Théorie des nombres - TD3

Exercise 1. Let k be a field, and choose a separable closure of $k, k^{\text {sep }}$. Let $G_{k}=\operatorname{Gal}\left(k^{\text {sep }} / k\right)$ the Galois group of k with its topology. Show that if V is a \mathbb{C}-vector space, then any continuous map

$$
G_{k} \longrightarrow \mathrm{GL}(V),
$$

has finite image (i.e. factors through the Galois $\operatorname{group} \operatorname{Gal}(L / k)$ of a finite extension $L / k)$.
Exercise 2. 1. Let G be a topological group. Denote $[G, G]$ the closure of the commutator subgroup and $G^{a b}=G /[G, G]$ with its quotient topology. Show that any continous ϕ : $G \longrightarrow A^{\times}$with A an Hausdorff commutative topological ring ${ }^{1}$ factors through $G^{a b}$.
2. Let k be a field and $k^{\text {sep }}$ a fixed separable closure. Let $k^{a b}$ the largest abelian (Galois) extension of k in $k^{\text {sep }}$: show that $k^{a b}$ exists, is a Galois extension and $G_{k}^{a b}=\operatorname{Gal}\left(k^{a b} / k\right)$.
3. Show that a finite index subgroup of a (infinite) Galois group is not necessarily closed Hint : Consider the extension of \mathbb{Q} given by $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$, find its Galois group and consider a well chosen quotient of it.
Exercise 3. 1. Show that if A is a finite dimensional k-algebra, and R a noetherian integral domain with $\operatorname{Frac}(R)=k$, then any sub- R-algebra of finite type of A is contained in an $\left(R\right.$-)order. Hint : Show that if M is a full- R-lattice in A, then $\mathcal{O}_{l}(M)=\{x \in A \mid x M \subset M\}$ is a left-order. Then if B is a sub-R-algebra of finite type, show that B is included in a full-R-lattice
2. Show that if A / k is simple, and char $k=0$, then the reduced trace trd is non degenerate. Hint : If $K=Z(A)$, then show that $\operatorname{tr}_{A / k}=\operatorname{tr}_{K / k} \circ \operatorname{tr}_{A / K}$. Then try to reduce to a matrix algebra.

Exercise 4. Let $\mathbb{Q}(\sqrt{d})$, with d without square factors.

1. Show that $\mathbb{Z}[\sqrt{d}]$ is a maximal order if and only if $d \not \equiv 1(\bmod 4)$. What is the maximal order if $d \equiv 1(\bmod 4)$? Hint : What are the trace and norm of an integral element?
2. Show that $\mathbb{Z}[i \sqrt{3}]$ is not UFD (factoriel, en français), but $\mathbb{Z}\left[\frac{1+i \sqrt{3}}{2}\right]$ is. Show that $\mathbb{Z}[i \sqrt{5}]$ is not UFD.

Exercise 5. We want to show that the ring of integers of $K=\mathbb{Q}[\sqrt{7}, \sqrt{10}]$ is not of the form $\mathbb{Z}[\alpha]$.

1. Show that K / \mathbb{Q} is Galois with group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
2. Let

$$
\begin{aligned}
& \alpha_{1}=(1+\sqrt{7})(1+\sqrt{10}) \\
& \alpha_{2}=(1-\sqrt{7})(1+\sqrt{10}) \\
& \alpha_{3}=(1+\sqrt{7})(1-\sqrt{10}) \\
& \alpha_{4}=(1-\sqrt{7})(1-\sqrt{10})
\end{aligned}
$$

Show that $3 \mid \alpha_{i} \alpha_{j}$ for $i \neq j$ but that $3 \nmid \alpha_{i}^{n}$ for any power n. Hint : Look at the trace mod $3!$

[^0]3. Suppose that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ for some α, whose minimal polynomial is $f \in \mathbb{Z}[X]$. Show that for any polynomial $g \in \mathbb{Z}[X], 3 \mid g(\alpha)$ if and only if $\bar{f} \mid \bar{g}$ in $\mathbb{F}_{3}[X]$.
4. Deduce that \bar{f} has 4 distincts irreducible factors over \mathbb{F}_{3}. Hint : Look at $\alpha_{i}=f_{i}(\alpha), f_{i} \in$ $\mathbb{Z}[X]$ then show that $\bar{f} \mid \bar{f}_{i} \bar{f}_{j}$
5. What is the degree of f ? Conclude!

Exercise 6. Let $G=\{ \pm 1\} \simeq \mathbb{Z} / 2 \mathbb{Z}$ be a finite group. Let $A=\mathbb{Q}[G]$, it is a finite dimensional \mathbb{Q}-algebra. Show that as a $\mathbb{Q}[G]$-algebra (by left multiplication), $\mathbb{Q}[G]$ is semi-simple but not simple.
Exercise 7 (Jacobi's Formula). $\mathbb{H}=(-1,-1)_{\mathbb{Q}}$ be the Hurwitz quaternions, and denote N the reduced norm.

1. Where is \mathbb{H} ramified (i.e. for which places v - primes p corresponding to \mathbb{Q}_{p}, or ∞ corresponding to $\mathbb{Q}_{\infty}=\mathbb{R}$ - is $\mathbb{H} \otimes_{\mathbb{Q}} \mathbb{Q}_{v}$ nonsplit)? Hint : Use the previous exercice on the non-finite-typeness (?) of the Brauer group to prove that it is split at $p \neq 2$. Try to use a similar argument congruence argument to show that it is ramified at $p=2$
2. Let $\mathcal{O}^{\prime}=\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$. Show that \mathcal{O}^{\prime} is an order. Is it maximal?
3. Show that $\mathcal{O}=\left\{x+y i+z j+t k \mid x, y, z, t \in \mathbb{Z}\right.$ or $\left.x, y, z, t \in \frac{1}{2} \mathbb{Z} \backslash \mathbb{Z}\right\}$ is a maximal order containing \mathcal{O}^{\prime}. Hint : Again, (reduced) traces and norms are usefull here
4. What are the units of \mathcal{O}, i.e. \mathcal{O}^{\times}?
5. Show that \mathcal{O} has class number 1 (i.e. $C \ell(\mathcal{O})=\{\mathcal{O}\}$). Hint : prove that there is some kind of euclidean division on \mathcal{O} with respect to the reduced norm
6. Denote $\tau=\frac{1+i+j+k}{2}$. Show that $(1+i) \mathcal{O}$ is two-sided and

$$
\mathcal{O} /(1+i) \mathcal{O} \xrightarrow{\sim} \mathbb{F}_{2}[\bar{\tau}] \simeq \mathbb{F}_{4}
$$

is an isomorphism, which sends \mathcal{O}^{\prime} to \mathbb{F}_{2}.
7. Show that for p odd, we have the following equalities,
$|\{x \in \mathcal{O} \mid N(x)=p\}|=3\left|\left\{x \in \mathcal{O}^{\prime} \mid N(x)=p\right\}\right|=3\left|\left\{(a, b, c, d) \in \mathbb{Z}^{4} \mid a^{2}+b^{2}+c^{2}+d^{2}=p\right\}\right|$, and that $N(x)=p$ if and only if $x \mathcal{O}$ has index p^{2} in \mathcal{O}.
8. Show that if p is odd $\mathcal{O}_{p}:=\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{p}=M_{2}\left(\mathbb{Z}_{p}\right)$, and that \mathcal{O}_{p} has $p+1$ index p^{2} ideals. Hint : we can show that there are bijections, writing $\mathcal{O}_{p} \simeq\left(\mathbb{Z}_{p}^{2} \oplus \mathbb{Z}_{p}^{2}\right)$ as a left \mathcal{O}_{p}-module, $\left\{I \subset \mathcal{O}_{p}\right.$ of index $\left.p^{2}\right\} \simeq\left\{L \subset \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}\right.$ sub- \mathbb{Z}_{p}-module of index $\left.p\right\} \simeq\left\{\ell \subset \mathbb{F}_{p} \oplus \mathbb{F}_{p}\right.$ a line $\}$.
9. Show that $\Lambda \subset \mathbb{H} \mapsto\left(\Lambda \otimes \mathbb{Z}_{p}\right)_{p}$ induces an index-preserving bijection between lattices of \mathbb{H} and collection $\left(L_{p}\right)$ of lattices of $\mathbb{H} \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ such that $L_{p}=\mathcal{O}_{p}$ for almost all p. Furthermore Λ is an order, a maximal order, or an ideal for \mathcal{O} if and only if Λ_{p} has this property for all p.
10. Deduce the following theorem of Jacobi

Theorem 0.1 (Jacobi). Let p be an odd prime. Then

$$
\left|\left\{(a, b, c, d) \in \mathbb{Z}^{4} \mid a^{2}+b^{2}+c^{2}+d^{2}=p\right\}\right|=8(p+1)
$$

11. Deduce Lagrange's Theorem : every integer is a sum of 4 squares.

Remark 0.2. Actually there is a more general version of Jacobi's formula for sum's of 4 squares, for every integer $n \in \mathbb{N} \backslash\{0\}$,

$$
\left\{(a, b, c, d) \in \mathbb{Z}^{4} \mid a^{2}+b^{2}+c^{2}+d^{2}=n\right\}=8 \sum_{d \mid n, 4 \nmid d} d .
$$

It is best proven using modular forms (precisely of weight 2 and level $\Gamma_{0}(4)$), and the same method (only easier) gives the formula for sums of $2 k$ squares, $k \geq 2$. See the lecture of Zagier in the book The 1-2-3 of Modular Forms.

[^0]: 1. or an abelian topological group H such that 0_{H} is closed
