Théorie des nombres - TD2

Exercise 1 (A practical example). Let $A=<x, y>=: k\{x, y\} \subset M_{2}(k)^{1}$ be the subalgebra generated by

$$
x=\left(\begin{array}{cc}
1 & 1 \\
& 1
\end{array}\right) \quad \text { and } \quad y=\left(\begin{array}{cc}
2 & \\
1 & 2
\end{array}\right)
$$

Show that $V=k^{2}$ is a simple A-module, but not a semi-simple $k[x]$ or $k[y]$-module.
Exercise 2 (Conics and quaternion algebras). Let k be a field and $(a, b)=(a, b)_{k}$ the quaternion algebra with parameters $a, b \in k^{\times}$. We denote by $C(a, b)$ the conic of \mathbb{P}_{k}^{2} with equation

$$
C(a, b): a x^{2}+b y^{2}=z^{2}
$$

1. What is the conic of $M_{2}(k)$?
2. Show that $C(a, b)$ is isomorphic over k to the conic with equation

$$
a x^{2}+b y^{2}-a b z^{2}=0
$$

3. Deduce that $C(a, b)$ up to k-isomorphism is independent of the choice of the presentation of $(a, b)_{k}$. Hint : Call a pure quaternion $q \in(a, b)_{k}$ if $q^{2} \in k$ but $q \notin k$. To what condition $q=x+y i+z j+t k$ is a pure quaternion?
4. Show that $(a, b)_{k}$ is split if and only if $C(a, b)$ has a k-rational point (in $\left.\mathbb{P}^{2}(k)\right)$.
5. Deduce that $(a, b)_{k} \simeq M_{2}(k)$ if k is a finite field (without using $\operatorname{Br}(k)=\{0\}$).
6. Show that if $a \neq 0,1$, then $(a, 1-a)_{k} \simeq M_{2}(k)$.
7. Show that (a, b) is split over k if and only if (a, b) is split over $k(t)$. Can you interpret this result geometrically?

Exercise 3 (A condition for splitting). 1. (Rieffel's Lemma) Let A / k a simple algebra, and I be a non-zero (left) ideal. Show that, if $D=\operatorname{End}_{A}(I)$,

$$
\lambda: \begin{array}{ccc}
A & \longrightarrow & \operatorname{End}_{D}(I) \\
a & \longmapsto & (i \mapsto a i)
\end{array}
$$

is an isomorphism.
2. Let A / k be a central simple algebra. Show that $A \simeq M_{n}(k)$ if and only if A contains a sub-algebra isomorphic to k^{n}.

Exercise 4 (Structure of finite type module over simple algebra). Let A / k be a simple k-algebra of finite k-dimension.

1. Show that a finite type A-module is semi-simple.
2. Show that two finite type A-modules are isomorphic if and only if they have the same (finite) dimension over k.
3. Give an example of A a ring, and M a finite type A-module that is not semi-simple.
[^0]Exercise 5 (Polynomial solutions in a division algebra). Let D / k be a central, finite dimensionnal, division algebra. Let $P(t)=t^{2}+a t+b$ be an irreducible polynomial in $k[t]$.

1. Show that P might have an infinite number of solutions in D Hint : Try with \mathbb{H} / \mathbb{R} and the most obvious irreducible polynomial over \mathbb{R}.
2. Show that if $x \in D$ is a root of P, then y is a root of P if an only if x, y are conjugate in D.

Remark 0.1. This is a particular case of a theorem of Dickson, which states the following :
Theorem 0.2 (Dickson). Let D be a division ring with center k and $P(t) \in k[t]$ and irreducible polynomial. Then any two roots of P in D are conjugate to each other.

Exercise 6 (The Brauer group of \mathbb{Q}). The goal is to prove that the Brauer group $\operatorname{Br}(\mathbb{Q})$ is not finitely generated.

1. Show that we can find a sequence of primes $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ two by two distincts, and a sequence of integers $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ such that a_{i} is not a square modulo p_{i} and $a_{i} \equiv 1$ $\left(\bmod p_{j}\right)$ for all $1 \leq j<i$.
2. Show that for all $i,\left(a_{i}, p_{i}\right)_{\mathbb{Q}}$ is a non-split quaternion algebra and that these algebra are two by two distincts.
3. Show that $\operatorname{Br}(\mathbb{Q})$ is not finitely generated. Can you find an abelian group G that is not finitely generated by such that $G[2]$ is finite non trivial ?
Exercise 7 (Kummer Theory). Our goal is to prove the following statement, known as Kummer Theory.

Theorem 0.3 (Kummer). Let K be a field, $n \in \mathbb{N}_{\geq 2}$, coprime to char (K) if $\operatorname{char}(K)>0$. Assume that $\zeta_{n} \in K$ for ζ_{n} a primitive n-th root of 1 . Let L be a cyclic extension of K of degree n, then there exists $a \in K, \sqrt[n]{a} \in L$ (any element such that $\left.(\sqrt[n]{a})^{n}=a\right)$ such that $L=K(\sqrt[n]{a})$.

1. If n, K are as in the statement, and $\sqrt[n]{a} \in \bar{K}$ show that $L=K(\sqrt[n]{a})$ is a (Galois) $\mathbb{Z} / n \mathbb{Z}$ extension of K if for all $r \mid n, r \neq n, \sqrt[n]{a}^{r} \notin K$.
2. Show that if $p=\operatorname{char}(K), a \in K$ and $b \in \bar{K}$ such that $b^{p}=a$, then $K(b) / K$ is not a Galois extension if $b \notin K$.
3. Suppose $p=\operatorname{char}(K) \neq 0$ and $P \in K[X]$ is an irreducible polynomial of degree n, coprime to p. Then if L is the extension of K given by P, or the splitting field of P then show that L / K is separable.
4. Let L / K be a $\mathbb{Z} / n \mathbb{Z}$-extension, and let $\sigma \in \operatorname{Gal}(L / K)$ a fixed generator. Show that we can find $x \in L$ such that

$$
\alpha=x+\zeta_{n} \sigma^{-1}(x)+\zeta_{n}^{2} \sigma^{-2}(x)+\cdots+\zeta_{n}^{n-1} \sigma^{1-n}(x) \neq 0
$$

5. Show that L is of the form $K(\sqrt[n]{a})$ for some $a \in K$. Hint : calculate $\sigma(\alpha)$.

Additional questions :

6. Fix a separable closure $K^{\text {sep }}$. Denote $K(n)$ the composite of all abelian extension of exponent $e \mid n$ in $K^{\text {sep }}$. Show that we have a well defined continuous pairing

$$
\begin{array}{ccc}
K^{\times} /\left(K^{\times}\right)^{n} \times \operatorname{Gal}(K(n) / K) & \longrightarrow & \mu_{n}\left(K^{\text {sep }}\right) \\
(a, \sigma) & \mapsto & \sigma(\sqrt[n]{a}) / \sqrt[n]{a}
\end{array}
$$

7. Show that this pairing is non-degenerate, i.e. $K^{\times} /\left(K^{\times}\right)^{n} \simeq \operatorname{Hom}_{\text {cont }}\left(\operatorname{Gal}\left(K^{\text {sep }} / K\right), \mu_{n}\right)$.
8. Show that there is a bijection

$$
\begin{aligned}
\left\{\text { extensions } K \subset L \subset K^{\text {sep }}, L / K \text { abelian , of exponent } e \mid n\right\} & \longrightarrow & \left\{\operatorname{subgroups}\left(K^{\times}\right)^{n} \subset \Delta \subset K^{\times}\right\} \\
L & \longmapsto & \left(L^{\times}\right)^{n} \cap K^{\times} \\
K(\sqrt[n]{\Delta}) & \longleftrightarrow & \Delta
\end{aligned}
$$

where $\sqrt[n]{\Delta}=\left\{x \in K^{\text {sep }} \mid x^{n} \in \Delta\right\}$.

Exercise 8 (Another presentation of cyclic algebra). Let k be a field, $n \geq 2$ an integer, coprime to char (k) if $\operatorname{char}(k) \neq 0$. Suppose that k contains all n-roots of 1 , and fix w a primitive n-root of 1 . We define the algebra

$$
(a, b)_{w}:=k\{x, y\} /\left(x^{n}-a, y^{n}-b, x y=w y x\right)
$$

1. For $n=2$ show that we obtain exactly quaternion algebras.
2. Justify that if A is a cyclic algebra, for $L / k, \sigma \in \operatorname{Gal}(L / k) \simeq \mathbb{Z} / n \mathbb{Z}, a \in k^{\times}$, then

$$
A:=(\sigma, a) \simeq(a, b)_{w}
$$

for some b, w.
3. Show that $(a, b)_{w}$ is central simple.
4. Prove the following isomorphisms

$$
\begin{gathered}
(a, 1)_{w} \simeq(1, b)_{w} \simeq M_{n}(k), \\
\left(a, t^{n} b\right)_{w} \simeq(a, b)_{w}, \\
(a, b)_{w} \otimes_{k}\left(a^{\prime}, b\right)_{w} \simeq\left(a a^{\prime}, b\right)_{w} \otimes_{k} M_{n}(k)
\end{gathered}
$$

Exercise 9. Let G be a profinite group, V a complex representation and $\rho: G \longrightarrow \mathrm{GL}(V)$ a continuous representation. Show that ρ has finite image.

[^0]: 1. This algebra isn't commutative (justify it), the notation $k\{x, y\}$, as opposed to $k[x, y]$ is here to emphasize this.
