Théorie des nombres - TD3

Exercise 1. Let k be a field, and choose a separable closure of k, k^{sep} . Let $G_k = \text{Gal}(k^{sep}/k)$ the Galois group of k with its topology. Show that if V is a \mathbb{C} -vector space, then any continuous map

$$G_k \longrightarrow \operatorname{GL}(V),$$

has finite image (i.e. factors through the Galois group $\operatorname{Gal}(L/k)$ of a finite extension L/k).

- **Exercise 2.** 1. Let G be a topological group. Denote [G, G] the closure of the commutator subgroup and $G^{ab} = G/[G, G]$ with its quotient topology. Show that any continous $\phi : G \longrightarrow A^{\times}$ with A an Hausdorff commutative topological ring¹ factors through G^{ab} .
 - 2. Let k be a field and k^{sep} a fixed separable closure. Let k^{ab} the largest abelian (Galois) extension of k in k^{sep} : show that k^{ab} exists, is a Galois extension and $G_k^{ab} = \text{Gal}(k^{ab}/k)$.
 - 3. Show that a finite index subgroup of a (infinite) Galois group is not necessarily closed Hint: Consider the extension of \mathbb{Q} given by $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5},\dots)$, find its Galois group and consider a well chosen quotient of it.
- **Exercise 3.** 1. Show that if A is a finite dimensional k-algebra, and R a noetherian integral domain with $\operatorname{Frac}(R) = k$, then any sub-R-algebra of finite type of A is contained in an (R-)order. Hint : Show that if M is a full-R-lattice in A, then $\mathcal{O}_l(M) = \{x \in A | xM \subset M\}$ is a left-order. Then if B is a sub-R-algebra of finite type, show that B is included in a full-R-lattice
 - 2. Show that if A/k is simple, and char k = 0, then the reduced trace trd is non degenerate. Hint : If K = Z(A), then show that $\operatorname{tr}_{A/k} = \operatorname{tr}_{K/k} \circ \operatorname{tr}_{A/K}$. Then try to reduce to a matrix algebra.

Exercise 4. Let $\mathbb{Q}(\sqrt{d})$, with d without square factors.

- 1. Show that $\mathbb{Z}[\sqrt{d}]$ is a maximal order if and only if $d \not\equiv 1 \pmod{4}$. What is the maximal order if $d \equiv 1 \pmod{4}$? *Hint* : What are the trace and norm of an integral element?
- 2. Show that $\mathbb{Z}[i\sqrt{3}]$ is not UFD (factoriel, en français), but $\mathbb{Z}[\frac{1+i\sqrt{3}}{2}]$ is. Show that $\mathbb{Z}[i\sqrt{5}]$ is not UFD.

Exercise 5. We want to show that the ring of integers of $K = \mathbb{Q}[\sqrt{7}, \sqrt{10}]$ is not of the form $\mathbb{Z}[\alpha]$.

- 1. Show that K/\mathbb{Q} is Galois with group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 2. Let

$$\alpha_1 = (1 + \sqrt{7})(1 + \sqrt{10})$$

$$\alpha_2 = (1 - \sqrt{7})(1 + \sqrt{10})$$

$$\alpha_3 = (1 + \sqrt{7})(1 - \sqrt{10})$$

$$\alpha_4 = (1 - \sqrt{7})(1 - \sqrt{10})$$

Show that $3|\alpha_i\alpha_j$ for $i \neq j$ but that $3 \nmid \alpha_i^n$ for any power *n*. *Hint* : Look at the trace mod 3!

^{1.} or an abelian topological group H such that 0_H is closed

- 3. Suppose that $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some α , whose minimal polynomial is $f \in \mathbb{Z}[X]$. Show that for any polynomial $g \in \mathbb{Z}[X]$, $3 \mid g(\alpha)$ if and only if $\overline{f} \mid \overline{g}$ in $\mathbb{F}_3[X]$.
- 4. Deduce that \overline{f} has 4 distincts irreducible factors over \mathbb{F}_3 . Hint : Look at $\alpha_i = f_i(\alpha), f_i \in \mathbb{Z}[X]$ then show that $\overline{f}|\overline{f}_i\overline{f}_j$
- 5. What is the degree of f? Conclude!

Exercise 6. Let $G = \{\pm 1\} \simeq \mathbb{Z}/2\mathbb{Z}$ be a finite group. Let $A = \mathbb{Q}[G]$, it is a finite dimensional \mathbb{Q} -algebra. Show that as a $\mathbb{Q}[G]$ -algebra (by left multiplication), $\mathbb{Q}[G]$ is semi-simple but not simple.

Exercise 7 (Jacobi's Formula). $\mathbb{H} = (-1, -1)_{\mathbb{Q}}$ be the *Hurwitz quaternions*, and denote N the reduced norm.

- 1. Where is \mathbb{H} ramified (i.e. for which places v primes p corresponding to \mathbb{Q}_p , or ∞ corresponding to $\mathbb{Q}_{\infty} = \mathbb{R}$ is $\mathbb{H} \otimes_{\mathbb{Q}} \mathbb{Q}_v$ nonsplit)? Hint : Use the previous exercise on the non-finite-typeness (?) of the Brauer group to prove that it is split at $p \neq 2$. Try to use a similar argument congruence argument to show that it is ramified at p = 2
- 2. Let $\mathcal{O}' = \mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k$. Show that \mathcal{O}' is an order. Is it maximal?
- 3. Show that $\mathcal{O} = \{x + yi + zj + tk | x, y, z, t \in \mathbb{Z} \text{ or } x, y, z, t \in \frac{1}{2}\mathbb{Z}\backslash\mathbb{Z}\}$ is a maximal order containing \mathcal{O}' . Hint : Again, (reduced) traces and norms are usefull here
- 4. What are the units of \mathcal{O} , i.e. \mathcal{O}^{\times} ?
- 5. Show that \mathcal{O} has class number 1 (i.e. $C\ell(\mathcal{O}) = \{\mathcal{O}\}$). Hint : prove that there is some kind of euclidean division on \mathcal{O} with respect to the reduced norm
- 6. Denote $\tau = \frac{1+i+j+k}{2}$. Show that $(1+i)\mathcal{O}$ is two-sided and

$$\mathcal{O}/(1+i)\mathcal{O} \xrightarrow{\sim} \mathbb{F}_2[\overline{\tau}] \simeq \mathbb{F}_4,$$

is an isomorphism, which sends \mathcal{O}' to \mathbb{F}_2 .

7. Show that for p odd, we have the following equalities,

$$|\{x \in \mathcal{O}| N(x) = p\}| = 3 |\{x \in \mathcal{O}'| N(x) = p\}| = 3|\{(a, b, c, d) \in \mathbb{Z}^4| a^2 + b^2 + c^2 + d^2 = p\}|, a \in \mathbb{Z}^4$$

and that N(x) = p if and only if $x\mathcal{O}$ has index p^2 in \mathcal{O} .

- 8. Show that if p is odd $\mathcal{O}_p := \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_p = M_2(\mathbb{Z}_p)$, and that \mathcal{O}_p has p+1 index p^2 ideals. *Hint*: we can show that there are bijections, writing $\mathcal{O}_p \simeq (\mathbb{Z}_p^2 \oplus \mathbb{Z}_p^2)$ as a left \mathcal{O}_p -module, $\{I \subset \mathcal{O}_p \text{ of index } p^2\} \simeq \{L \subset \mathbb{Z}_p \oplus \mathbb{Z}_p \text{ sub-}\mathbb{Z}_p\text{-module of index } p\} \simeq \{\ell \subset \mathbb{F}_p \oplus \mathbb{F}_p \text{ a line}\}.$
- 9. Show that $\Lambda \subset \mathbb{H} \mapsto (\Lambda \otimes \mathbb{Z}_p)_p$ induces an index-preserving bijection between lattices of \mathbb{H} and collection (L_p) of lattices of $\mathbb{H} \otimes_{\mathbb{Q}} \mathbb{Q}_p$ such that $L_p = \mathcal{O}_p$ for almost all p. Furthermore Λ is an order, a maximal order, or an ideal for \mathcal{O} if and only if Λ_p has this property for all p.
- 10. Deduce the following theorem of Jacobi

Theorem 0.1 (Jacobi). Let p be an odd prime. Then

$$|\{(a, b, c, d) \in \mathbb{Z}^4 | a^2 + b^2 + c^2 + d^2 = p\}| = 8(p+1).$$

11. Deduce Lagrange's Theorem : every integer is a sum of 4 squares.

Remark 0.2. Actually there is a more general version of Jacobi's formula for sum's of 4 squares, for every integer $n \in \mathbb{N} \setminus \{0\}$,

$$\{(a, b, c, d) \in \mathbb{Z}^4 | a^2 + b^2 + c^2 + d^2 = n\} = 8 \sum_{d \mid n, 4 \nmid d} d.$$

It is best proven using modular forms (precisely of weight 2 and level $\Gamma_0(4)$), and the same method (only easier) gives the formula for sums of 2k squares, $k \ge 2$. See the lecture of Zagier in the book *The 1-2-3 of Modular Forms*.