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Exercise 1 (Hilbert’s Symbol). Let k be a field, and a, b ∈ k×. We define the Hilbert Symbol
(a, b)k by

(a, b)k =

{
1 if ax2 + by2 = z2 has a non zero solution
−1 otherwise

1. Show the following relations

(a, b) = (b, a) (a, c2) = 1

(a,−a) = 1 (a, 1− a) = 1

(a, b) = 1⇒ (a′a, b) = (a′, b)

(a, b) = (a,−ab) = (a, (1− a)b)

2. Show the following, for k = R or Q×p .
Theorem 0.1. If k = R, then (a, b)R = 1 except if a, b < 0, in which case (a, b)R =
(−1,−1)R = −1.
If k = Qp, show that, writing a = pαu, b = pβv, u, v ∈ Z×p , we have

(a, b) = (−1)αβ
p−1
2

(
u

p

)β (
v

p

)α
if p 6= 2

(a, b) = (−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2

with ε(n) = n−1
2 and ω(n) = n2−1

8 .

Hint : reduce to the cases (α, β) = (0, 0), (1, 0), (1, 1).
3. Show that (, )k is a non degenerate bilinear form on the F2-vector space k×/(k×)2 for k = R

or Qp.
4. Show that given a, b ∈ Q×, (a, b)v := (a, b)Qv

= 1 for almost all v and∏
v

(a, b)v = 1.

5. Show that given Q a quaternion algebra over Q, show that the number of places v where
Q is ramified (i.e. Q⊗Qv non split) is finite and even.

6. Can you find for any two distincts places of Q a quaternions algebra ramified exactly at
these 2 places ?

Exercise 2 (Courbes de Shimura). 1. Let O be an order in a quaternion algebra D over Q,
such that D ⊗ R =M2(R). Show that O1 = {o ∈ O|NDR/R(o) = 1} acts on

H = {x+ iy ∈ C |y > 0}.

2. Show that the action is properly discontinuous 1, and that we can define the quotient O1\H
(as a topological space). Hint : Show first that O is discrete in DR

1. i.e. for all K ⊂ H compact, {γ ∈ O1| γK ∩K 6= ∅} is finite
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3. Show that O1\H is compact if and only if D is non split over Q.
4. Here are "representations" of the quotient of H by the Norm 1 elements of the maximal

order in (−1, 3)Q and in M2(Q) (socalled fundamental domains). Can you tell which is
which ?

Exercise 3 (Minkowski). 1. Using Minkowski’s theorem, show that p is sum of two square
if p ≡ 1 (mod 4). Hint : Suppose p ≡ 1 (mod 4). Let u ∈ Z such that u2 ≡ −1 (mod p).
Let L = {(a, b) ∈ Z2|a ≡ ub (mod p)}. Show that it is a lattice, and calculate its covolume.
Apply Minkowski theorem with the disc of radius

√
2p. What can you say about a2 + b2 for

(a, b) ∈ L ?
2. Show that if n has no square factor,−1 is a sum of two squares modulo n, thus 1+u2+v2 ≡ 0

(mod n). Let L = {(a, b, c, d) ∈ Z4|c ≡ au + bv (mod n), d ≡ av − bu (mod n)}. Reprove
that any integer is a sum of 4 squares. Hint : Show that you can reduce to n without
square factors, that L is a lattice of covolume n2, then use a well chosen disc and apply
Minkowski’s theorem. Use (or prove) that the disc of radius r in R4 has volume π2

2 r
4.

3. Prove the following approximation theorem
Theorem 0.2 (Dirichlet). Let α1, . . . , αd ∈ R, and N ∈ N>0. Then there exists p1, . . . , pd ∈
Z and 1 ≤ q ≤ N an integer such that

|αi −
pi
q
| ≤ 1

qN1/d
.

Hint : Use Minkowski’s theorem with

C = {(x, y1, . . . , yd) ∈ Rd+1| x ∈ [−N − 1

2
, N +

1

2
], |αix− yi| ≤

1

N1/d
}.

Exercise 4 (Classification of projective finite type OK-modules). If A is a commutative ring, a
A-module of finite type P is projective if for every projective map of A-module f :M � N , and
every g : P → N , there is a h : P →M such that g = f ◦ h 2. Let A be a Dedekind ring.

1. Show that a fractional ideal I of A is projective. Hint : Use that a(a−1) = A to find
generators a =

∑
Axi and to construct a lift h : a −→M of g : a −→ N along f :M � N .

2. Show that a torsion-free, finitely generated A-module is a direct sum of ideals in A. Deduce
that for finite type A-module, torsion-free and projective are equivalent notions. Hint : Find
an injective map M −→ Ar for a well chosen r. What are the image on each component ?

3. Show that for fractional ideals a, b, we have as A-module,

a⊕ b ' A⊕ ab.

Hint : Show that you can assume a, b are inside A. Then show that you can assume that
a, b are coprime. For this, try to find a ∈ a−1 such that aa + b = A, and for this use the
decomposition of b as a product of prime ideals (you want aa 6⊂ p for any p ⊃ b). Then
find the obvious exact sequance and show it is split.

2. Equivalently (why ?) P is a direct factor in a free of finite rank A-module
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4. Show that if two torsion-free finitely generated A-modules are written as a1⊕ · · · ⊕ an and
b1 ⊕ · · · ⊕ bm, they are isomorphic if and only if n = m and a1 . . . an = b1 . . . bn ∈ C`(A).
Hint : Show that det(a1 ⊕ · · · ⊕ an) :=

∧n
(a1 ⊕ · · · ⊕ an) ' a1 . . . an

5. By the morphism M = a1 ⊕ · · · ⊕ an 7→ (n, a1 . . . an), to what is sent M ⊕N ?

Exercise 5. Let p be a prime, and ζ = e2iπ/p a primitive p-th root of 1. Show that Z[ζ] is the
unique maximal order in Q(ζ). Hint : it is enough to show that Z[ζp] is the ring of integers. Here
are some steps

1. Show that 1−ζr
1−ζs ∈ Z[ζ]× for all r, s ∈ Z not divisible by p.

2. Deduce that p = u(1− ζ)p−1 for some u ∈ Z[ζ]×.
3. Let α = c0 + c1ζ + · · ·+ cp−2ζ

p−2 ∈ OQ(ζ), ci ∈ Q. Using traces deduce pα ∈ Z[ζ].
4. Remark that if π = 1− ζ, Z[π] = Z[ζ], then write pα = b0 + b1π + · · ·+ bp−2π

p−2, bi ∈ Z.
Show by induction that p|bi for all i using step 2.

Exercise 6 (Calculation of some class groups). 1. LetK = Q(i
√
7). Show that hK := |C`(OK)| =

1.
2. Let K = Q(

√
−5). Show that C`(OK) = Z/2Z.

3. Deduce that Y 3 = X2 + 5 has no integral solution, but has a solution modulo n for all
n ∈ N>0.

4. Let K = Q(
√
−14). Show that C`(OK) = Z/4Z.

5. Let K = Q(
√
2) or K = Q(

√
7). Show that hK := |C`(OK)| = 1.

Remark 0.3. Actually we know the full list of quadratic fields K = Q(
√
d) for which the norm

gives the structure of a euclidean ring for OK (such a ring is called norm euclidean) :

−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

But the story doesn’t stop here : while we know that for quadratic imaginary field (i.e. d < 0)
euclidean and norm euclidean are equivalent, thus giving the full list of quadratic imaginary
field for which integral elements form an euclidean ring, the result is completely different for real
quadratic fields (d > 0), as for d = 14, 69 the corresponding rings are euclidean but not Norm
euclidean (a theorem of Harper and Clark respectively). Also, we know completely the list of
principal integer rings for imaginary quadratic fields, adding

−19,−43,−67,−163,

to the previous list and we know that when d→ −∞ then the class number hK goes to infinity
(Heilbronn), while for real quadratic fields this is widely open, and there is a conjecture of Gauss
that OK will be principal for an infinite number of real quadratic field (actually ∼ 75, 4% of
them).

Exercise 7 (Maximal order in some matrix rings). Let R = Z or Zp (or a principal ring) and
K = Frac(R), and considerMn(K). Show that conjugate (under GLn(K)) ofMn(R) are maximal
orders and that all maximal orders are of this form.

Hint : use the trace pairing tr :Mn(K)×Mn(K) −→ K and M∗ = {m ∈Mn(K)| tr(mM) ⊂
R} to prove that Mn(R)

∗ = Mn(R), which is thus maximal. In the other direction, consider
M := O · Rn ⊂ Kn for some maximal order O ⊂ Mn(K), as a R-module. Use the structure
theorem for finite type module over a principal ring to conclude.
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