Théorie des nombres - TD4

Exercise 1 (Hilbert's Symbol). Let k be a field, and $a, b \in k^{\times}$. We define the Hilbert Symbol $(a, b)_{k}$ by

$$
(a, b)_{k}=\left\{\begin{array}{cc}
1 & \text { if } a x^{2}+b y^{2}=z^{2} \text { has a non zero solution } \\
-1 & \text { otherwise }
\end{array}\right.
$$

1. Show the following relations

$$
\begin{gathered}
(a, b)=(b, a) \quad\left(a, c^{2}\right)=1 \\
(a,-a)=1 \quad(a, 1-a)=1 \\
(a, b)=1 \Rightarrow\left(a^{\prime} a, b\right)=\left(a^{\prime}, b\right) \\
(a, b)=(a,-a b)=(a,(1-a) b)
\end{gathered}
$$

2. Show the following, for $k=\mathbb{R}$ or \mathbb{Q}_{p}^{\times}.

Theorem 0.1. If $k=\mathbb{R}$, then $(a, b)_{\mathbb{R}}=1$ except if $a, b<0$, in which case $(a, b)_{\mathbb{R}}=$ $(-1,-1)_{\mathbb{R}}=-1$.
If $k=\mathbb{Q}_{p}$, show that, writing $a=p^{\alpha} u, b=p^{\beta} v, u, v \in \mathbb{Z}_{p}^{\times}$, we have

$$
\begin{aligned}
& (a, b)=(-1)^{\alpha \beta \frac{p-1}{2}}\left(\frac{u}{p}\right)^{\beta}\left(\frac{v}{p}\right)^{\alpha} \quad \text { if } p \neq 2 \\
& (a, b)=(-1)^{\varepsilon(u) \varepsilon(v)+\alpha \omega(v)+\beta \omega(u)} \quad \text { if } p=2
\end{aligned}
$$

with $\varepsilon(n)=\frac{n-1}{2}$ and $\omega(n)=\frac{n^{2}-1}{8}$.
Hint : reduce to the cases $(\alpha, \beta)=(0,0),(1,0),(1,1)$.
3. Show that $(,)_{k}$ is a non degenerate bilinear form on the \mathbb{F}_{2}-vector space $k^{\times} /\left(k^{\times}\right)^{2}$ for $k=\mathbb{R}$ or \mathbb{Q}_{p}.
4. Show that given $a, b \in \mathbb{Q}^{\times},(a, b)_{v}:=(a, b)_{\mathbb{Q}_{v}}=1$ for almost all v and

$$
\prod_{v}(a, b)_{v}=1
$$

5. Show that given Q a quaternion algebra over \mathbb{Q}, show that the number of places v where Q is ramified (i.e. $Q \otimes \mathbb{Q}_{v}$ non split) is finite and even.
6. Can you find for any two distincts places of \mathbb{Q} a quaternions algebra ramified exactly at these 2 places?

Exercise 2 (Courbes de Shimura). 1. Let \mathcal{O} be an order in a quaternion algebra D over \mathbb{Q}, such that $D \otimes \mathbb{R}=M_{2}(\mathbb{R})$. Show that $\mathcal{O}^{1}=\left\{o \in \mathcal{O} \mid N_{D_{\mathbb{R}} / \mathbb{R}}(o)=1\right\}$ acts on

$$
\mathbb{H}=\{x+i y \in \mathbb{C} \mid y>0\}
$$

2. Show that the action is properly discontinuous ${ }^{1}$, and that we can define the quotient $\mathcal{O}^{1} \backslash \mathbb{H}$ (as a topological space). Hint : Show first that \mathcal{O} is discrete in $D_{\mathbb{R}}$

[^0]3. Show that $\mathcal{O}^{1} \backslash \mathbb{H}$ is compact if and only if D is non split over \mathbb{Q}.
4. Here are "representations" of the quotient of \mathbb{H} by the Norm 1 elements of the maximal order in $(-1,3)_{\mathbb{Q}}$ and in $M_{2}(\mathbb{Q})$ (socalled fundamental domains). Can you tell which is which?

Exercise 3 (Minkowski). 1. Using Minkowski's theorem, show that p is sum of two square if $p \equiv 1(\bmod 4)$. Hint : Suppose $p \equiv 1(\bmod 4)$. Let $u \in \mathbb{Z}$ such that $u^{2} \equiv-1(\bmod p)$. Let $L=\left\{(a, b) \in \mathbb{Z}^{2} \mid a \equiv u b(\bmod p)\right\}$. Show that it is a lattice, and calculate its covolume. Apply Minkowski theorem with the disc of radius $\sqrt{2 p}$. What can you say about $a^{2}+b^{2}$ for $(a, b) \in L$?
2. Show that if n has no square factor, -1 is a sum of two squares modulo n, thus $1+u^{2}+v^{2} \equiv 0$ $(\bmod n)$. Let $L=\left\{(a, b, c, d) \in \mathbb{Z}^{4} \mid c \equiv a u+b v(\bmod n), d \equiv a v-b u(\bmod n)\right\}$. Reprove that any integer is a sum of 4 squares. Hint : Show that you can reduce to n without square factors, that L is a lattice of covolume n^{2}, then use a well chosen disc and apply Minkowski's theorem. Use (or prove) that the disc of radius r in \mathbb{R}^{4} has volume $\frac{\pi^{2}}{2} r^{4}$.
3. Prove the following approximation theorem

Theorem 0.2 (Dirichlet). Let $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}$, and $N \in \mathbb{N}_{>0}$. Then there exists $p_{1}, \ldots, p_{d} \in$ \mathbb{Z} and $1 \leq q \leq N$ an integer such that

$$
\left|\alpha_{i}-\frac{p_{i}}{q}\right| \leq \frac{1}{q N^{1 / d}}
$$

Hint : Use Minkowski's theorem with

$$
C=\left\{\left(x, y_{1}, \ldots, y_{d}\right) \in \mathbb{R}^{d+1}\left|x \in\left[-N-\frac{1}{2}, N+\frac{1}{2}\right],\left|\alpha_{i} x-y_{i}\right| \leq \frac{1}{N^{1 / d}}\right\}\right.
$$

Exercise 4 (Classification of projective finite type \mathcal{O}_{K}-modules). If A is a commutative ring, a A-module of finite type P is projective if for every projective map of A-module $f: M \rightarrow N$, and every $g: P \rightarrow N$, there is a $h: P \rightarrow M$ such that $g=f \circ h^{2}$. Let A be a Dedekind ring.

1. Show that a fractional ideal I of A is projective. Hint : Use that $\mathfrak{a}\left(\mathfrak{a}^{-1}\right)=A$ to find generators $\mathfrak{a}=\sum A x_{i}$ and to construct a lift $h: \mathfrak{a} \longrightarrow M$ of $g: \mathfrak{a} \longrightarrow N$ along $f: M \rightarrow N$.
2. Show that a torsion-free, finitely generated A-module is a direct sum of ideals in A. Deduce that for finite type A-module, torsion-free and projective are equivalent notions. Hint : Find an injective map $M \longrightarrow A^{r}$ for a well chosen r. What are the image on each component?
3. Show that for fractional ideals $\mathfrak{a}, \mathfrak{b}$, we have as A-module,

$$
\mathfrak{a} \oplus \mathfrak{b} \simeq A \oplus \mathfrak{a} \mathfrak{b}
$$

Hint : Show that you can assume $\mathfrak{a}, \mathfrak{b}$ are inside A. Then show that you can assume that $\mathfrak{a}, \mathfrak{b}$ are coprime. For this, try to find $a \in \mathfrak{a}^{-1}$ such that $a \mathfrak{a}+\mathfrak{b}=A$, and for this use the decomposition of \mathfrak{b} as a product of prime ideals (you want a $\mathfrak{a} \not \subset \mathfrak{p}$ for any $\mathfrak{p} \supset \mathfrak{b}$). Then find the obvious exact sequance and show it is split.

[^1]4. Show that if two torsion-free finitely generated A-modules are written as $\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{n}$ and $\mathfrak{b}_{1} \oplus \cdots \oplus \mathfrak{b}_{m}$, they are isomorphic if and only if $n=m$ and $\mathfrak{a}_{1} \ldots \mathfrak{a}_{n}=\mathfrak{b}_{1} \ldots \mathfrak{b}_{n} \in C \ell(A)$. Hint : Show that $\operatorname{det}\left(\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{n}\right):=\bigwedge^{n}\left(\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{n}\right) \simeq \mathfrak{a}_{1} \ldots \mathfrak{a}_{n}$
5. By the morphism $M=\mathfrak{a}_{1} \oplus \cdots \oplus \mathfrak{a}_{n} \mapsto\left(n, \mathfrak{a}_{1} \ldots \mathfrak{a}_{n}\right)$, to what is sent $M \oplus N$?

Exercise 5. Let p be a prime, and $\zeta=e^{2 i \pi / p}$ a primitive p-th root of 1 . Show that $\mathbb{Z}[\zeta]$ is the unique maximal order in $\mathbb{Q}(\zeta)$. Hint : it is enough to show that $\mathbb{Z}\left[\zeta_{p}\right]$ is the ring of integers. Here are some steps

1. Show that $\frac{1-\zeta^{r}}{1-\zeta^{s}} \in \mathbb{Z}[\zeta]^{\times}$for all $r, s \in \mathbb{Z}$ not divisible by p.
2. Deduce that $p=u(1-\zeta)^{p-1}$ for some $u \in \mathbb{Z}[\zeta]^{\times}$.
3. Let $\alpha=c_{0}+c_{1} \zeta+\cdots+c_{p-2} \zeta^{p-2} \in \mathcal{O}_{\mathbb{Q}(\zeta)}, c_{i} \in \mathbb{Q}$. Using traces deduce $p \alpha \in \mathbb{Z}[\zeta]$.
4. Remark that if $\pi=1-\zeta, \mathbb{Z}[\pi]=\mathbb{Z}[\zeta]$, then write $p \alpha=b_{0}+b_{1} \pi+\cdots+b_{p-2} \pi^{p-2}, b_{i} \in \mathbb{Z}$. Show by induction that $p \mid b_{i}$ for all i using step 2.

Exercise 6 (Calculation of some class groups). 1. Let $K=\mathbb{Q}(i \sqrt{7})$. Show that $h_{K}:=\left|C \ell\left(\mathcal{O}_{K}\right)\right|=$ 1.
2. Let $K=\mathbb{Q}(\sqrt{-5})$. Show that $C \ell\left(\mathcal{O}_{K}\right)=\mathbb{Z} / 2 \mathbb{Z}$.
3. Deduce that $Y^{3}=X^{2}+5$ has no integral solution, but has a solution modulo n for all $n \in \mathbb{N}_{>0}$.
4. Let $K=\mathbb{Q}(\sqrt{-14})$. Show that $C \ell\left(\mathcal{O}_{K}\right)=\mathbb{Z} / 4 \mathbb{Z}$.
5. Let $K=\mathbb{Q}(\sqrt{2})$ or $K=\mathbb{Q}(\sqrt{7})$. Show that $h_{K}:=\left|C \ell\left(\mathcal{O}_{K}\right)\right|=1$.

Remark 0.3 . Actually we know the full list of quadratic fields $K=\mathbb{Q}(\sqrt{d})$ for which the norm gives the structure of a euclidean ring for \mathcal{O}_{K} (such a ring is called norm euclidean) :

$$
-11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73
$$

But the story doesn't stop here : while we know that for quadratic imaginary field (i.e. $d<0$) euclidean and norm euclidean are equivalent, thus giving the full list of quadratic imaginary field for which integral elements form an euclidean ring, the result is completely different for real quadratic fields $(d>0)$, as for $d=14,69$ the corresponding rings are euclidean but not Norm euclidean (a theorem of Harper and Clark respectively). Also, we know completely the list of principal integer rings for imaginary quadratic fields, adding

$$
-19,-43,-67,-163
$$

to the previous list and we know that when $d \rightarrow-\infty$ then the class number h_{K} goes to infinity (Heilbronn), while for real quadratic fields this is widely open, and there is a conjecture of Gauss that \mathcal{O}_{K} will be principal for an infinite number of real quadratic field (actually $\sim 75,4 \%$ of them).

Exercise 7 (Maximal order in some matrix rings). Let $R=\mathbb{Z}$ or \mathbb{Z}_{p} (or a principal ring) and $K=\operatorname{Frac}(R)$, and consider $M_{n}(K)$. Show that conjugate (under $\mathrm{GL}_{n}(K)$) of $M_{n}(R)$ are maximal orders and that all maximal orders are of this form.

Hint : use the trace pairing $\operatorname{tr}: M_{n}(K) \times M_{n}(K) \longrightarrow K$ and $M^{*}=\left\{m \in M_{n}(K) \mid \operatorname{tr}(m M) \subset\right.$ $R\}$ to prove that $M_{n}(R)^{*}=M_{n}(R)$, which is thus maximal. In the other direction, consider $M:=\mathcal{O} \cdot R^{n} \subset K^{n}$ for some maximal order $\mathcal{O} \subset M_{n}(K)$, as a R-module. Use the structure theorem for finite type module over a principal ring to conclude.

[^0]: 1. i.e. for all $K \subset \mathbb{H}$ compact, $\left\{\gamma \in \mathcal{O}^{1} \mid \gamma K \cap K \neq \emptyset\right\}$ is finite
[^1]: 2. Equivalently (why ?) P is a direct factor in a free of finite rank A-module
