \operatorname{tr}(mM) \subset R\}$ to prove that $M_n(R)^* = M_n(R)$, which is thus maximal. In the other direction, consider $M := \mathcal{O} \cdot R^n \subset K^n$ for some maximal order $\mathcal{O} \subset M_n(K)$, as a R-module. Use the structure theorem for finite type module over a principal ring to conclude.